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Abstract—In the context of computer graphics, a generative
model is the description of a three-dimensional shape: Each
class of objects is represented by one algorithm M . Further-
more, each described object is a set of high-level parameters
x, which reproduces the object, if an interpreter evaluates
M(x). This procedural knowledge differs from other kinds
of knowledge, such as declarative knowledge, in a significant
way. Generative models are designed by programming. In order
to make generative modeling accessible to non-computer scien-
tists, we created a generative modeling framework based on the
easy-to-use scripting language JavaScript (JS). Furthermore, we
did not implement yet another interpreter, but a JS-translator
and compiler. As a consequence, our framework can translate
generative models from JavaScript to various platforms. In this
paper we present an overview of Euclides and quintessential
examples of supported platforms: Java, Differential Java, and
GML. Java is a target language, because all frontend and
framework components are written in Java making it easier to
be embedded in an integrated development environment. The
Differential Java backend can compute derivatives of functions,
which is a necessary task in many applications of scientific
computing, e.g., validating reconstruction and fitting results of
laser scanned surfaces. The postfix notation of GML is very
similar to that of Adobes Postscript. It allows the creation of
high-level shape operators from low-level shape operators. The
GML serves as a platform for a number of applications because
it is extensible and comes with an integrated visualization
engine. This innovative meta-modeler concept allows a user
to export generative models to other platforms without losing
its main feature – the procedural paradigm. In contrast to
other modelers, the source code does not need to be interpreted
or unfolded, it is translated. Therefore, it can still be a very
compact representation of a complex model.

Keywords-Generative modeling, procedural modeling, com-
puter graphics, JavaScript, compiler

I. INTRODUCTION

Offering an easy access to programming languages that
are difficult to approach directly reduces the inhibition
threshold dramatically. Especially in non-computer science
contexts, easy-to-use scripting languages have gained a lot
of attention in the past few years.

In the context of Cultural Heritage, the Generative-
Modeling-Language (GML) is an established procedural
modeling environment designed for expert users. The aim

of the Euclides modeling framework is to offer an easy-
to-use approach to facilitate these platforms. The trans-
lation mechanism for GML within Euclides has already
been described in “Euclides – A JavaScript to PostScript
Translator” and presented at the International Conference on
Computational Logics, Algebras, Programming, Tools, and
Benchmarking [1].

Originally, scripting languages like JavaScript were de-
signed for a special purpose, e.g., to be used for client-side
scripting in a web browser. Nowadays, the applications of
scripting languages are manifold. JavaScript, for example,
is used to animate 2D and 3D graphics in VRML [2] and
X3D [3] files. It checks user forms in PDF files [4], controls
game engines [5], configures applications, and performs
many more tasks. According to J. K. OUSTERHOUT script-
ing languages use a higher level of abstraction compared to
system programming languages as they are often typeless
and interpreted to emphasize the rapid application develop-
ment purpose [6]. Whereas system programming languages
are designed for creating algorithms and data structures
based on low-level data types and memory operations. As
a consequence, graphics libraries [7], graphics shaders [8]
and scene graph systems [9], [10] are usually written in
C/C++ dialects [11], and procedural modeling frameworks
use scripting languages such as Lua, JavaScript, etc.

A. Geometric Modeling

When describing the shape of three-dimensional objects,
two different approaches are established:
• composing an object of basic primitives (points, trian-

gles, quads, etc.),
• creating a procedural description [12].

A composition of primitives can be achieved by conventional
geometric modeling or by using 3D acquisition devices,
which are always more or less noisy. Whereas, a procedural
description is based on an ideal object rather than a real
one and is often used to describe an object’s inherent
properties. Its strength lies in a very compact description,
which, compared to conventional geometric descriptions,
is not dependent on the number of primitives but on the
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Generative knowledge
and procedural 3D models
in JavaScript source files

standard XML for sustainable
documentation and long-term
archival

commonly used 3D formats
and viewers (GML, Java, etc.)
for visualization

internet file formats (HTML)
for publishing and distribution

differentiated code
for numerical optimization

The Euclides
framework:

- lexical
scanner

- grammar
parser

- translator
to various
platforms

Figure 1. The meta-modeler approach of the Euclides framework has many advantages. In contrast to script-based interpreters, Euclides parses and
analyzes the input source files, builds up an abstract syntax tree (AST), and translates it to the desired platform. Its platform and target independence as
well as various exporters for different purposes are the main characteristics of Euclides.

