
256

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A Systematic Review and Taxonomy of Runtime Invariance in Software Behaviour

Teemu Kanstrén
VTT Technical Research Centre of Finland

Oulu, Finland
teemu.kanstren@vtt.fi

Abstract— Describing software runtime behaviour in terms of
its invariant properties has gained increasing popularity and
various tools and techniques to help in working with these
invariants have been published. These typically take a specific
view on the possible and supported properties. In many cases it
is also useful to view these in a wider context to enable a deeper
understanding of possible invariance and to provide more
extensive support across different domains. This paper aims to
identify different aspects of the runtime invariance based on a
review of existing works, and to present these results in a
taxonomy that positions the different aspects in relation to
each other. The goal is to provide support for their use in
practice and to help identify possible research directions. A
systematic review has been performed to identify relevant
works in the literature. From these, a set of relevant properties
have been collected to form the taxonomy. The resulting
taxonomy has been structured to describe the different
properties of runtime invariance. One main axis gives an
overview of usage domains. One describes process related
properties that are further classified to specification and
evaluation related properties. A third main axis describes
properties of runtime invariance itself and is further classified
to properties of measurements, patterns and scope. It is
concluded that the taxonomy provides a representation of
different properties of runtime invariance used in current
works. It can be used as a basis for modelling and reasoning
about software runtime behaviour generally or as a basis for
specialization in different domains.

Keywords-systematic review; software behaviour; runtime
invariance; taxonomy

I. INTRODUCTION

This paper extends on previous work presented in [1].
Runtime invariance as discussed in this paper describes
software behaviour in terms of its invariant properties as
observed through dynamic analysis. Dynamic analysis uses
as its basis information captured as observations from a
(finite) set of program executions, such as test executions
[2]. In line with these definitions, runtime invariance is
defined here similar to [3] as a set of properties that hold at a
certain point or points in a program execution. As a
distinction from some uses of the term “invariant properties”,
in this paper runtime invariance includes not only separate
program points but also invariants over the overall behaviour
of the observed system. That is, runtime invariance in this
context refers to properties that are true for every observed
execution. Recently the use of such invariants has become an
increasingly popular technique in supporting different
software engineering tasks (e.g., [4,5,6]).

Examples of runtime invariance include data-flow
constraints (e.g., x always greater than 0 [3]), control-flow
constraints (e.g., request always followed by a reply [7]), or
their combinations (e.g., x is always greater than 0 when
request is followed by a reply [8]). Runtime invariance can
be specified manually as a model of expected behaviour for
further processing with automated tools (e.g., [7]) or built
(mined) based on observed behaviour (e.g., [3]). A model
based on observed behaviour can also be referred to as
describing likely invariance as it is based on observations
made from a set of program executions, which typically do
not cover the entire program behaviour state-space [3].

The idea of documenting and using invariants to reason
about program behaviour at run-time can be seen to be as old
as programming itself ([9,10]). Using invariants expressed in
first-order logic to capture formal constrains on program
behaviour was introduced as early as 1960's [9] by the
pioneering work of Floyd [11] and Hoare [12].

Runtime invariance can be used in a variety of software
engineering tasks and domains, such as helping in program
comprehension [3], behaviour enforcement [13], test
generation and oracle automation [6], or debugging [14].
Thus, when explicitly defined, a set of runtime invariants
forms a basis for building automated support for many
domains of software engineering.

There exist a number of tools to support the use of
runtime invariance in different tasks (e.g., [3,6,15]). Many of
these tools use a specific set of invariants for a specific
domain. When applying runtime invariance in different
domains, it is useful to also consider them in a wider context.
When a set of invariants needs to be provided, either as
manually defined input for evaluation by an automated
processing tool, or as output (templates) from an automated
specification mining tool, being able to generally reason
about this invariance is needed for their effective use.

This paper describes a taxonomy of runtime invariance in
software behaviour, describing different properties of these
invariants. This is based on review of existing works on
research and use of such invariants. The study is structured
to describe how the invariants are specified and used, what
kind of invariant patterns over software behaviour they
capture, in which scope of behaviour they apply, and what
information about the system behaviour is needed to be able
to express and evaluate them.

The goal is to provide a systematic definition of the
different properties of runtime invariance in software
behaviour based on existing work, to facilitate their use in
practice and to help form a basis for identifying future
research directions.

257

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

This paper is structured as follows. Section II describes
the overall approach taken to perform the survey and to
create the taxonomy. Section III presents the taxonomy itself.
Section IV provides two examples of applying the taxonomy.
Finally, Section V provides discussion followed by the
concluding remarks.

II. TAXONOMY BUILDING APPROACH

The taxonomy presented in this paper is based on
performing a review of existing works in use and research on
runtime invariance of runtime software behaviour. This
review follows guidelines for performing systematic
literature reviews (SLR) from [16]. SLR has been shown to
be a robust and reliable research method in software
engineering research [17]. In relation to the most common
reasons for performing a SLR defined in [16], the intent here
is to summarize existing works related to the use and
research on the different properties of runtime invariance in
software behaviour. Additionally, while not directly
addressed by the resulting taxonomy, also two other most
common reasons for a SLR defined in [16] can be observed
as being supported by the provided taxonomy. Regarding
these two, the taxonomy can be used as a framework to help
position new research activities in the area, and to help
identify gaps in current research.

A SLR can be defined in terms of the following features:
a review protocol, a search strategy, selection criteria, and
the definition of the information to be obtained from each
included study [16]. Finally, data also needs to be
synthesized to summarize the results [16]. The rest of this
section discusses the approach taken in more detail relative
to each of these features. The approach for the survey and
taxonomy creation is also inspired by the taxonomy building
approaches taken by Ducasse et al. [18] and Kagdi et al. [19],
as well as the approaches for SLR taken by Cornelissen et al.
[2] and Ali et al. [20].

A. Development of a Review Protocol
As noted before, the approach taken in this paper follows

the guidelines for performing a SLR given in [16].
According to this, a review protocol should specify the
methods that are used to perform the SLR. This includes
defining the research questions, the search strategy, selection
criteria, data extraction method, and synthesis approach [16].
Figure 1 illustrates the development process for the review
protocol taken in the study presented in this paper. The first
step is identifying the research questions that the survey is
aiming to answer. The second step defines the search scope
in terms of resources (journals, conferences, etc.) to be
searched and the strategy for searching these resources. The
selection criteria define what studies will be included in the
SLR. A separate step of quality assessment is also possible at
this point but in this paper this is embedded in the selection
criteria as will be discussed in the following subsections. The
data extraction strategy defines how the relevant information
from each chosen study is extracted. Finally, the data needs
to be synthesized to answer the research questions.

Piloting the different steps is also important in order to be
able to identify any mistakes and problems in the procedures.

For the study presented in this paper, a preliminary study
was conducted and published as a conference paper [1]. For
this pilot study, comments were requested from experts in
the field and also received from the conference peer-review
(identified in the acknowledgements). The feedback from
these instances was incorporated into different phases of the
review protocol, which was then applied to produce the
extended version of the study presented in this paper.

Figure 1. Development process for the review protocol.

B. Research Questions
The research questions should support the goal of the

study, which here has been stated as providing a systematic
definition of the different properties of runtime invariance in
software behaviour in order to facilitate their use in practice
and to help in identifying future research directions. To
support this goal, the following research questions are
addressed:

RQ-1: What are the properties of the processes used in
analyzing software behaviour in terms of its runtime
invariance?

RQ-2: What are the properties used to describe runtime
invariance in software behaviour?

The first question is related to how the invariants over
software runtime behaviour are used, and the second one to
how the invariants themselves are defined.

C. Search Strategy
For reasons similar to those presented in [2], the main

approach for performing the search has been manually over
the selected publication venues. These reasons include the
lack of support in current software engineering libraries for
the identification of relevant research and primary studies,
and the lack of common keywords across different venues or
any such standard in relation to runtime invariance.

258

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table 1. Venues for article selection.

Abbr. Description
ASE International Conference on Automated

Software Engineering
CSMR European Conference on Software Maintenance

and Reengineering
FSE European Software Engineering Conference /

Symposium on the Foundations of Software
Engineering

ICSE International Conference on Software
Engineering

ICSM International Conference on Software
Maintenance

ICST International Conference on Software Testing
ISSTA International Symposium on Software Testing

and Analysis
WCRE Working Conference on Reverse Engineering
IST Information and Software Technology
JSME Journal of Software Maintenance and Evolution
JSS Journal of Systems and Software
STVR Software Testing, Verification and Reliability
TOSEM ACM Transactions of Software Engineering

and Methodology
TSE IEEE Transactions on Software Engineering

The search venues are described in Table 1. The first
eight of these are conferences and the last five are journals.
The timeframe for the initial paper selection is from January
2001 until October 2010. This timeframe is chosen in order
to provide a reasonable scope for the survey similar to those
of [2] and [20]. It also scopes the start of the survey around
the publication of one of the seminal papers on analysis of
runtime invariance by Ernst et al. [3]. The selection of
venues is based on the selection of well-known conferences
and journals in the area of general software engineering and
runtime analysis, similar to those in [2] and [20].
Additionally, it was scoped by the results of the pilot study
([1]), which started by examining the related publications
collected over time on the Daikon tool website [21] (the tool
originally described in [3]) and by performing keyword
searches over digital library databases (e.g., IEEE Xplore,
ACM Digital Library). The search venues in this paper are a
composition from these different inputs, focusing on those
that were found to be most relevant in the pilot study.

Similar to [2], in addition to the initial article selection
from the venues listed in Table 1, interesting references from
the chosen papers in the initial selection were also checked
and relevant ones included in the survey. Where the authors'
expertise in the field allowed to identify additional relevant
references (e.g., [22]), these were also included.

As the focus of the study is on runtime invariance from
the dynamic analysis viewpoint, the selection of papers and
venues is also focused on the domain of analysing software
runtime behaviour via dynamic analysis. However, as this
can be seen to share many relevant properties with domains
such as formal specification in general, also relevant works
in other domains as referenced from the main body of works
have been included in the taxonomy. However, to provide a

clear scope for the survey and to limit the scope of the study
to a reasonable set, further exploration of the relations of the
given taxonomy to other domains such as the formal
methods community is left as a topic for future works.

D. Selection Criteria and Process
With regards to the research questions, two selection

criteria for choosing the papers to be included were defined:
1. The selected papers directly discuss the use of invariants

in relation to runtime software behaviour
2. The papers discuss modelling software behaviour in

terms of properties that can be observed during runtime.
When these models can be viewed in terms of
invariance, they are considered relevant.

Table 2 lists the number of selected papers in relation to
the selected venues. Due to the very large number of papers
altogether (5817), it was not possible to read every paper
fully. Instead, for each paper the title and abstract were first
checked for relevance. If this provided no conclusion, the
introduction and the conclusions were also reviewed for
relevance. Finally, if needed, the full paper was read in order
to define its suitability for inclusion. The total number of
papers fully read is listed in the third column in Table 2 and
is overall 348 papers.

The row titled “other” in Table 2 refers to papers that
were included from venues other than the ones listed in
Table 1. These come from the survey done in the pilot study,
which included the papers listed on the Daikon website,
digital library searches and from the reference checking in
this extended study. Unfortunately the total number of such
papers was not recorded during the pilot study and thus only
the number of selected papers is given for these venues. The
“selected” numbers in Table 2 reflect the references linked to
the different axes of the taxonomy described in section III.

Table 2. Overview of study selection.

Venue Papers Read Selected
ASE 406 49 12
CSMR 343 19 2
FSE 306 14 6
ICSE 481 25 20
ICSM 587 16 3
ICST 152 16 2
ISSTA 173 52 8
WCRE 277 17 3
IST 810 25 6
JSME 174 9 0
JSS 1270 29 3
STVR 101 11 2
TOSEM 132 8 3
TSE 605 58 7
Other - - 16
Total 5817 348 93

As mentioned, the process of SLR can also include a
separate step of quality assessment after the paper selection
step. Related to this, an exclusion criterion was also used. A
paper was included only if it was observed as contributing

259

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

something new to the building of the taxonomy. For
example, when a paper presents some further research on
specific properties of invariance already discussed in a
previous paper, only the earlier paper is included. This is an
approach similar to that taken by Ducasse et al. [18], and
does not mean that other papers would not be interesting. It
simply scopes the study from the research question
perspective.

Thus the taxonomy does not aim to include all possible
papers dealing with runtime invariance but rather those in the
selected venues that contribute to the definition of a
taxonomy observed as best capable of answering the
research questions.

E. Data Extraction and Synthesis
In building the taxonomy, an initial version of the main

axes and their classes was defined based on the seminal work
of Ernst et al. [3] on analyzing the runtime invariance of
software behaviour. This was then refined based on review
of other works and how these contributed to evolving the
taxonomy and its different properties. This resulted in a more
advanced and more fully structured version of the taxonomy.
At this point the pilot study was submitted for conference
peer-review. As noted before, based on the received
feedback a more systematic survey was conducted in terms
of a SLR, which was then used to update the taxonomy
similar to the way the initial approach is described above.

In building the taxonomy, the Protégé ontology editor
tool was used to capture and describe the different aspects
and classes of the taxonomy. An adapted version of Binder's
“fishbone” diagram [23] is used in section III to describe the
different aspects of the taxonomy, focusing on specific
properties one at a time. For space reasons, the description of
the different properties is kept at a general level and for
specific (and possibly more formal) definitions the reader is
referred to the original references given.

The descriptions of the fishbone show the high-level
properties as bold, mid-level properties as italics bold, and
specific properties in italics. As noted before, given
references are not intended to be all-inclusive but to give a
set of examples. However, for clarity and space no “e.g.” is
repeated for all of the references.

III. TAXONOMY OF RUNTIME INVARIANCE

This section presents the actual taxonomy of runtime
invariance in software behaviour created based on the
performed literature review. It is split into four subsections.
The first subsection defines the main axes of the taxonomy
and shows the overall picture. The second subsection
describes different usage domains for such invariants. The
third subsection describes the properties of the invariants
themselves. Finally, the fourth subsection describes process-
related properties for how such invariants are specified and
evaluated. As noted before, the intent is to provide coverage
of the different elements while including references observed
as adding new elements to the taxonomy. Thus the intent is
not to provide full coverage of all possible references for the
described properties.

A. Main Axes
The generic process flow of using invariants in analysing

software runtime behaviour, along with related properties for
each step, is presented in Figure 2. This flow can be
described as starting with specification of the invariant
information that describes the software runtime behaviour of
interest. Analysing the runtime behaviour requires capturing
a set of observed measurements as a basis for the analysis,
termed here as measurement. Depending on how the
specification is done (automated mining vs. manual
specification), it can also be interlinked with the
measurement phase. Finally, in the evaluation phase the
specified model of expected runtime invariance is compared
against the observed model of actual runtime invariance.

The specification step is influenced by a set of
specification properties that describe how the invariant
information is formed. The invariant information describes
the expected invariance and is formed as output from this
step. This is then used as input for the measurement and
evaluation steps. All steps in this process are related to the
usage domain of the process. This means that the different
phases of the process are impacted by the intended usage
domain. The step of evaluation itself is described in this
paper in terms of evaluation properties, which describes the
general domain-independent properties of evaluation.

Figure 2. Flow of Elements.

The main axes of the taxonomy are divided into one axis
describing the usage domains of runtime invariance, two for
describing the process-related properties and three axes
related to properties of runtime invariance itself. The
invariance related axes embedded in the “invariant
information” block in Figure 2 are measurements, patterns
and scope.

Effectively making use of and reasoning about a concept
requires thoroughly understanding it. Subsection III.B starts
by describing a set of common usage domains for runtime
invariance from the surveyed works. The properties of
invariant information described in section III.C further
describe the different elements of the runtime invariance
itself. Finally, the properties of process described in section
III.D provide more detailed insights into working with these
invariants, related to their specification and evaluation.

B. Usage Domains
In order to use invariants as a basis to describe and

analyse software runtime behaviour it is important to
understand the context in which they can be applied. This

260

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

includes both the targeted application domain (e.g., test
automation or runtime adaptation) as well as the type of
application (online or offline). The axis presented in this
section aim to provide a basis for understanding what
runtime invariance can be used for, how one might use them,
and where one might be interested in their application. While
this subsection synthesizes the surveyed related works, it
should be noted that other application are also possible.

The usage properties refer to the context and type of
application of the runtime invariance and are illustrated in
Figure 3. This includes both the usage domains describing
what the invariants are used for, and usage types describing
if they are applied in an operational system or separately
from it. Here the domains are split into five high-level usage
domains, which can be observed from two viewpoints:
online and offline use. These usage related properties can be
observed to help answer questions such as “How is runtime
invariance applied and where?”.

Figure 3. Usage Domains for Runtime Invariance.

Considering the type of use, in offline use, the invariants
are applied separately from the execution of the analysed
program. In this case, the observations (collected at runtime)
about the runtime behaviour can be analysed external to the
operational system. In online use the application of the
invariants is linked to the executing program. In this case, the
invariants are analysed while the system is operational and
possibly the results are fed back to the operational system in
some form.

Considering the five usage domains behaviour enforcing
techniques guide the online operation of the observed
system. Static analysis is focused on automated analysis of
given static artifacts and thus mainly operates offline.
Besides these two, the other domains can make equal use of
both online and offline approaches. In the following, each of
these usage domains is described in more detail.

Static analysis is not considered in this paper deeply as
the focus is on runtime invariance in terms of dynamic
analysis. However, some different usage relations can be
identified. The invariants can be used as input for static
analysis to check if they hold generally or only in specific
cases ([24,25]). When information about the program
structure is available, the correctness and accuracy of
runtime invariants can also be checked and improved with
combination of static analysis techniques such as symbolic
execution ([26]). Invariants observed as useful and true in

terms of runtime behaviour and dynamic analysis can be
turned into more generic checks for static analysis ([14]).
Although some specifications of invariants can be more
suitable for dynamic and others for static analysis ([27]),
many properties of static analysis can also be applied in the
context of dynamic analysis and the other way around
([7,28,29]). Finally, as runtime invariants are defined in
terms of some formalism, static analysis techniques can also
be applied to check a chosen set of interesting properties in
their specification, including their correctness and
completeness in general and with regards to the observed
runtime behaviour ([30]).

Behaviour specification is a basic concept for any
application of runtime invariance, as the expected invariants
need to be specified before they can be applied. Use cases for
invariance in runtime behaviour specification include
defining application programming interface constraints (e.g.,
size() always >= 0 [25,31]), defining rules
(constraints to be obeyed) for successful integration of a
component with others ([32,33]), describing the valid
(supported) input-space of a component ([32,34]), and
defining error handling rules ([35,36]). A component can
generally be anything from a method, a composition of
classes, a service, or a complete software system.

Invariance also forms a basis for generic formal
specification [7], which can be used to verify the actual
behaviour against the specific expected behaviour [37]. This
also includes constraints for executing a specific
functionality [36]. The different properties related to
specification of runtime invariance are described in more
detail in section III.D.1). A core concept related to this is the
requirement to be able to reason about the different
properties of potential runtime invariance. A systematic
definition for the properties of runtime invariance is needed
in order to have a basis for reasoning about their composition
and use. Such a definition is given by the taxonomy of
invariant properties in section III.C. A specification can be
produced either manually, or with the help of an automated
specification mining tool.

Behaviour analysis of software runtime behaviour is a
human-oriented process typically supported by automated
tools. A set of runtime invariants is provided to the user as a
basis for analyzing the system behaviour. This can be used
for different types of tasks. In the software engineering
domain, for example, failure cause location (debugging) can
be supported by analyzing how the invariants change over
time in an operational system and reporting any significant
changes preceding an observed failure ([5,14,29]). This is
possible as the runtime invariance of the program can be
observed as changing over time. Similarly, debugging can be
supported by comparing the invariants observed over both
failing and non-failing program executions ([5,38]). Software
evolution tasks can be supported by presenting any changes
over given invariants when changes are made to a program
to make the impacts of changes more explicit ([3,29,39]),
such as changed interaction sequences and input-output
transformation [39]. Another example in this domain is
suggesting refactoring based on mined invariant
specifications (e.g., to remove observed constant parameter)

261

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[40], and by using given invariant specifications as contracts
to define checks for properties that need to hold after
refactoring [41]. Additionally, the invariants can support
tasks such as program comprehension by providing a
documentation that describes the software behaviour in terms
of its important (invariant) behaviour ([3,4,32]). This can
also take the form of asking queries to identify invariant
sequences to find related sequences of behaviour
([42,43,44]).

When implementing automated software analysis
features based on runtime invariance, different approaches
for different domains can be taken. In security assurance
observing a set of core invariants over specific variables,
such as kernel data structures or session state variables, can
be used to identify potential security attacks when the
expected invariants are violated ([45,46,47]). In the same
line, runtime invariance patterns over system interactions
(such as library calls) can also be used to identify the origin
of mutated code for purposes such as to protect against code
theft [48] or to identify mutating malware [49]. Runtime
monitoring in general can be implemented to check that the
runtime behaviour conforms to the specified invariant
specifications in all executions [50,51]. In case errors are
observed, error correcting actions can be considered [51],
which is a form of behaviour enforcing.

Behaviour enforcing mechanisms take as input the
information from behaviour analysis and additionally take
automated action to modify the behaviour based on
differences in the actual observed runtime invariance vs the
specified expected runtime invariance. Automatic adaptation
mechanisms can use invariants to choose a new state for the
software based on which specified invariants hold at
different points in time [13]. Invariants can also be used to
ensure that failure states specified in terms of invariants are
avoided by modifying runtime behaviour that is observed to
be outside the given set of invariants (the expected
behaviour) to fit inside the expected invariants
([29,52,53,54,55]). For example, a specific case can be
observed in disallowing saving of data or updating the state
(of the user interface) when an invariant does not hold [56].

Test automation is basically a comparison of expected
runtime behaviour to actual observed runtime behaviour.
Defining a test case requires defining test inputs, expected
outputs and their relations. Any automated test case basically
requires defining the software runtime behaviour in terms of
invariance for the automated test case to be able to produce
any holding verdicts over the observed behaviour. Thus test
automation is a fruitful application domain for runtime
invariance.