model’s complexity itself. However, generative models must
not be seen as a replacement for established geometric de-
scriptions, but as a semantic enrichment. Another advantage
of procedural modeling techniques is the included expert
knowledge within an object description. For example, clas-
sification schemes used in architecture, archaeology, civil
engineering, etc. can be mapped to procedures, thus making
the object easily identifiable by digital library services
(indexing, markup and retrieval). For a specific object only
its type and its instantiation parameters have to be identified.
In combination, these two methods can be used to perform
detailed mesh comparisons, which can reveal the smallest
changes and damage of digitized artifacts. Such analysis and
documentation tasks are valuable in the context of cultural
heritage [13], [14].

B. Cultural Heritage

Procedural modeling techniques are well studied in the
fields of computer-aided design and engineering. Unfortu-
nately, in the context of cultural heritage, model complexity,
model size, and imperfection have dimensions several orders
of magnitude higher than many other fields of applica-
tions [15]. Cultural heritage artifacts often have a high
inherent complexity, since they represent masterpieces of
the human creative genius. As such artifacts are seldom
single findings, they are therefore often embedded in larger
excavation sites. An archaeological excavation may have an
extent on the scale of kilometers with a high richness of
detail on the scale of millimeters. Domain knowledge by
cultural heritage experts and procedural modeling techniques
are keys to cope with this complexity and size [16].
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Generative modeling inherits methodologies of 3D model-
ing and programming, which leads to drawbacks in usability
and productivity. The need to learn and use a programming
language is a significant inhibition threshold especially for
archaeologists, cultural heritage experts, etc. who are seldom
experts in computer science and programming. The choice
of the scripting language has a huge influence on how easy
it is to get along with procedural modeling. This is why we
use JavaScript – a beginner friendly, structured language.

C. JavaScript

JavaScript features a rather intuitive syntax, which is easy
to read and to understand. A comprehensible, well-arranged
syntax is useful, since source code is more often read than
written. JavaScript supports features like dynamic typing and
first-class functions. The most important feature is, that it
is wide-spread amongst non-computer scientists – namely
designers and creative coders. This is the reason why there
are numerous tutorials available on the internet, resulting
in an easy access to the language. JavaScript is used in
many different environments and has evolved from being
used only in a web-browser to a flexible multi-purpose
scripting language. Our integrated scripting solution adds
another chapter to the history of JavaScript usage.

Our meta-modeler approach Euclides is based on
JavaScript and differs from other modeling environments
in a very important aspect: target independence. Usually,
a generative modeling environment consists of a script
interpreter and a 3D rendering engine. A generative model
(3D data structures with functionality) is interpreted directly
to generate geometry, which is afterwards visualized by an
integrated rendering engine.

In our system a model’s source code is not interpreted
but parsed into an intermediate representation, an abstract
syntax tree (AST). After a validation process it is translated
into a target language. The process of

parsing → validating → translating

offers many advantages as illustrated in Figure 1. The val-
idation step involves syntax and consistency checks. These
checks are performed to ensure the generation of a correct
intermediate representation and to provide meaningful error
messages as early as possible within the processing pipeline.
The translation step, like every compilation/translation (see
Section II, Related Work), consists of a parser frontend (see
Section III, JavaScript Frontend), middleware, and backend
(see Section IV, Target Backends), and offers platform inde-
pendence (see Section V, Conclusion and Future Work). The
same code basis can be translated into different languages
for various purposes.

II. RELATED WORK

A. Generative Modeling

Procedural modeling systems often rely on grammars to
describe the rules behind generative components. Early sys-
tems based on grammars were Lindenmayer systems [17],
or L-systems for short. These systems provide the means
for modeling plants, where they were successfully applied.
Starting with simple strings, complex strings are created by
using a set of string rewriting rules. A predefined set of
rules is applied to an initial string forming a new, possibly
larger string. The L-systems approach reflects a biological
motivation. In order to use L-systems to model geometry
an interpretation of the generated strings is necessary. The
modeling power of these early geometric interpretations
of L-systems was limited to creating fractals and plant-
like branching structures. This leads to the introduction of
parametric L-systems. The idea is to associate numerical
parameters with L-system symbols to address continuous
phenomena, which were not covered satisfactorily by L-
systems alone.