A basic application is in defining the test oracle (the
component that evaluates the test results) in terms of
invariance. Such invariants typically define how a part of the
system behavior is expected to work, in terms of properties
such as determinism ([57,58]), data processing ([4,14,59]),
message transitions ([6,60]), and their combinations
([22,61]). This is also related to the previously mentioned
aspect of runtime monitoring for correctness in terms of
using specified runtime invariance as a set of constantly
running online test oracles ([29,35,50,62]). It is also related

to the previously mentioned aspect of specifying how a
component should work in relation to its use environment, in
using runtime invariance specifications as a means to check
how a new or updated component works in different
environments ([31,39]).

In addition to test oracles, a test case requires producing
valid input for the system under test. Here invariant models
can be used to define valid data ranges, value relations and
similar properties as a basis for a data model to be used to
generate test data to cover these models ([61,63,64]).
Another option is to generate test data to try to break
previously defined invariants in order to further explore
behaviour and to try to extend the model of invariance
([10,59,65,66]). Various approaches to generate test data
from these models include search-based algorithms [64],
random test generation [63], and generating test data to fulfill
the different invariants defined [66].

The above mentioned uses of creating test coverage to
cover or break invariants are in themselves also examples of
using runtime invariance to reason about test coverage. A
second aspect related to this is mutation analysis, which is
used to change the SUT and to see how well a set of tests
finds the mutations (with failing tests). Invariants can be
used to also optimize SUT mutant coverage [10,67], but this
can also be applied the other way around to evaluate the
quality of the invariants themselves ([49,51]). In this case,
the invariants are mutated and executions over these
invariants are used to evaluate if the invariants are valid or if
they catch useful changes in software behavior.

C. Properties of Invariance
This subsection describes the different aspects and

properties related to describing runtime invariance itself. It
starts with defining the properties of measurements for the
actual runtime observations. Following this, it presents a set
of different patterns of runtime invariance that are built from
these observations. Finally, the different scopes of runtime
invariance that allow for defining where these patterns of
runtime invariance can be expected to hold are described.

1) Measurement Properties
As described in section III.A, any evaluation of runtime

invariance requires first capturing the required information
(observations) about the runtime behaviour. Similarly, as
also noted in section III.A, this information can also be used
as input in the specification phase. Thus, it can be said that
any application of runtime invariance analysis requires also
capturing a set of suitable information to describe this
invariance. In this paper this information is referred to as
measurements.

The basis for describing software behaviour in terms of
its runtime invariance is the measurements used to observe
this invariance. This in turn requires one to understand what
kind of measurements can be made directly from the system,
what kind of further measurements can be derived from these
basic measurements, and how we may classify all these
measurements. This information provides means to describe
the system using the higher level invariant patterns presented
in section III.C.2). It provides means to create more
extensive patterns, and to evaluate the options available and

262

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

needed to capture the required information as well as to
understand what is needed to instrument the system to
acquire these measurements. The axis presented in this
section aims to support these goals by providing an overview
of what types of measurements are used in existing works.

The properties of these measurements are illustrated in
Figure 4. These properties can be observed as helping to
answer questions such as “What kind of basic measurements
are used to observe runtime invariance?”, “What other
measures can we derive from these basic measures?”, and
“How can we characterize the different measurements?”.

Figure 4. Measurement Properties.

The information type of the measurements can be
classified into two different types of static and contextual
information [28]. Static information in a dynamic runtime
setting is information that is always the same for a given
point of observation. For example, during a specific point of
execution, a message passed can always be the same type of
a message (e.g., method call named publishData()) and
is thus static over different executions of this point.
Contextual information describes dynamic information that
changes over the executions of a single point depending on
the context (e.g., test case or user session) of the observed
information. For example, the time of observation, parameter
values, and the thread of execution for a given message all
can change over different executions of the same program
point ([28,68]). The set of observations can also be grouped
("sliced") according to their contextual information, such as
process (thread) id to produce a set of invariants over the
scope represented by that slice ([15,28,68]). In this case, the
scope (context) identifier becomes the basic measure (e.g.,
thread id [69] or a constant parameter value [28]).

The term base measure here refers to a type of
measurement information that describes some basic value of
runtime behaviour as it is observed. A basic value for any
observation is the time when it occurred or was observed
([28,60,63,68]). For dataflow the base measures include
variable data values and their basic data types such as
Boolean values, integers, and character sequences (Strings)
[3]. In the scope of object oriented programs the runtime
type of an object can also be used as a base measure data
value ([14,70]).

From the control-flow perspective, base measures are
messages passed between different elements of the control-
flow. Perhaps the most basic measure related to this is the
identifier of the message passed, but also the sender and
receiver objects ([71,72]). Examples of measurement targets
include method invocations between components (such as
classes or services) ([8,39,71,72]) or invocations on
graphical user interface (GUI) operators ([6,61]).

A specific case of control-flow is error handling flows
identified by an error status. Error scenarios can be
classified to generic errors and application specific errors
([6,59]). Generic errors can be related to properties shared by
different applications such as database access errors and
user-interface (e.g., HTML or DOM tree for a web-
application [6]) error codes. When represented in a uniform
way (e.g., by programming language exception mechanisms
[59]), these can be generally observed in the system
behaviour (e.g., by an automated tool supporting a given
domain). For example, all Java exceptions can be taken to
describe a message that denotes erroneous behaviour being
observed [59]. Application specific errors need to be
described separately for each application in terms of
application specific invariants. For example, one may expect
a given error response to a message outside a given set of
valid input [22].

A derived measure is something that is not directly
observed in the system behaviour, but the value of which is
rather derived from one or more base measures. To produce
derived measures for data-flow, the base measures for a
system can be grouped based on invariant scopes [3]. For
example, the values of variable x before and after a program
point can be considered separately as variables x1 and x2, to
describe a pattern saying x1>x2. In this example, there are
two derived measures x1 and x2, both of which are scoped
data values. The different scopes are discussed in section
III.C.3).

Runtime control-flows are typically described in terms
events and states ([46,61,68,73,74]). These are viewed here
as derived measures for control-flow. From this viewpoint,
an event can be described as an identifiable, instantaneous
action in the observed software behaviour, such as passing a
specific message or committing a transaction [69]. Similarly,
a state can be described as values of properties that hold over
time, such as over interactions between components. This
information can be, for example, held in message parameters
or inside components internal state variables [46]. A related
property is branching, which defines how several different
paths of events and states can be taken in the software
behaviour. This can be described in terms of invariance of
state when observing which paths are taken and which ones
are not ([5,75]). In this case, the taking of a branch
constitutes an invariant.

Statistical properties describe additional information for
other base- or derived-measures. Support and confidence are
two values commonly used together ([3,15,28]). Support
defines the number of times a measure is observed in
behaviour ([15,36]). Confidence can be used with the same
definition [3] but also as a definition for how often another
measure is observed in relation to support, meaning how

263

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

often a precondition is followed by a post-condition
([15,28,76]).

Probability defines the threshold for a measure to be
observed in a given scope, which can be used in different
ways. A measure with low probability (support percentage)
can be excluded from analysis to address anomalies
([3,13,15,69]). Different approaches are used for this
depending on the target invariants, from low level thresholds
(e.g., 1% or less [3]) to higher levels (e.g., 20% [15]). The
probability can also refer to probabilities of a measurement
value inside a range of allowed values [13,77]. Deviations
from the expected values are typically given a probability
which can then define the significance of the deviation
([13,14,46]). This threshold can be used for different
purposes such as identifying probable failure causes [14],
security attacks [46], possible state transitions [77], and to
decide new states for automated adaptation [13].

Equality of objects can be defined in different ways.
Besides expecting measures to be exactly equal, semantic
equality can also be considered (e.g., two lists can be
considered semantically equal while focusing on contained
objects and ignoring their ordering [57]).

Distance defines the window inside which two events are
observed and considered for evaluating a pattern of
invariance. Thus it can be seen as related to the scope of
invariance as described in section III.C.3). Events and
correlations observed inside a shorter time-window are seen
to represent more likely “true” invariance [58]. Dominance is
a measure used to remove overlapping patterns where one
includes the other as a sub-pattern ([78,79]).

Significance defines the importance of an invariant
violation or of the measured variable. With regards to
invariant violations, different approaches to significance can
be taken where the latter observed violations are given
higher priority as they are seen to be closer to a failure [14],
or earlier violations as they are expected to have more impact
on later behaviour [53]. When a variable is observed as
having no correlation with other variables it can be
considered as irrelevant for analysis purposes ([31,40]). The
significance of observations and invariants can also be
defined according to the number of observations ([13,58]).

2) Patterns
Having a set of measurements available in itself is not

useful alone. They provide a basis for analysing the runtime
invariance of the system but do not tell much about the
invariance itself. A statistical derived measure can
sometimes be useful in terms of considering basic runtime
invariance in terms of single measurements at a single point
of execution. However, more complex patterns describing
relations between the measurements in different scopes (e.g.,
over time, described in more detail in section III.C.3)) are
also needed. This includes considering their relation to the
overall control-flow in terms of their occurrence in the given
scope, their concurrent interleaving and sequential ordering.
It also includes considering how the values interact in terms
of data-flow and whether a specified invariance should be
expected as normal or exceptional behavior of the system.
Knowing these more advanced patterns enables describing
and analysing the runtime invariance more effectively. The

axis presented in this section aims to support these goals by
providing an overview of what types of patterns are used in
existing works.

Analysis of runtime invariance is basically about
analysing patterns of invariance over the observed behaviour.
The set of such patterns identified in this paper is shown in
Figure 5. In relation to the different types of measurements
described in section III.C.1), control-flow related patterns
describe ordering of events or states in the observed system
([7,63]). Data-flow related patterns describe the data-flow of
the observed software, such as what values a given variable
takes during the software execution ([3,74]). These patterns
can be observed as helping to answer questions such as
“How are the different measurements grouped?”, “What are
their relations to each other?”, and “What type of behaviour
do they describe?”.

Together these can be combined to represent the overall
behaviour of the software in terms of the control-flow
combined with the data-flow. A basic way to describe these
combinations is in terms of conditional dependence; a
control-flow event can only be followed by one of many
(branches) depending on a given condition
([8,27,73,76,78,79]). A natural way to express these
conditions is then in terms of invariants related to the data-
flow in the context of that control-flow. For example, event
P1 can be followed by event P2 when x<0 or by P3 when
x>=0 ([8,22,78]).

Overall, these are referred to here as behavioral
invariants, where the constraints for a given control-flow
pattern are defined in terms of its data-flow invariants. These
can be described in terms of models at different abstraction
levels as discussed in section III.D.1).

Figure 5. Patterns of Runtime Invariance.

Each pattern can further be related to describing different
type of behaviour, which can be generally classified as
exceptional (error) or normal (correct) behaviour of the
observed system ([6,25]). Errors can be classified as either
persistent, in being possible to identify them at different
points, or as transient, in which case they are not observable
after some set of events [80]. Exceptional states can also
refer to more than just error situations, such as behavior
deviation and need for adaptation [13]. A basic approach to

264

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

detection of exceptional states is to look for deviations of a
model describing the “correct” behavior, and to act on the
observed exceptions with a predefined strategy ([6,13,61]).

Patterns related to runtime invariance of control flow can
be defined as describing the sequential dependencies
between a programs events and states ([7,76]). In the
following discussion the term “event” is used to refer to both
events and states. Here, the control-flow patterns are
classified to three main categories related to concurrency,
occurrence and ordering.

Concurrency in runtime analysis can be categorized as
an event stream produced from several sources at a time
[76]. Determinism defines that a set of operations always
produces the same result, even if performed with different
parallel schedules, as long as the start state is the same [57].
Bounded refers to allowing at most N threads to execute at
one time in a single block [81]. This can also be referred to
in terms or overlapping or sequential blocks [69]. Exclusion
is a pattern only allowing one thread (from a set of threads)
in a single block (or a set of blocks) [81], and can also be
referred to as mutual exclusion ([61,69]). Resource is a
pattern where a thread can execute only if enough resources
from a resource pool shared by a group of threads are
available [81]. A barrier pattern relates to two or more
threads having to wait at the edge of a synchronization block
to exit at the same time [81]. Relay is similar to barrier but
allows exit of thread t1 from region r1 after thread t2 enters
r1 [81]. Both relay and barrier can also be generalized to
groups of threads (or event sources) arriving and leaving
[81]. When these constraints of invariance are not met,
problems can occur. For example, if two or more events
affect the same state asynchronously, they typically will
corrupt the overall application state if executed concurrently
[82].

Occurrence related patterns describe properties related to
observing an event or a state [7]. The grouped pattern
describes two or more events always appearing together
regardless of their ordering ([58,76,83]). For example, the
methods setHost() and setPort() can be called to set
up properties for a connection in any order but must always
appear together [58]. The grouping can be seen in relation to
context, coupling an event to its context in allowing only
certain events in a certain context (state) [83]. Absence
defines an expectation that the measure does not exist in the
defined scope [7]. Existence denotes that the measure exists
in a scope [7], and can be extended as bounded existence
defining that the measure exists N time in a scope, where N
denotes either exact, minimum or maximum number
([7,78]). Universal defines an expectation that the measure
applies to the whole scope ([7,29,84]). Periodicity describes
a measure repeating over a given cycle (scope) ([76,85]).
The alternative pattern defines a set of events out of which
one should be observed in a given scope ([86,87]).

Ordering describes the patterns of order between the
different events ([7,88]). Precedence describes a specific
event P always occurring before another specific event Q [7],
also referred to as a precondition ([27,29]). Any number of
events can also be observed between the two events
([15,58,63]), and it is possible to define the number of

allowed events in between [58,84]. A specific case of this is
chain precedence, which specifies that a sequence of events
(Q1,Q2,Q3,…) is always preceded by another sequence of
events (P1,P2,P3,…) [7]. This can also be related to an
event enabling or disabling another on in the future [89].

The opposite of precedence is response which defines
that event P is always followed by event Q ([27,29]). Similar
to precedence, also here any number of events can be
observed between the two events ([15,58,63]), and it is
possible to define the number of allowed events in between
([58,84]). The scope for response can be defined in different
terms such as inside a given time duration [85]. This is again
a specific case of chain response, which defines that a
sequence of events (P1,P2,P3,…) is always followed by
another sequence of events (Q1,Q2,Q3,…) [7]. This can
also be related to relation of objects to events, such as a
created object always being passed as a parameter or an
object that is related to event A also being related to event B
[90].

Related to the precedence and response patterns, and also
to the grouped occurrence pattern, two or more events can
also be grouped together as an alternating sequence such as
ABABAB ([76,78]). Further, it is also possible to define other
more specialized cases such as events in the alternating
sequence repeating multiple times, AB*C, where B is
repeated 1-N times between A and C [78], or a cutoff in the
end of the sequence (ABABA) [15].

Inclusion can be used to define an event always
appearing inside another, where the dominating event must
then be defined in terms of a larger scope ([63,85,88]). For
example, an event A can hold while a specific state B holds
[88], or when one is observed, another must also hold for a
given scope [85]. Exclusion is the opposite of inclusion and
defines that when a dominating event holds, a specific other
event cannot hold. For example, when state B holds, event A
is now allowed ([61,83]). Related to this and also the
alternation pattern, it is also possible to define that when
event A holds, event B does not, but when A no longer holds,
B must hold [88]. Some basic examples are disallowing
communication with a thread that is not started [91], or a
model dialog disallowing communication with other dialogs
(states) [61].

Patterns related to runtime invariance of data flow
describe properties and relations over variable values during
program execution ([3,74]). The assigns pattern defines that
in a defined scope, values of specific variables are assigned
to (modified) ([3,25]). This can also be described in terms of
values that are not modified [3]. Value change is an
evolutionary pattern that describes how a value changes over
time in a given context ([14,27,92]). This pattern defines the
expected scale of change for a variable in a given scope. For
example, the expectation can be that change in value is
always small (within a given threshold such as change<5)
([14,92]). Examples of specific case are a variable that is
never set (null value) ([3,27]), and a value that is generally
constant in the given scope [27].

A value range describes a variable always having a value
inside a defined range in a given scope (e.g.,

265

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3,14,27,33,56]). Examples include value always being
constant, one of a set of possible values (e.g., one of 1,2,4)
and a value between given boundaries (e.g., 1<x<4)
([3,14,86]). Common constants such as zero or one can also
be considered a specific case in itself ([3,14]). Optimizing
for performance a subset can also be selected such as looking
for positive (x>0) or negative values (x<0) [14]. Another
example is that the contents of a character string are expected
to be a human readable character ([27,64,93]). This can be
further extended with a probability distribution describing
how often each character is expected to be observed [46].
For user interfaces, it is also possible to define a possible set
of UI widgets and their values ([56,61]).

A value relation pattern describes how one variable is
related to another ([3,31]). These can be basic mathematical
operations (e.g., x<y or x=y+1), or their combinations [3].
Relations can also be described in terms of the relation of
one variable to several others, such as the relation of
program output to its inputs [31], or as a variable always
belonging to a larger set (member of another array variable)
[3,27]. In the case of larger sets of values (e.g., arrays), the
same relations can be described internally between the
elements of the set [3]. Additionally, a set of specific
relations can be considered such as one set (array) reversing
another or matching a subset of a bigger set [3].
Additionally, a single value (e.g., a given variable or a
constant) can be described to always be included in a given
set [3]. The evolution of different variables can also be
linked so that when the value of one changes, the other must
change also [94].

3) Scope of Invariance
While the patterns described in section III.C.2) describe

the basic important properties of runtime invariance, simply
defining these patterns without defining when they are
expected or observed to hold is not sufficient. To effectively
describe the runtime invariance of a system, it is also
important to be able to define when this invariance is
expected to hold. This scope can be defined in terms of
events or time specifying the constraints for when the pattern
should hold. The axis presented in this section aims to
support these goals by providing an overview of what types
of scopes for different patterns are used in existing works.

Figure 6. Scope of Invariance.

The scope of an invariant defines when and where a
specific pattern of runtime invariance is expected to hold.
This scope element of the taxonomy is shown in Figure 6.
This part of the taxonomy can be observed to help answer
questions such as “Where and when do the patterns of
runtime invariance apply?” and “What defines these scopes
of runtime invariance?”.

In the following descriptions, the term event is used to
refer to both control-flow events and states and data-flow
measures. The scope is split into two main categories of
time-based scope and event-based scope, which are
discussed next.

An event-based scope defines the scope in terms of
relations between events and observations. An invariant may
define that it should hold after a given event [7]. Specific
cases of this are defining the tail of an event set, where on N
last events are considered [3], or when an event is never
expected to occur after a given observation [88]. For
example, using the tail scope, the relations between the last 2
observations can define how a value in a set increments [3].
More specifically than after an event generally, another event
may be defined as the end condition in which case the
invariant should hold after the observed start event until the
observed end event (termed as the after-until scope) [7]. This
can also be defined as the state holding true until a specific
event is observed or forever if the end condition is never met
[84]. A similar scope is between, which defines two events in
between which the invariant pattern should hold [7].
However, the difference is that this holds only once both the
start and end events have been observed, and after-until
holds from the first observation of the start event [7].
Specific examples of these are the start and end of a method
invocation on a component ([3,46]).

As opposed to the after scope, an invariant pattern can
also be defined to hold only before a given event is observed
[7]. Similar to the tail for the after scope, here the first N
observations of a set can be considered with the term of head
[3]. A global invariant pattern should hold for all observed
behaviour during the program execution [7]. The scope can
also be defined in combination with a specific slice of the
program behaviour, such as a thread ([28,68]) or a specific
web application session [46]. In this case the scope becomes
a combination of the context slice and one of the other scope
definitions discussed above.

A time-based scope defines the scope in terms of
relation of the observations to the passage of time. Different
aspects of the duration of time can be used to define the
scope in terms of time. The basic form can be defining the
start time and length [63], or defining an event as instant
without specific timing constraints [69]. The duration can
also be specified as an interval with a minimum or maximum
time [88]. It is also possible to define a minimum or a
maximum time (duration) for a pattern to hold without
specifying the other bound [85]. Additionally, the time
duration can be combined with an event-based scope to
produce a hybrid scope. For example, an invariant pattern
can be defined to hold after 10 time units (according to
choice of time unit) until a specific event is observed [88].

266

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. Process Properties
In addition to the properties of invariance itself, it is

useful to consider the properties of the process used to work
with these invariants. The properties of the process in this
section are described in terms of two main axes as noted in
section III.A. These are the properties related to specification
and evaluation of runtime invariance. The third step of
measurement as described in section III.A is most closely
related to the invariant information described in section III.C
and thus not covered in this section.

1) Specification Properties
In addition to understanding how and where the runtime

invariants are applied, it is also important to understand how
runtime invariance can be expressed and where the
information to describe a system in terms of this runtime
invariance comes from. This helps to choose effective means
both to specify the expected runtime invariance for a system,
and to express it in suitable and effective terms for analysis.
The axis presented in this section aims to support these
goals. This provides a basis for specifying invariants using
the detailed properties of runtime invariance presented in
section III.C.

The different aspects related to the specification of
runtime invariance are illustrated in Figure 7. The
expression axis describes the different aspects relevant to
how the invariants are expressed in specifications, including
the expression language and the abstraction level of the
expression. The specification source describes the different
sources of information for the specification. The method of
specification defines how the specification is created. These
different properties can be observed to help answer questions
such as “Where does the information to define runtime
invariance come from?”, “How is the runtime invariance
defined and reasoned about?”, and “How is runtime
invariance expressed?”.

Figure 7. Specification Properties.

Different types of methods can be used to obtain the
information for specifying the invariants. One is to fully
(automatically) reverse engineer these from observing
program behaviour ([3,38,80]), commonly referred to as
specification mining. The opposite of this is describing the
invariants manually based on specifications or expert
knowledge ([6,29,80]). Finally, a hybrid approach can be
taken, where an initial specification is first generated with

tools similar to the automated approach, and this reverse-
engineered information is manually augmented with
information from specifications and as feedback from
continuously evaluating this preliminary model
([22,37,42,71]).