CGA Shape, CityEngine: L-systems in combination
with shape grammars are successfully used in procedural
modeling of cities [18]. Parish and Müller presented a
system that generates a street map including geometry for
buildings given a number of image maps as input. For
that purpose L-systems have been extended to allow the
definition of global objectives as well as local constraints.
However, the use of procedurally generated textures to
represent facades of buildings often results in a limited level
of detail. In later work, Müller et al. describe a system [19] to
create more detailed facades based on a split grammar called
CGA shape. A framework called the CityEngine provides a
modeling environment for CGA shape. It relies on different
views to guide an iterative modeling process.

Lipp et al. presented another modeling approach [20]
following the notation of Müller [21] that deals with the
aspects of more direct local control of the underlying gram-
mar by introducing visual editing. The idea is to modify
elements selected directly in a 3D-view, rather than editing
rules in a text based environment. Principles of semantic
and geometric selection are therefore combined as well as
functionality to store local changes persistently over global
modifications.

Model Graphs: A modeling method as well as a
graphical user interface for the creation of natural branching
structures was proposed by Lintermann et al. [22]. The
idea is to represents the modeling process with a structure
tree, which can be altered using specialized components
describing geometry as well as structure. Another set of
components can be used for defining global and partial
constraints. These components are described procedurally
using creation rules, which include recursion. Geometric
data is generated according to the structure tree via a tree
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traversal, where the components generate their geometrical
output themselves.

Ganster et al. propose a procedural modeling approach
[23] based on structure trees as well. They describe an
integrated framework relying on a visual language. The infix
notation of the language requires the use of variables, which
are stored on a heap. A graph structure represents the rules
used to create an object. Special nodes allow the creation of
geometry, the application of operators as well as the usage
of control structures. Various attributes can be set for nodes
used in a graph. Directed edges between nodes define the
order of execution, in contrast to a visual data flow pipeline
where data is transported between the different stages.

Hierarchical Description: Finkenzeller presented an-
other approach for detailed building facades [24] called
ProcMod. It features a hierarchical description for an entire
building. In order to create a building, the user provides a
coarse outline and a basic style of the building including
distinguished parts. The system then generates a graph rep-
resenting the building. In the next step, the graph is traversed
and geometry for every element of the graph is generated.
This results in a detailed scene graph, in which each element
can be modified afterwards. The version described has some
limitations: for example, organic structures and inclined
walls cannot be modeled.

Postfix Expressions: Havemann proposes a stack based
language called Generative Modeling Language (GML),
which allows, but is not limited to, creating polygonal
meshes [25]. The postfix notation of the language is very
similar to that of Adobe Postscript. High-level shape op-
erators are created from low-level shape functionality. The
GML serves as a platform for a number of applications,
because it is extensible and comes with an integrated visu-
alization engine.

An extended system presented by Mendez et al. combines
semantic scene-graph markups with generative modeling
[26]. The purpose of the system is the generation of semantic
three dimensional models of underground infrastructure. A
geospatial database and a rendering engine are combined
in order to create an interactive application. The GML
is used for on-the-fly generation of procedural models in
combination with a conventional scene graph system with
semantic markup.

Scripted Modelers: In contrast to specialized generative
modelers, there are a number of 3D modeling software
packages available like Autodesk MayaTM or 3ds MaxTM.
They provide a variety of tools for modeling with polygons,
non-uniform rational B-splines (NURBS) and predefined
primitives. In addition to a graphical user interface (GUI), a
scripting language is supplied to extend the functionality. It
enables tasks that cannot be achieved easily using the GUI
and speeds up complicated or repetitive tasks.

Processing and Grasshopper: Processing stands for a
programming language and a development environment. It

was initially created to serve as a software sketchbook and to
teach students fundamentals of computer programming [27].
It quickly developed into a tool that is used for creating
visual arts. Processing is basically a Java-like interpreter
offering a new graphics and utility API together with some
usability simplifications. A large community behind the tool
produced over seventy libraries to facilitate computer vision,
data visualization, music, networking, and electronics.

Another tool with a creative background is Grasshopper
[28]. Its main purpose is the creation of graphical algo-
rithms. It is a graphical editor for Rhino’s 3D modeling
tools designed to be used without programming skills -
unlike RhinoScript. In Grasshopper programs are created
by dragging components onto a canvas and interconnecting
these components. Many components create, but are not
limited to, 3D geometry. Similar to Processing, there is a
large community behind the tool.