As noted above, the method of specification is closely
related to the source of the information used for the
specification. Natural language documents such as
requirements specifications can be manually analysed to find
a set of relevant invariants [22]. Expert knowledge about the
system behaviour can also be used to specify runtime
invariance at different abstraction levels, for example,
specified by domain experts as describing high-level system
behaviour [56], or as lower level invariant properties
specified by developers with detailed knowledge about the
implementation [29].

Source code and program execution are two sources of
information most suited for automated analysis. Source code
is a static artefact, but where available can also be used as an
additional input for dynamic analysis such as providing
interface definitions ([22,44,95]), or to provide additional
information for assisting in dynamic analysis [26]. Program
execution is observed in terms of dynamic analysis to capture
how the observed system behaves in a given context such as
a test case [2].

From the different sources of information, one needs to
capture a set of invariants covering the relevant properties of
dynamic behaviour in the software. Experiments have shown
that combining both manual and automated sources of
information gives the best results, where both provide useful
invariants not identified by the other approach [96].

Expression needs to define the invariance using a
suitable expression language, and at the chosen abstraction
level. The abstraction level of the specification can be
described as defining the overall execution of the system or
focusing on specific parts of execution ([88,97]). This
definition at different levels is also described in terms of
different types of languages, such as automata for overall
behaviour and assertion style specifications for specific
properties ([37,98]). A relevant concept for definition of
runtime invariance for a component is the hierarchical
relations of the different components, where a subtype can be
viewed to also inherit the invariant definitions of its
supertype ([29,34]).

In terms of the abstraction level, different focuses for
partitioning the modeling can be taken. For example, models
can be classified at the implementation, design, and domain
level [98]. This can be translated to the internal
implementation of components (e.g., embedded checks for
specific properties [27,29]), the external interfaces of
components as subsystems ([35,50]), or the overall system
(domain) behaviour ([8,61]). Different types of approaches
can be taken that combine different viewpoints from these.
For example, some approaches define small-scale state-
machines for specific parts of execution ([60,62,99]), which
are then combined to form larger wholes to be checked, with
the expectation that the larger whole needs to be covered
([18,60,78,99]).

267

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A benefit of a small-scale specification can be seen in
making it easier to produce a suitable formal specification
for a specific property ([51,57]). Small (more specific)
invariant definitions are seen as more suitable for specific
low-level checks, but for system-level checks they can
become too complicated and interleaved ([51,99]). In this
sense, a different type of an approach such as specifying of
larger-scale state-machines is seen as more appropriate
([51,99]). To reduce the complexity of managing specific
checks some recommend defining fewer checks, and
focusing on effective specifications that embed the important
elements of behaviour ([27,51]). In this way, the larger
specification can also be composed of several smaller ones
[99].

For a higher-level specification a common model is
different forms of a state-machine ([8,61,89,93]). Guards can
be defined in terms of invariance over data values ([8,33]).
Similarly, the possible transitions can be viewed as
invariants in possible actions in a specific state
([8,61,89,93]). Many approaches in analyzing the state-
machines are similar to how low-level invariants are
combined to form state-machines. In this case, high-level
state-machines are decomposed into smaller invariants for
various analysis purposes, such as using expected transitions
of chosen length as test oracles ([89,93]).

To support the different types of specification methods,
the expression language needs to be both formal to allow for
automated tools to effectively process them but also
understandable to a human user in order to also support their
manual review and analysis where needed. Domain specific
languages (DSL) can be used to describe the invariants
specifically for a chosen domain, such as in form of test
oracles for web-applications ([6,56,98]). Other application
domains include analysis support for refactoring [41],
synchronization [81], determinism [57], general temporal
properties [88], and test definitions in terms of runtime
invariance [100]. Besides direct support, specific domains
from more generic models can also be supported through
model transformation (e.g., to monitoring code for runtime
correctness [83]). Many of these languages are specifically
designed to support modeling of the chosen set of properties
for runtime invariance ([41,56,57,60,63,81,88,100]).

Besides these specific expression languages, also generic
languages can be used. For example, the object constraint
language from the unified modeling language can be used to
express invariants ([101,102]), or live sequence charts to
express invariance in event ordering [43]. Logical
expressions can be used as a basis for defining invariance in
themselves ([42,84,85]), or as part of the specific languages
[41]. Regular expressions are generic expressions intended to
express patterns over strings, and thus form a natural basis
for expressing also patterns of runtime invariance. In this
case, the event stream is expressed as a string of events, and
regular expressions are used to express patterns over these
events ([58,100]). Perhaps the most expressive means to
define invariant properties is in terms of programming
languages, which allows using their full expressiveness to
define the invariance. This can take different forms, such as
interleaving with the implementation code to be compiled

with the program itself ([25,29]), writing them separately as
a basis for a separate monitoring program [35], or as “model
programs” for how parts are expected to behave allowing to
execute the invariant definition separately with or with the
implementation to perform different analysis and checks
[50].

A common approach to support the definition of
invariants is in using pattern templates. This is especially
true in the specification mining approach, where a set of
templates are defined and reflected against the actual
observed behaviour to report observed invariants matching
the template definitions ([3,14,58]). Templates are also used
in manual specification ([41,103]). In both cases, the
templates describe a predefined set of patterns, which are
then parameterized according to the expected or observed
runtime behaviour. The set of patterns of runtime invariance
is described in the section III.C.2) of this paper.

As mentioned previously, an important aspect of
specifying runtime invariance is that the specification should
support both manual analysis and processing by automated
tools in relation to the methods of working with these
invariants. The languages described above are mainly
focused on effective description from the automated
processing perspective. One approach to address this is to
produce specifications in a programming language when
targeting developers in order to provide a familiar language
to reason in [37]. Along with the different language
transformations discussed before (in relation to [83]), it is
also possible to provide transformations into natural
language to support easier comprehension of the
specifications (e.g., into structured English [85]). A related
specification approach is also that of grammar-based
specification, which aims to describe the invariance in terms
of sentences of events [99].

Formal textual specification of complex behaviour has
also been shown to be very hard for humans [103]. To
address this, besides using textual languages and
transformation between them, visual representations can also
be seen as a more natural way of expressing invariance for
humans ([56,103]). In this case, the transformation is done
from the visual representation to a more machine processable
form.

2) Evaluation Properties
In relation to this overall process flow described in

section III.A, the overall process of runtime invariance
evaluation is also related to the step of measurement and
typically consists of three distinct steps: Collecting
information (a set of events) from the runtime execution of
the program, building a model of runtime invariance based
on these observations, and comparing this model against the
specified reference model of runtime invariance
([88,93,104]).

Specific aspects to consider in evaluating the runtime
invariance include how extensive evaluation is done in terms
of depth and frequency, the cost-effectiveness of these
choices, and how the evaluation check is performed.
Effective evaluation requires considering these different
aspects together when building the evaluation for the case at
hand. The axis presented in this section aims to support these

268

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

goals by providing an overview of the different properties
related to evaluation of runtime invariance in existing works.

The evaluation properties are illustrated in Figure 8. This
is described in terms of three main properties. The depth of
evaluation defines how extensively evaluation is performed.
Triggers are events or states that trigger the evaluation of a
specific runtime invariant pattern. Finally an evaluation
function needs to be defined to check each defined invariant
property. These properties can be observed to help answer
questions such as “How is runtime invariance evaluated?”,
“How extensively is it evaluated?”, and “What is the impact
of different properties of evaluation?”.

Figure 8. Evaluation Properties.

The depth of evaluation defines how extensively
evaluation is performed. One approach is to define a priority
to each defined check and to choose when an evaluation is
performed to evaluate only checks of a given priority or
higher [27]. Different properties for different types of
components can be evaluated at different levels, such as
checking a library while in development thoroughly and after
release, focusing in more detail how the clients interact with
it [29]. The evaluation level can also be defined in terms of
evaluated data, such as if input is given, if it is of correct type
and if it meets the domain-specific checks defined for it [56].
The breadth of evaluation can also be defined in terms of
which components are checked, such as checking only
properties of the active component, all components in the
scope, or all components accessible [105].

The check defines the evaluation function for each
specified property of runtime invariance. Similar to the level
of evaluation, it is also possible to define the severity level of
deviations from expected invariance, such as informative,
warning and error [56]. When a deviation is observed, the
cause of deviation can be classified to one of three options:
the original specification was lacking due to insufficient
input, the observing a feature in a specific context or
environment that was not previously considered, or that there
is a real failure observed in the runtime behavior [67]. The
checks can be classified to two main types: the property must
never be violated, or the property must always hold [84].
Different approaches to reporting the status of violations can
be taken, such as reporting only violations [58], reporting
also passing checks with chosen filtering criteria [28], or
reporting the status of all checks. The threshold for when a
deviation from the specification is considered significant
enough to be reported can also vary according to the
properties of specified runtime invariance (as discussed in
more detail in section III.C), such as reporting only

violations for a property when a certain number (threshold)
of violations for that property have been observed [58].

The evaluation trigger defines when the evaluation is
performed. The cost effectiveness of evaluating invariants is
related to the frequency and depth of their evaluation
([60,97]). Different options for frequency can be, for
example, to check a single property for a single component
or for all components after each event, to check all properties
after each event, or to check all properties after larger
execution points (e.g., test case [97]). Some trade-offs to
consider include checking a single property not always
revealing errors [97], performing checks often helping in
finding “transient” errors that are no longer visible in later
states [80], and the increased cost and power of fully
performing all possible checks at all times [97]. One
approach is to focus the checks on a specific set of chosen
events and properties [56].

IV. EXAMPLES

This section illustrated mapping the taxonomy presented
in the previous section to practical concepts in terms of two
different types of runtime behaviour modelling approaches.
The first one describes modelling specific aspects of runtime
invariance in a distributed sensor data collection system. The
behaviour of interest in this case is event-focused, where
patterns over sequences of interactions are important and
should be observed to hold and are observed while the
system is operational (online). A second example is provided
in terms of a data visualization application. In this case, the
data-flow aspects are more important and the invariance is
analysed separately from its operation (off-line).

The examples presented here are intended to illustrate
how different properties of runtime invariance in software
behaviour can be defined for different systems. From this,
different approaches can be taken to build required support
for different usage domains. The details for this support are
left for specific works in those domains, while we illustrate a
set of specific invariant properties for each.

A. Case 1: Sensor Data Collection
This case example describes a mapping of the taxonomy

for describing the runtime behaviour of a system in terms of
a model-based testing tool called OSMOTester [106]. The
target system is a sensor-platform server-node that manages
a set of sensor-nodes. This section uses as an example a
single feature related to keeping track of the dynamic non-
persistent runtime state of the node.

As one of the main properties of upholding this state, the
server needs to keep track of all available sensor nodes that
register to the system. The sensor’s registration is by sending
a specific message. After this, the constant keep-alive
messages need to be provided to uphold the registration. If
one is not received for duration of 10 seconds from a
registered sensor, it is removed from the list of connected
sensors and a matching event is generated to inform any
interested clients of the sensor platform.

Considering the process perspective of the taxonomy,
this is mainly in the test automation usage domain. The tool
we use applies a generic programming language (Java) to

269

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model the behaviour so this sets the expression language. For
abstraction level, our focus with this example is on a specific
behavioural property, which could be extended in following
iterations to include further properties separately or
integrated into a subsystem model. The specification
approach in this case is manual specification with the help of
expert knowledge and documentation, although tools such as
Daikon could be used to provide invariants over observed
executions as input as well. From the evaluation perspective,
in the case of test automation, we wish to evaluate all
relevant aspects for the property under analysis, report only
the deviations and their cause. These aspects define the
process related properties for this example in relation to the
taxonomy.