B. JavaScript

JavaScript started as a simple client-side scripting
language. Nowadays, there are a number of projects
that use JavaScript in innovative ways. EMScripten
(https://github.com/kripken/emscripten) is a LLVM to
JavaScript compiler. LLVM stands for low level virtual
machine, and is an intermediary representation for code
compiled from languages such as C, C++ or Objective-C.
LLVM output used by EMScripten is similar to assembly
language.

The difficulty in translating an LLVM AST to JavaScript
is that the high level representation of the source languages is
lost. A translator hence needs to compact ambiguous assem-
bly statements into general, high level language code. The
EMScripten algorithm, called relooper, produces output that
models a virtual machine. The heap of the virtual machine
is a huge array. A growing machine’s stack is modeled as
a variable that serves as an index to the heap. Necessary
control flow such as goto and arbitrary labels are modeled
as looping switch-statements. EMScripten author Zakai is
demonstrating the versatility of the transpiler by porting
the computer game DOOM to JavaScript. The JavaScript
output of compiled DOOM is accelerated by the optimizing
compiler GClosure by Google.

Similar to a virtual machine, Bellard has written a PC
emulator that runs in JavaScript. It uses JavaScript’s typed
arrays to emulate a feature-stripped 486 CPU. Typed arrays
allow to apply views on an existing array, by which a
programmer can access the array contents as differently
sized chunks. This way, an array of 32 bit sized numbers
might be accessed as 16 bit array. This way of addressing
allows extracting single bytes from an array of integers.
Obviously, bit-level handling is possible and facilitated, if
one uses a byte to represent a machine-bit, scaling available
memory by a factor of 8. To demonstrate the power of the
emulator, Bellard shows a version of a small GNU/Linux
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distribution that is properly executed by his JavaScript-based
PC emulator.

III. JAVASCRIPT FRONTEND

A. Lexer and Parser

Despite the name, JavaScript is unrelated to the program-
ming language Java, even if it copies many names and nam-
ing conventions. It is a functional programming language
with support of structured programming constructs in C-
style (e.g., if-statements, for-loops, switch-statements). In
analogy to C, JavaScript differentiates between expressions
and statements. However, there are a few important aspects
that need to be mentioned:
• In contrast to C-style block-level scoping, JavaScript

supports function-level scoping.
• Types are dynamic and they are associated with values;

i.e., a variable’s value defines its type.
• Functions are objects themselves and therefore can be

assigned to variables, returned by functions, passed as
arguments, and manipulated like any other object [29].

As JavaScript is typically interpreted, its design reflects
interactivity. It relies on a run-time environment, i.e., an
object model provides the functionality to communicate with
the host environment. Furthermore, the default entry point
for a parser is a statement rule as visualized in Figure 2.
It does not have a mandatory, enclosing class structure or a
main function as entry point. Additionally, the interactivity
is reflected in required forward declarations, which can be
created via forward references, as functions are first-class
citizens.

The statement rule is split up in several sub-rules like
statementIf, statementDoWhile, statementExpression. While
these rules are rather straightforward, the statementNative-
Code rule is a special feature of our grammar. It allows to
embed native code into JavaScript. When JavaScript code
gets translated, it is sometimes necessary to embed code
written in the target language – so called native code. As
a consequence, each platform-dependent library is available
in all target versions. An illustrating example is taken from
the Java version of the Euclides’ IO library. It shows how
writing output to the text console is handled.

The function io_stdout_write writes a text message
to Standard Out. If necessary the parameter msg will be
converted to a string. In order to be JavaScript compliant,
native code is embedded in comments using the special
character sequence /*% */ to denote the beginning of
a native code section. A similar mechanism is used to allow
parsing annotations, where the special character sequence
/*@ */ is used to denote an annotations section inside
a comment. Annotations are used similar to preprocessor
directives in C. They are evaluated by the parser and
additionally embedded in the target source code.

Figure 2. The entry point for a JavaScript parser is a statement rule,
because JavaScript is typically interpreted in a run-time environment –
statement by statement. As a consequence, the JavaScript grammar does
not contain any enclosing class structures.

/*@

euclides.suppress_warning_unreferenced_o ←↩
bject.io_stdout_write;

*/

/**
This function writes a text message to

standard out. The parameter ’msg’ will be

converted to a ’string’, if necessary.