Considering the properties of invariance perspective, we
can define as basic measurements the registration messages,
keep-alive messages, the sender of the messages (the sensor
node) and the time of receiving any message. Of these, the
messages themselves are static information, whereas the
timestamps and the sender are contextual information. As an
example pattern of invariance, we can define an expectation
as “Keep-alive observed continuously after registration with
a minimum of 10s interval”. Several other patterns could also
be formulated, including the timeout and first registration
itself. These aspects define the invariant information related
properties for this example in relation to the taxonomy.

B. Case 2: Data Visualization Tool
This second case example describes a mapping of the

taxonomy for a tool used to help visualize and analyse
behavioural data collected from the execution of a system.
This section uses as an example a single feature of observing
historical data over time. This feature allows taking several
different measurement values and comparing their evolution
over time independently and in relation to each other using
graphical visualizations.

Considering the usage domain and process perspectives,
in this case, the analysed data is not captured and used in
real-time but rather the tool is used to load data from a log
file, making this practically an offline approach. The
application domain is specifically behaviour analysis, and the
applied representation language in this case is a visual
language in terms of graphical representations. The
abstraction level depends on which part of the system is
described in the log file, but is typically the overall system
behaviour. The trigger and depth of evaluation are in this
case related to the information captured during the runtime
logging step, and depends on how the system in
instrumented. The evaluation checks are performed by the
human user based on the visualizations and their
manipulations.

Considering the properties of invariance perspective, the
basic measurements include time and data values. The
relevant patterns are mainly data-flow oriented due to
analysing data value evolution over time. This includes value
change as observed over time for a single variable, and value
relations as observed across the different visualized values.
As the visualization produces a separate graph for each
value, each of these is a contextual slice and the scope of

these graphs is always time-based. We can further define
derived measures as statistical properties of the observed
data and use those to define events that can be used to define
further scopes for patterns and comparison.

V. DISCUSSION

The taxonomy and its classes presented above are based
on the existing work in the literature. In this sense it limits
itself to discuss properties only relevant to those in the
chosen works. Additionally, it is possible to use and explore
other possible relations. For example, many of the described
control-flow patterns also apply to data flow patterns. For
example, a value may be defined to precede another value
(relating to the precedence control-flow pattern). Similarly,
the set of data-flow patterns can be considered to apply in the
context of control-flow. For example, the range of possible
control-flow options following one control-flow event can be
in a given range of possible defined control-flow events or
states (related to value-range data-flow pattern).

It is also possible to take different viewpoints on the
different properties discussed categorized in the taxonomy
presented in this paper. For example, the taxonomy lists a set
of time-based scopes, and a set of patterns related to the
ordering of events. In other cases, for example, Konrad and
Cheng define a set of patterns such as bounded response
where a reply is expected in a given timeframe [85]. This is
an example where a set of properties presented in the
taxonomy in this paper are combined to form a specific set of
patterns in a given domain. Specifically, the taxonomy
presented in this paper aims to decompose these into their
constituting parts that can be composed in different ways.
While this is more generic and provides a basis for wider
application, in practical application in different domains, it
may be more suitable to specify a set of more specific
patterns such as those defined in [85]. In this case the
taxonomy can be used as an aid to create the set of suitable
patterns.

Overall, the discussion in this paper is from the generic
viewpoint of using runtime invariance. When a set of
invariants are defined for a system, one important aspect to
consider is how representative these are in describing the
relevant properties of software behaviour. When defined
manually by an expert, the invariants can be expected to
describe relevant and important properties. However, even in
these cases important invariants can be missing and in many
cases no invariants are defined at all. In these cases,
automated inference techniques can be used to assist in
finding invariants. Both of these cases have been shown to
be valid as also discussed in section III.D.1). Improving the
means to help manually define invariants and to
automatically mine for relevant ones thus is an interesting
research question. Potential approaches to investigate include
using a set of chosen invariants known to be interesting in
the given domain, using combined information from static
analysis, relying on statistical values to report the more
interesting ones, and providing more advanced support for
combining both the manual and automated approaches as
also discussed in section III.D.1).

270

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Discussion on the statistical properties of different
patterns and measures highlight differences in the applied
approaches. For example, in many cases the invariant
patterns that have only low support level (i.e., there are few
cases) are not reported. In the extraction phase, this can be
useful in removing patterns observed merely due to chance
that may be incorrect in themselves due to interleaving of
concurrent behaviour, or completely irrelevant in the general
context [3]. On the other hand, sometimes all observed
behaviour is important regardless of their probability. This
can be, for example, behaviour that is only rarely observed in
the observed executions but is still equally important for the
overall system behaviour (e.g., error handling or corner
cases) [22].

Use of invariants in different domains as discussed here
is not limited to those aspects discussed. In fact, many
systems use invariants for various purposes but these are not
always discussed in terms of invariance. For example, as
discussed in section III.D, in test automation the test oracle
practically always needs to be described in terms of
invariance, where the input is expected to produce a given
output (the relation of input to output should be invariant). In
this sense, defining invariants as discussed here can be
beneficial in a wider context of how people think about the
behaviour of programs. However, presenting a meaningful
language to describe the invariants and use them in different
contexts, as well as furthering people’s understanding of
their relation to different domains, can be required for
adopting them as a concept more widely. Use of domain-
specific languages and related tools is an option for this.

Understanding and using invariants generally requires
specific considerations for specific usage purposes. For
example, one may refactor code based on suggestion from
invariant analysis [40] but this also needs to consider the part
where the human user needs to read the code and understand
it. If the refactoring reduces this understanding by hiding
information, this refactoring may be more harmful for the
overall software maintenance. Similar needs for
understanding the invariants in general ought to be
considered.

Application of different properties depends on the target
domain as well as the process it is used to support. For
example, in testing it may be more appropriate to report all
results of invariant evaluation. On the other hand, in runtime
(online) monitoring of an operational system it is more
useful to optimize the evaluation approach to minimize the
intrusiveness on the system.

The case examples presented in section IV are from
actual applications of the taxonomy, where different people
have applied the taxonomy with the help of the author. In
these cases, the typical approach has been to start with some
specific properties and progressing from those iteratively to
include more functionality. Thus, an iterative approach of
adoption from the taxonomy can be seen as a useful process
for its application. However, more extensive case studies in
software behaviour analysis and application of the taxonomy
are left as a topic for future work.

These case examples also illustrate how the taxonomy
could be used as a basis for building domain-specific

languages to support analysing different topics of runtime
invariance. For example, in modelling system behaviour in
terms of runtime invariance for test automation as presented
in the first case example, a domain-specific language could
allow composing modelling components based on the
different types of measurements, patterns and scopes into test
models. Similarly, in the second case example, the properties
could be used to provide more generic base for features to
manipulate and visualize the measurement data in terms of
derived measures and patterns. These studies are left as a
topic for future works.

VI. CONCLUSIONS

Today, runtime invariance is used in the context of many
aspects of software design and analysis. The invariants for
different systems are as different as their behaviour, but this
paper has collected a set of common properties from existing
works and presented a taxonomy describing these common
properties. This should help give a more common
understanding of runtime invariance in software behaviour
and help in using invariants to describe it in different
domains.

The presented taxonomy is based on six main facets, one
describing the usage domains, two related to processes of
using the invariants and three related to the information
describing the invariants themselves. Overall the focus can
be defined as describing the invariant information in the
context of the process.

The main contribution of this paper is presenting the
underpinning of a classification overview for understanding
the space of runtime invariance. This provides a basis for
more thorough reasoning about invariants, building tool
support and identifying future research questions. Some
specific questions identified include possibilities of
providing more focused domain-specific invariants on top of
the taxonomy and providing more extensive tool support for
using the invariants according to the taxonomy presented, as
existing tools only consider parts of it.

ACKNOWLEDGMENT

The author wishes to thank Arie van Deursen, Ali
Mesbah, and the anonymous reviewers in the PATTERNS
2010 conference for their useful comments and discussions
on the pilot study. The author also wishes to thank Lars
Ebrecht for the interesting discussion and comments on the
extended version of the taxonomy.

REFERENCES

[1] T. Kanstrén, "Towards a Taxonomy of Dynamic Invariants
in Software Behaviour," in 2nd Int'l. Conf. on Pervasive
Patterns and Applications (PATTERNS 2010), Lisbon,
Portugal, 2010, pp. 20-27.

[2] B. Cornelissen, A. Zaidman, A. van Deursen, L. Moonen,
and R. Koschke, "A Systematic Survey of Program
Comprehension through Dynamic Analysis," IEEE
Transaction on Software Eng., vol. 35, no. 5, pp. 684-702,
2009.

[3] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin,

271

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

"Dynamically Discovering Likely Program Invariants to
Support Program Evolution," IEEE Transactions on
Software Eng., vol. 27, no. 2, pp. 99-123, Feb. 2001.

[4] M. Boshernitsan, R. Doong, and A. Savoia, "From Daikon to
Agitator: Lessons and Challenges in Building a Commercial
Tool for Developer Testing," in Int'l. Symposium on
Software Testing and Analysis (ISSTA 2006), Portland,
Maine, 2006, pp. 169-179.

[5] T. M. Chilimbi, B. Liblit, K. Mehra, A. V. Nori, and K.
Vaswani, "HOLMES: Effective Statistical Debugging via
Efficient Path Profiling," in Int'l. Conf. on Software Eng.
(ICSE 2009), Vancouver, Canada, 2009, pp. 34-44.

[6] A. Mesbah and A. van Deursen, "Invariant-Based Automatic
Testing of Ajax User Interfaces," in Int'l. Conf. on Software
Eng. (ICSE 2009), Vancouver, Canada, 2009, pp. 210-220.

[7] M. B. Dwyer, G. S. Avrunin, and J. C. Corbett, "Patterns in
Property Specifications for Finite-State Verification," in
Int'l. Conf. on Software Eng. (ICSE 1999), Los Angeles, CA,
USA, 1999, pp. 411-420.

[8] D. Lorenzoli, L. Mariani, and M. Pezzè, "Automatic
Generation of Software Behavioral Models," in Int'l. Conf.
on Software Eng. (ICSE 2008), Leipzig, Germany, 2008, pp.
501-510.

[9] L. A. Clarke and D. S. Rosenblum, "A Historical Perspective
on Runtime Assertion Checking in Software Development,"
ACM SIGSOFT Software Engineering Notes, vol. 31, no. 3,
pp. 25-37, 2006.

[10] D. Schuler, V. Dallmeier, and A. Zeller, "Efficient Mutation
Testing by Checking Invariant Violations," in Int'l.
Symposium on Software Testing and Analysis (ISSTA 2009),
Chicago, USA, 2009, pp. 69-80.

[11] R. Floyd, "Assigning Meaning to Programs," in Symposium
on Applied Mathematics, 1967, pp. 19-32.

[12] C.A.R. Hoare, "An Axiomatic Basis for Computer
Programming," Communications of the ACM, vol. 12, no.
10, pp. 576-580, 1969.