*/

function io_stdout_write(msg)

{
/*%

System.out.print(usr_msg.toString());

*/

}

In the example above, the annotations technique is used to
suppress a warning of an unreferenced object, which might
occur, if the function is not used.
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B. Abstract Syntax Tree

Our parser for JavaScript is written using ANother Tool
for Language Recognition (ANTLR). ANTLR provides a
framework for constructing recognizers, interpreters, com-
pilers, and translators from grammatical descriptions [30].
It introduces a strategy called LL(*) parsing, which extends
the LL(k) parsing strategy with lookahead of arbitrary length
without explicitly specifying it. The purpose of using this
framework is to syntactically and semantically check the
provided input for JavaScript compliance and at the same
time to generate an intermediate representation: an abstract
syntax tree.

The AST offers three entry points into a script. The first
entry point is the “obvious” representation: a sequence of
statements. Each statement contains all included substate-
ments and expressions as well as associated comments. The
leaves of the AST store tokens together with formatting in-
formation (line and position). This tree structure is extended
by reference and occurrence links; e.g., each method call
references the method definition and each variable definition
links to all its occurrences.

The list of all variables represents a second entry point to
explore the AST. Each entry consists of the variable name,
the statement in which it is defined, the scope of the variable
as well as all occurrences in the source code.

Last but not least, the third entry point lists all function
implementations including anonymous functions with com-
plete function body. Similar to the contents of the variable
list, each entry offers the function name, its defining state-
ment, the scope of the function, the number of parameters
this function takes, as well as all occurrences in the source
code.

These structures are not only needed during the translation
process, but they are valueable inspection tools. Euclides’
automatic documentation system exports these views and
data structures in a collection of XHTML files: Using
markup techniques directly jumping between occurrences
and definitions of variables, function, etc. is possible; e.g.,
a screenshot of the automatic documentation created for the
fibonacci example

function fibonacci(index) {
switch (index) {
case 0:

case 1:

return 1;

default:

return fibonacci(index-2)

+ fibonacci(index-1);

}
}

var fibs = fibonacci(42);

Figure 3. The Euclides documentation target represents JavaScript as
a sustainable, standard-conform XML document can be displayed in an
arbitrary web browser.

is shown in Figure 3. All globally and locally defined
variables are listed in the Variables view. Several properties
are available for each variable:
• Comments. Any comments associated with a variable

are preserved and included.
• Location. The line of code (source, its line number and

file name) where the variable is declared.
• Visibility. The name together with the scope, in which

the variable is available.
• References. All references and uses of the variable in

the source code including file name, line number and
declaration statement.

Similarly to the Variables view, the Functions view is a
collection of all functions defined in the source code and
consists of the same four properties mentioned above. The
Statements view is a collection of all statements of the source
code together with filename and line number, which allows,
for example, identifying duplicate code snippets. Also it
gives a nice overview of the complexity of the source code.
In the files view, the source code is available as XML
document.

C. Libraries

A collection of libraries for geometry (GEO), graphi-
cal user interfaces (GUI), input/output (IO), mathematics
(MATH) and some utilities (UTL) are available for the
Euclides framework. They offer functionality to conveniently
create generative models together with basic user interface
elements. A simple example visualization of a Sierpinski
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tetrahedron with GUI components to control the subdivision
depth is shown in Figure 4.

IV. TARGET BACKENDS

When translating source code into target language
code [31], the need to establish a proper naming standard
quickly arises. A runtime environment is implemented using
symbols and constructs available in the target language.
Naming these constructs may interfere with the naming of
code to be translated. For example, there may very likely be
a function called main in the runtime environment rendering
this name to be reserved. In order to overcome these
limitations, all names in the translated code are extended
with the prefix usr_, if it corresponds one-to-one to a name
in JavaScript. Otherwise it is prefixed with sys_.

Additionally, dealing with different target languages not
only means dealing with naming issues, but also dealing
with character encoding. A character may be allowed to be
used in JavaScript, but forbidden in a target language. As a
consequence, we introduced lists of allowed characters and
rules for character replacements to handle all naming issues.

These two mechanisms ensure the validity and consistency
concerning naming and encoding issues of the generated
code. The result of a name translation is always a name,
which is

1) valid in the target language and
2) does not collide with any predefined names, name

spaces, or keywords.

A. Java

Although Java and JavaScript have some similarities, the
concepts of both languages show major differences. Java is a
statically typed, class-based, general-purpose programming

Figure 4. This figure shows how a Sierpinski tetrahedron example
translated to the Java target looks like. A small GUI with a drop-down list
to select the subdivision depth together with a 3D view of the Sierpinski
tetrahedron at subdivision depth five is scripted using Euclides.

language designed to have a minimum of implementation
dependencies to be able to follow the credo: “write once,
run anywhere”.

It is chosen as a target language, because all frontend and
framework components are written in Java making it easier
to be embedded in an integrated development environment.

Data Types: Because of conceptual differences in the
typing system, it is unpractical to project JavaScript data
types onto built-in Java data types. For example, JavaScript
makes no difference between integer numbers or floating-
point numbers. There is just one data type called number

that may hold any type of number. Similar difference can
be found when comparing the remaining data types.

Dynamic typing is another big difference between the two
languages. As a consequence, each JavaScript data type is
re-built in Java to match its functionality making a total of
seven data types. These data types are wrapped in a class
called Var, which provides the properties,

• getType()

• length(int ii)

access functions

• accessArray(int ii, Var index)

• accessObject(int ii, String attribute)

• assign(int ii, Var variable)

• delete(int ii, Var variable)

• executeDirect(int ii, Var THIS, Var[]

parameters)

• executeIndirect(int ii, String attribute,

Var[] parameters)

and conversion methods applicable to all JavaScript vari-
ables:

• toArray()

• toBoolean()

• toFunction()

• toNumber()

• toObject()

• toString()

• toUndefined()

In these methods the parameter ii always refers to a table
entry, which references the corresponding line of JavaScript
source code; e.g. each data type can be accessed like an
array. In case of an array, the access is “as supposed”, in case
of a String it is character-wise, in all other cases an implicit
conversion creates a new, empty array. As our runtime
environment produces warnings, if implicit conversion take
place, the implementation of an array access includes the
statement Log.variableTypeChangeImplicit(ii);. In
the messages table (generated by the compiler) entry #ii
references information needed for a reasonable warning; e.g.
during the execution of
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var number = 42;

number = "Hello World";

the runtime environment produces the warning

assignment provoked a warning.
type : variable type change by assignment
file : C//Users/ullrich/warning.ecs
line : 2
details : number = "Hello World";

The access functions reveal the implementation details and
the mappings of the Java types.
Boolean: The corresponding Java type is boolean.
Number: A JavaScript number is mapped to double.
String: String is mapped to String.
Array: A JavaScript array is realized using the collection
ArrayList<Var>.
Object: And an object in JavaScript is mapped to
HashMap<String,Var>.
Function: The corresponding object to a JavaScript functor
is a function pointer implementation in Java via abstract
objects.

With these data types comes the necessity to use a runtime
environment in the translated Java code. Whenever a variable
is created or a value is assigned, a method-call is performed
– thus significantly increasing the execution time of the
code. However, for creating variables, a factory pattern is
applied with the inherent advantage of exchangeability. This
design pattern is extensively used by the “Differential Java”
backend, which is described in the next section.

Concerning language constructs a wide range can be
translated easily, since they have the same semantic meaning
in both languages. Sometimes, there is the need to utilize
temporary variables, which implicate a possible naming
conflict with variable names used in the original JavaScript
source code. This problem is tackled by prefixing all original
JavaScript names and additionally creating unique names for
temporary variables as mentioned before.

Functions: In Java, invokable routines are called meth-
ods and they are similar to, but not quite like functions in
JavaScript. The runtime environment provides a class for
JavaScript functions to mimic their behavior. An important
property of functions in JavaScript is that they can be
undefined. Therefore, when instantiating an empty func-
tion in Java, a dummy with the correct behavior is returned.
Executing a function in the Java runtime environment is done
by calling the execute method in the function class. In
addition to function parameters, an environment reference
is passed to the function in order to enable correct interac-
tion with the immediate environment. Functions extend an
abstract class called Fct defining all necessary methods:
• getID()

• getName()

• getTranslatedName()

• getAnnotations()

• getParam()

• getParams()

• execute(int ii, Var THIS, Var[]

parameters)

• execute(int ii, Var THIS, Var

usr_vecArray)

They reside in a public, final class called Function.
Consequently, the function

function add(a, b) {
return a + b;

}

gets translated to

@Override

public Var execute(int ii, Var THIS,

Var usr_a, Var usr_b) {
try {
{

if (Main.AVOID_UNREACHABLE_CODE_ERROR)

return Op.ADD(0, usr_a, usr_b);

}
} catch (EuclidesRuntimeException exp) {
throw exp;

} catch (RuntimeException exp) {
Log.uncaughtException(ii);

System.err.println(exp);

System.exit(0);

}
return Factory.initUndefined();

}
The body of the function is embedded in a try-catch block

in order to throw runtime exceptions or halt execution in
case of an unhandled exception. The value undefined is
returned in case a runtime exception occurs. Please note, the
static constant Main.AVOID_UNREACHABLE_CODE_ERROR

is always true and only needed to avoid – as it says
– “unreachable code errors” thrown by Java compilers,
for example, if a return-statement is followed by further
statements.