[13] L. Lin and M. D. Ernst, "Improving the Adaptability of
Multi-Mode Systems via Program Steering," in Int'l.
Symposium on Software Testing and Analysis (ISSTA 2004),
Boston, Massachusetts, USA, 2004, pp. 206-216.

[14] S. Hangal and M. Lam, "Tracking Down Software Bugs
Using Automatic Anomaly Detection," in Int'l. Conf. on
Software Eng. (ICSE 2002), Orlando, Florida, USA, 2002,
pp. 291-301.

[15] D. Lo and S. Khoo, "SMArTIC: Towards Building an
Accurate, Robust and Scalable Specification Miner," in Int'l.
Symposium on Foundations of Software Eng. (FSE 2006),
Portland, Oregon, USA, 2006, pp. 265-275.

[16] B. Kitchenham, "Guidelines for Performing Systematic
Literature Reviews in Software Engineering," Keele
University, Keele, Staffs, EBSE Technical Report 2007.

[17] S. MacDonell, M. Shepperd, B. Kitchenham, and E. Mendes,
"How Reliable are Systematic Reviews in Empirical
Software Engineering?," IEEE Transaction on Software
Eng., vol. 36, no. 5, pp. 676-687, Sept./Oct. 2010.

[18] S. Ducasse and D. Pollet, "Software Architecture
Reconstruction: A Process-Oriented Taxonomy," IEEE

Transactions on Software Eng., vol. 35, no. 4, pp. 573-591,
2009.

[19] H. Kagdi, M. L. Collard, and J. I. Maletic, "A Survey and
Taxonomy of Approaches for Mining Software Repositories
in the Context of Software Evolution," Journal of Software
Maintenance and Evolution, vol. 19, no. 2, pp. 77-131, 2007.

[20] M. S. Ali, M. A. Babar, L. Chen, and K-J. Stol, "A
Systematic Review of Comparative Evidence of Aspect-
Oriented Programming," Information and Software
Technology, vol. 52, no. 9, pp. 871-887, 2010.

[21] MIT Program Analysis Group. (2012, January) Daikon-
related invariant detection publications. [Online].
http://groups.csail.mit.edu/pag/daikon/pubs/

[22] T. Kanstrén, A Framework for Observation-Based Modelling
in Model-Based Testing. Oulu, Finland: VTT, 2010.

[23] R. V. Binder, "Design for Testability in Object-Oriented
Systems," Communications of the ACM, vol. 37, no. 9, pp.
87-101, Sept. 1994.

[24] J. W. Nimmer and M. D. Ernst, "Invariant Inference for
Static Checking: An Empirical Evaluation," ACM SIGSOFT
Software Engineering Notes, vol. 27, no. 6, pp. 11-20, 2002.

[25] L. Burdy et al., "An Overview of JML Tools and
Applications," Int'l. Journal in Software Tools for
Technology Transfer, vol. 7, no. 3, pp. 212-232, June 2005.

[26] C. Csallner, N. Tillmann, and Y. Smaragdakis, "DySy:
Dynamic Symbolic Execution for Invariant Inference," in
Intl. Conf. on Software Eng. (ICSE 2008), Leipzig,
Germany, 2008, pp. 281-290.

[27] D. S. Rosenblum, "Towards a Method of Programming with
Assertions," in Int'l. Conf. on Software Eng. (ICSE 1992),
Melbourne, Australia, 1992, pp. 92-104.

[28] J. Yang, D. Evans, D. Bhardwaj, T. Bhat, and M. Das,
"Perracotta: Mining Temporal API Rules from Imperfect
Traces," in Int'l. Conf. on Software Eng. (ICSE 2006),
Shanghai, China, 2006, pp. 282-291.

[29] B. Meyer, "Applying Design by Contract," Computer, vol.
25, no. 10, pp. 40-51, 1992.

[30] S. Sims, R. Cleaveland, K. Butts, and S. Ranville,
"Automated Validation of Software Models," in Int'l. Conf.
on Automated Software Eng. (ASE 2001), San Diego, USA,
2001, pp. 91-96.

[31] S. McCamant and M. Ernst, "Early Identification of
Incompatibilities in Multi-Component Upgrades," in
European Conf. on Object-Oriented Programming (ECOOP
2004), Oslo, Norway, 2004, pp. 440-464.

[32] J. Whaley, M. C. Martin, and M. S. Lam, "Automatic
Extraction of Object-Oriented Component Interfaces," in
Int'l. Symposium on Software Testing and Analysis (ISSTA
2002), Roma, Italy, 2002, pp. 218-228.

[33] A. Coronato, A. d'Acierno, and G. De Pietro, "Automatic
Implementation of Constraints in Component based
Applications," Information and Software Technology, vol.
47, no. 7, pp. 497-509, 2005.

[34] C. Csallner, Y. Smaragdakis, and T. Xie, "DSD-Crasher: A
Hybrid Analysis Tool for Bug Finding," ACM Transactions
on Software Eng. and Methodology, vol. 17, no. 2, pp. 1-37,
2008.

272

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[35] J-M. Jézéquel, D. Deveaux, and Y. Le Traon, "Reliable
Objects: Lightweight Testing for OO Languages," IEEE
Software, vol. 18, no. 4, pp. 76-83, 2001.

[36] S. Thummalapenta and T. Xie, "Mining Exception-Handling
Rules as Sequence Association Rules," in Int'l. Conf. on
Software Eng. (ICSE 2009), Vancouver, Canada, 2009, pp.
496-506.

[37] J. Henkel, C. Reichenbach, and A. Diwan, "Discovering
Documentation for Java Container Classes," IEEE
Transactions on Software Eng., vol. 33, no. 8, pp. 526-543,
2007.

[38] C. Liu, L. Fei, X. Yan, J. Han, and S. P. Midkiff, "Statistical
Debugging: A Hypothesis Testing-Based Approach," IEEE
Transactions on Software Eng., vol. 32, no. 10, pp. 831-848,
Oct. 2006.

[39] L. Mariani, S. Papagiannakis, and M. Pezzé, "Compatibility
and Regression Testing of COTS-Component-Based
Software," in Int'l. Conf. on Software Eng. (ICSE 2007),
Minneapolis, USA, 2007, pp. 85-95.

[40] Y. Kataoka, M. Ernst, W. Griswold, and D. Notkin,
"Automated Support for Program Refactoring Using
Invariants," in Int'l. Conf. on Software Maintenance (ICSM
2001), Florence, Italy, 2001, pp. 736-743.

[41] N. Ubayashi, J. Piao, S. Shinotsuka, and T. Tamai,
"Contract-Based Verification for Aspect-Oriented
Programming," in Int'l. Conf. on Software Testing,
Verification, and Validation (ICST 2008), Lillehammer,
Norway, 2008, pp. 180-189.

[42] S. Ducasse, T. Gîrba, and R. Wuyts, "Object-Oriented
Legacy System Trace-Based Logic Testing," in European
Conf. on Software Maintenance and Reeng. (CSMR 2006),
Bari, Italy, 2006, pp. 37-46.

[43] David Lo and Shahar Maoz, "Mining Scenario-Based
Triggers and Effects," in 23rd Int'l.l Conf. on Automated
Software Engineering (ASE 2008), L'Aquila, Italy, 2008, pp.
109-118.

[44] D. Ganesan et al., "Architectural Analysis of Systems based
on the Publisher-Subscriber Style," in Working Conference
on Reverse Engineering (WCRE 2010), Boston, USA, 2010,
pp. 173-182.

[45] M. Christodorescu, S. Jha, and C. Kruegel, "Mining
Specifications of Malicious Behaviour," in Joint meeting of
the European Software Eng. Conf. and the Symposium on
the Foundations of Software Eng. (ESEC/FSE 2007),
Dubrovnik, Croatia, 2007, pp. 5-14.

[46] M. Cova, D. Balzarotti, V. Felmetsger, and G. Vigna,
"Swaddler: An Approach for the Anomaly-Based Detection
of State Violations in Web Applications," in Int'l.
Symposium on Recent Advances in Intrusion Detection
(RAID 2007), Queensland, Australia, 2007, pp. 63-86.

[47] A. Baliga, V. Ganapathy, and L. Iftode, "Automatic
Inference and Enforcement of Kernel Data Structure
Invariants," in 24th Annual Computer Security Applications
Conf. (ACSAC 2008), 2008, pp. 77-86.

[48] D. Schuler, V. Dallmeier, and C. Lindig, "A Dynamic
Birthmark for Java," in Int'l. Conf. on Automated Software
Eng. (ASE 2007), Atlanta, Georgia, USA, 2007, pp. 274-282.

[49] M. Feng and R. Gupta, "Detecting Virus Mutations via

Dynamic Matching," in Int'l. Conf. on Software
Maintenance (ICSM 2009), Edmonton, Canada, 2009, pp.
105-114.

[50] M. Barnett and W. Schulte, "Runtime Verification of.NET
Contracts," Journal of Systems and Software, vol. 65, no. 3,
pp. 199-208, 2003.

[51] Y. Le Traon, B. Baudry, and J-M. Jézéquel, "Design by
Contract to Improve Software Vigilance," IEEE
Transactions on Software Eng., vol. 32, no. 8, pp. 571-586,
Aug. 2006.

[52] B. Demsky et al., "Inference and Enforcement of Data
Structure Consistency Specifications," in Int'l. Symposium
on Software Testing and Analysis (ISSTA 2006), Portland,
Maine, 2006, pp. 233-243.

[53] D. Lorenzoli, L. Mariani, and M. Pezze, "Towards Self-
Protecting Enterprise Applications," in Int'l. Symposium on
Software Reliability (ISSRE 2007), Trollhättan, Sweden,
2007, pp. 39-48.

[54] J. H. Perkins et al., "Automatically Patching Errors in
Deployed Software," in Symposium on Operating System
Principles (SOSP 2009), Big Sky, USA, 2009, pp. 87-102.

[55] Y. Wei et al., "Automatex Fixing of Programs with
Contracts," in Int'l. Symposium on Software Testing and
Analysis (ISSTA 2010), Trento, Italy, 2010, pp. 61-71.

[56] M. Book, T. Brückmann, V. Gruhn, and M. Hülder,
"Specification and Control of Interface Responses to User
Input in Rich Internet Applications," in Int'l. Conf. on
Automated Software Eng. (ASE 2009), Auckland, New
Zealand, 2009, pp. 321-331.

[57] J. Burnim and K. Sen, "Asserting and Checking
Determinism for Multithreaded Programs," in Joint meeting
of the European Software Eng. Conf. and the Symposium on
the Foundations of Software Eng. (ESEC/FSE 2009),
Amsterdam, The Netherlands, 2009, pp. 3-12.

[58] M. Gabel and Zhendong. Su, "Online Inference and
Enforcement of Temporal Properties," in Int'l. Conf. on
Software Eng. (ICSE 2010), Cape Town, South Africa, 2010,
pp. 15-24.

[59] C. Pacheso and M. D. Ernst, "Eclat: Automatic Generation
and Classification of Test Inputs," in European Conf. on
Object-Oriented Programming (ECOOP 2005), Glasgow,
UK, 2005, pp. 504-527.

[60] J. H. Andrews and Y. Zhang, "General Test Result Checking
with Log File Analysis," IEEE Transaction on Software
Eng., vol. 29, no. 7, pp. 634-648, July 2003.

[61] A. M. Memon, "An Event-Flow Model of GUI-based
Applications for Testing," Journal of Software Testing,
Verification and Reliability, vol. 17, no. 3, pp. 137-157,
2007.

[62] L. Ebrecht and K. Lemmer, "Highlighting the Essentials of
the Behaviour of Reactive Systems in Test Descriptions
Using the Behavioural Atomic Element," in 2nd Int'l. Conf.
on Pervasive Patterns and Applications (PATTERNS 2010),
Lisbon, Portugal, 2010, pp. 53-59.

[63] M. Auguston, J. B. Michael, and M-T. Shin, "Environment
Behavior Models for Automation of Testing and Assessment
of System Safety," Information and Software Technology,
vol. 48, no. 10, pp. 971-980, 2006.

273

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[64] M. Alshraideh and L. Bottaci, "Search-Based Software Test
Data Generation for String Data Using Program-Specific
Search Operators," Software Testing, Verification and
Reliability, vol. 16, no. 3, pp. 175-203, 2006.

[65] B. Korel and A. M. Al-Yami, "Assertion-Oriented
Automated Test Data Generation," in Int'l. Conf. on
Software Eng. (ICSE 1996), Berlin, Germany, 1996, pp. 71-
80.

[66] T. Xie and D. Notkin, "Tool-Assisted Unit-Test Generation
and Selection Based on Operational Abstractions," Journal
of Automated Software Eng., vol. 13, no. 3, pp. 345-371,
July 2006.

[67] M. Harder, J. Mellen, and M. D. Ernst, "Improving Test
Suites via Operational Abstraction," in Int'l.Conf. on
Sofware Eng. (ICSE 2003), Portland, Oregon, USA, 2003,
pp. 60-71.

[68] J. E. Cook and A. L. Wolf, "Discovering Models of Software
Processes from Event-Based Data," ACM Transactions on
Software Eng. and Methodology, vol. 7, no. 3, pp. 215-249,
1998.

[69] J. E. Cook and Z. Du, "Discovering Thread Interactions in a
Concurrent System," Journal of Systems and Software, vol.
77, no. 3, pp. 285-297, Sept. 2005.

[70] C. Csallner and Y. Smaragdakis, "Dynamically Discovering
Likely Interface Invariants," in Int'l. Conf. on Software Eng.
(ICSE 2006), Shanghai, China, 2006.

[71] J. Huselius and J. Andersson, "Model Synthesis for Real-
Time Systems," in 9th European Conference on Software
Maintenance and Reengineering (CSMR 2005), Manchester,
UK, 2005, pp. 52-60.

[72] S. Ali et al., "A State-Based Approach to Integration Testing
based on UML Models," Information and Software
Technology, vol. 49, no. 11-12, pp. 1087-1106, 2007.

[73] R. Allen and D. Garlan, "Formalizing Architectural
Connection," in Int'l. Conf. on Software Eng. (ICSE 1994),
Sorrento, Italy, 1994, pp. 71-80.

[74] J. Yang and D. Evans, "Automatically Inferring Temporal
Properties for Program Evolution," in Int'l. Symposium on
Software Reliability Eng. (ISSRE 2004), Saint-Malo,
Bretagne, France, 2004, pp. 340-351.

[75] N. Kuzmina, J. Paul, R. Gamboa, and J. Caldwell,
"Extending Dynamic Constraint Detection with Disjunctive
Constraints," in Int'l. Workshop on Dynamic Analysis
(WODA 2008), Seattle, Washington, 2008, pp. 57-63.

[76] J. E. Cook and A. L. Wolf, "Event-Based Detection of
Concurrency," in 6th International Symposium on
Foundations of Software Engineering (FSE 1998), Paris,
France, 1998, pp. 35-45.

[77] M. Pradel and T. R. Gross, "Automatic Generation of Object
Usage Specifications from Large Method Traces," in Int'l.
Conf. on Automated Software Eng. (ASE 2009), Auckland,
New Zealand, 2009, pp. 371-382.

[78] M. Gabel and Z. Su, "Javert: Fully Automatic Mining of
Temporal Properties from Dynamic Traces," in 16th
International Symposium on Foundations of Software
Engineering (FSE 2008), Atlanta, USA, 2008, pp. 339-349.

[79] D. Lo, G. Ramalingam, V. P. Ranganath, and K. Vaswani,

"Mining Quantified Temporal Rules: Formalism,
Algorithms, and Evaluation," in Working Conference on
Reverse Engineering (WCRE 2009), Lille, France, 2009, pp.
62-71.

[80] A. Memon and Q. Xie, "Using Transient/Persistent Errors to
Develop Automated Test Oracles for Event-Driven
Software," in Int'l. Conf. on Automated Software Eng. (ASE
2004), Linz, Austria, 2004, pp. 186-195.

[81] X. Deng, M. B. Dwyer, J. Hatcliff, and M. Mizuno,
"Invariant-Based Specification, Synthesis and of
Synchronization in Concurrent Programs," in Int'l.l Conf. on
Software Eng. (ICSE 2002), Orlando, Florida, 2002, pp. 442-
452.

[82] A. Machetto, P. Tonella, and F. Ricca, "State-Based Testing
of Ajax Web Application," in Int'l. Conf. on Software
Testing, Verification and Validation (ICST 2008),
Lillehammer, Norway, 2008, pp. 121-130.

[83] P. O. Meredith, D. Jin, F. Chen, and G. Rosu, "Efficient
Monitoring of Parametric Context-Free Patterns," in Int'l.
Conf. on Automated Software Eng. (ASE 2008), L'Aquila,
Italy, 2008, pp. 148-157.

[84] N. Walkinshaw and K. Bogdanov, "Inferring Finite-State
Models with Temporal Constraints," in Int'l. Conf. on
Automated Software Eng. (ASE 2008), L'Aquila, Italy, 2008,
pp. 248-257.

[85] S. Konrad and B. H.C. Cheng, "Real-Time Specification
Patterns," in Int'l. Conf. on Software Eng. (ICSE 2005), St.
Louis, Missouri, USA, 2005, pp. 372-381.

[86] C. Ackermann, M. Lindvall, and R. Cleaveland, "Recovering
Views of Inter-System Interaction Behaviors," in Working
Conf. on Reverse Engineering (WCRE 2009), Lille, France,
2009, pp. 53-61.

[87] S. Thummalapenta and T. Xie, "Alattin: Mining Alternative
Patterns for Detecting Neglected Conditions," in Int'l. Conf.
on Automated Software Eng. (ASE 2009), Auckland, New
Zealand, 2009, pp. 283-294.

[88] P. Bellini, P. Nesi, and D. Rogai, "Expressing and
Organizing Real-Time Specification Patterns via Temporal
Logics," Journal of Systems and Software, vol. 82, no. 2, pp.
183-196, 2009.

[89] X. Yuan and A. M. Memon, "Iterative Execution-Feedback
Model-Directed GUI Testing," Information and Software
Technology, vol. 52, no. 5, pp. 559-575, 2010.

[90] A. Wasylkowski and A. Zeller, "Mining Temporal
Specifications from Object Usage," in Int'l. Conf. on
Automated Software Eng. (ASE 2009), Auckland, New
Zealand, 2009, pp. 295-306.

[91] K. Saleh, A. A. Boujarwah, and J. Al-Dallal, "Anomaly
Detection in Concurrent Java Programs Using Dynamic Data
Flow Analysis," Information and Software Technology, vol.
43, no. 15, pp. 973-981, 2001.

[92] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P.
Reiss, "A Dataflow Language for Scriptable Debugging," in
Int'l. Conf. on Automated Software Engineering (ASE 2004),
Linz, Austria, 2004, pp. 218-227.

[93] A. Cavalli, C. Gervy, and S. Prokopenko, "New Approaches
for Passive Testing Using an Extended Finite State Machine
Specification," Information and Software Technology, vol.

274

International Journal on Advances in Software, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/software/

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

45, no. 12, pp. 837-852, 2003.
[94] P. J. Guo, J. H. Perkins, S. McCamant, and M. D. Ernst,

"Dynamic Inference of Abstract Types," in Int'l. Symposium
on Software Testing and Analysis (ISSTA 2006), Portland,
Maine, USA, 2006, pp. 255-265.

[95] J. Henkel and A. Diwan, "Discovering Algebraic
Specifications from Java Classes," in European Conf. on
Object-Oriented Programming (ECOOP 2003), Darmstadt,
Germany, 2003, pp. 431-456.

[96] N. Polikarpova, I. Ciupa, and B. Meyer, "A Comparative
Study of Programmer-Written and Automatically Written
Contracts," in Int'l. Symposium on Software Testing and
Analysis (ISSTA 2009), Chicago, USA, 2009, pp. 93-104.

[97] Q. Xie and A. M. Memon, "Designing and Comparing
Automated Test Oracles for GUI-Based Software
Applications," ACM Transactions of Software Eng. and
Methodology, vol. 16, no. 1, pp. 1-36, Feb. 2007.

[98] N. Delgado, A. Q. Gates, and S. Roach, "A Taxonomy and
Catalog of Runtime Software-Fault Monitoring Tools,"
IEEE Transactions on Software Eng., vol. 12, no. 30, pp.
859-872, Dec. 2004.

[99] C. Zhao, J. Kong, and K. Zhang, "Program Behavior
Discovery and Verification: A Graph Grammar Approach,"
IEEE Transactions on Software Eng., vol. 36, no. 3, pp. 431-
448, May/June 2010.

[100] Y. J. Ren and F. Chang, "ATTEST: A Testing Toolkit for
Validating Software Properties," in Int'l. Conf. on Software
Maintenance (ICSM 2007), Paris, France, 2007, pp. 469-
472.

[101] T. H. Gibbs, B. A. Malloy, and J. F. Power, "Automated
Validation of Class Invariants in C++ Applications," in Int'l.
Conf. on Automated Software Eng. (ASE 2002), Edinburgh,
UK, 2002, pp. 205-214.

[102] L. Froihofer, G. Glos, J. Osrael, and K. M. Goeschka,
"Overview and Evaluation of Constraint Validation
Approaches in Java," in Int'l. Conf. on Software Eng. (ICSE
2007), Minneapolis, USA, 2007, pp. 313-322.

[103] G. J. Holzmann, "The Logic of Bugs," in Int'l. Symposium
on the Foundations of Software Eng. (FSE 2002),
Charleston, South Carolina, USA, 2002, pp. 81-87.

[104] J. Burnim and K. Sen, "DETERMIN: Inferring Likely
Deterministic Specifications of Multithreaded Programs," in
Int'l. Conf. on Software Eng. (ICSE 2010), Cape Town,
South Africe, 2010, pp. 415-424.

[105] A. Memon, I. Banerjee, and Adithya. Nagarajan, "What Test
Oracle Should I Use for Effective GUI Testing," in Int'l.
Conf. on Software Eng. (ICSE 2003), Portland, Oregon,
USA, 2003, pp. 164-173.

[106] T. Kanstrén. (2012, January) OSMOTester - Simple Model-
Based Testing Tool. [Online].
http://code.google.com/p/osmo/