Translated functions and parameters are named just like
their JavaScript-counterparts (except for the usr_ prefix).

Operators: Since JavaScript data types are not mapped
to native Java data types, all operators need to be recreated in
the Java runtime environment as well. A total of 35 operators
grouped in unary, binary and tertiary operators are available.
Since each operator is applied via a method call, they can
be easily exchanged. Operators are collected as methods in
a public, final class called Op. As an example, the following
operation

var c = 19.0 + 23.0;
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results in

Variable.usr_c.assign(1, Op.ADD(0,

Factory.initNumber(19.0),

Factory.initNumber(23.0)));

The result of the call to Op.ADD with the two numbers
as parameters is stored in a new variable, which is returned
and then used as a parameter for the assignment operation.

Control Flow: Control flow statements are widely
identical in both languages. One of the differences, however,
is the switch-statement. For a switch-statement in Java only
primitive data types are allowed, whereas JavaScript allows
all types to be used, attributable to dynamic typing. In order
to obtain a correct translation, the switch-statement needs to
be rewritten, which is done directly in the translated code.
The first step is to analyze the statement from back to front
comparing each case with the switching expression. Then
the result is stored in a temporary variable and the switch-
statement is rebuilt in reverse order using the temporary
variable as switching expression. As a result

switch (favoritelanguage) {
case "Java":

io_stdout_write("Good choice!");

break;

case "C":

io_stdout_write("Bad choice");

break;

default:

io_stdout_write("I have no idea");

}

becomes

int sys_42 = 0;

if (Op.EQ(9, Variable.usr_favoritelanguage,

Factory.initString("C")).toBoolean())

sys_42 = 1;

if (Op.EQ(10, Variable.usr_favoritelanguage,

Factory.initString("Java")).toBoolean())

sys_42 = 2;

switch(sys_42) {
case 2:

Function.usr_io_stdout_write.execute(11,

THIS, Factory.initString("Good choice!"));

if (Main.AVOID_UNREACHABLE_CODE_ERROR) break;

case 1:

Function.usr_io_stdout_write.execute(12,

THIS, Factory.initString("Bad choice"));

if (Main.AVOID_UNREACHABLE_CODE_ERROR) break;

default:

Function.usr_io_stdout_write.execute(13,

THIS, Factory.initString("I have no idea"));

}

The corresponding translation in Java creates the tem-
porary variable sys_42 for comparisons and a switch-
statement in reverse order to rebuild the behavior of the
JavaScript counterpart.

Once all target files containing source code are generated,
they are compiled using the Java compiler included in Java
Platform, Standard Edition (Java SE). The resulting class
files are automatically packed into a single JAR file for easy
execution. As a last step, the JAR file is digitally signed to be
ready-to-use for Java Web Start. The signature information
becomes part of the embedded manifest file.

B. Differential Java

Besides the previously described Java target, Euclides
offers a Differential Java backend. Computing derivatives
of functions is a necessary task in many applications of sci-
entific computing, e.g. validating reconstruction and fitting
results of laser scanned surfaces [32], [33]: In combination
with variance analysis techniques, generative descriptions
can be used to validate reconstructions. Detailed mesh com-
parisons can reveal smallest changes and damages. These
analysis and documentation tasks are needed not only in the
context of cultural heritage but also in engineering and man-
ufacturing. The Euclides framework is used to implement
generative models, whose accuracy and systematics describe
the semantic properties of an object; whereas the actual
object is a real-world data set (laser scan or photogrammetric
reconstruction) without any additional semantic information.

This analysis task needs derivatives of the distance-based
objective function as well as the embedded procedural
descriptions. According to Hammer et al. [34] there are three
different methods to obtain values of derivatives:
• Numerical differentiation uses difference approxima-

tions to compute approximations of the derivative val-
ues.

• Symbolic differentiation computes explicit formulas
for the derivative functions by applying differentiation
rules.

• Automatic differentiation also uses the well-known
differentiation rules, but it propagates numerical values
for the derivatives.

Automatic differentiation combines the advantages of sym-
bolic and numerical differentiation [35]. There are two
important things to mention:
• Numbers instead of symbolic formulas must be han-

dled.
• The computation of the derivative values is done auto-

matically together with the computation of the function
value.

Automatic differentiation evaluates functions specified by
algorithms or formulas. All operations are performed accord-
ing to the rules of a differentiation arithmetic given by “C++
for Verified Computing” [34]. First order differentiation
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Figure 5. The evaluation of the term x2 + 3 sinx at x0 = 1.3
using differentiation arithmetic does not only return its value but also
its derivative value. The computational complexity of this differentiation
arithmetic (forward method) is at most a small multiple of the cost of
evaluating the term itself.

arithmetic is an arithmetic for ordered pairs in the one-
dimensional case: the first component contains the value
u(x) of the function u : R → R at the point x ∈ R. The
second component contains the value of the derivative u′(x).
Familiar rules of calculus are used in the second component.
The operations in these definitions are operations on real
numbers.

An independent variable x and the arbitrary constant c
correspond to the ordered pairs

(x, 1) and (c, 0), (1)

since dx
dx = 1, and dc

dx = 0. If the independent variable x
of a formula for a function f : R → R is replaced by
X = (x, 1), and if all constants are replaced by their (c, 0)
representation, then the evaluation of f using the rules of
differentiation arithmetic gives the ordered pair

f(X) = f((x, 1)) (2)
= (f(x), f ′(x)). (3)

For example, Figure 5 shows an AST whose evaluation
at x0 = 1.3 illustrates the calculation of its derivative values
at intermediate subterms. For elementary functions

s : R→ R (4)

the rules of differentiation arithmetic must be extended using
the chain rule

s(U) = s((u, u′)) (5)
= (s(u), u′ · s′(u)). (6)

This way the sine function is defined by

sinU = sin(u, u′) (7)
= (sinu, u′ · cosu). (8)

The result of this structure and its corresponding operators is
the algebra of dual numbers [36], which can be implemented
in three ways:

Many programming languages offer an overloading mech-
anism that replaces each real number by a pair of real num-
bers including the differential. Each elementary operation on
real numbers is overloaded, i.e., internally replaced by a new
one, working on pairs of reals, that computes the value and
its differential. In this way the original program is virtually
unchanged.

Another approach uses source code transformation. This
technique adds new variables, arrays, and data structures
into the program that will hold the derivatives and the new
instructions that compute them. This approach does not
depend on language features such as operator overloading.

The third way to implement automatic differentiation does
not modify a program or its source, but the platform (e.g.
Java Virtual Machine, .Net Common Language Runtime,
etc.) it runs on.

The Java differential target uses the third approach to
automatically obtain derivatives. This is done by replacing
variables and operators in the runtime environment, which
is an easy task, since variables and operators are created
using the factory pattern. The following listing shows the
differences between standard and differential multiplica-
tion operator. As expected, the standard operator returns
a variable initialized with the result of the multiplication
operation.

/**

* Binary operator multiply.

*

* @param ii Information index.

* @param v1 The first operand.

* @param v2 The second operand.

* @return The result.

*/

public static Var MUL(int ii, Var v1, Var v2)

{
if (!v1.getType().equals(Type.NUMBER)

|| !v2.getType().equals(Type.NUMBER))

Log.deviantOperatorCallNoNumber(ii);

return Factory.initNumber(

v1.toNumber() * v2.toNumber());

}

The differential operator calculates the derivatives of the
operands and stores them in an array. Then a resulting array
is constructed out of the calculated derivatives and returned
as a variable.
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/**

* Binary operator multiply.

*

* @param ii Information index.

* @param v1 The first operand.

* @param v2 The second operand.

* @return The result.

*/

public static Var MUL(int ii, Var v1, Var v2)

{
if (!v1.getType().equals(Type.NUMBER)

|| !v2.getType().equals(Type.NUMBER))

Log.deviantOperatorCallNoNumber(ii);

double[] d1 = v1.toDifferential();

double[] d2 = v2.toDifferential();

double[] r = Factory.differential();

r[0] = d1[0] * d2[0];

for(int i=1; i<r.length; i++)

r[i] = d1[i]*d2[0] + d1[0]*d2[i];

return Factory.initNumber(r);

}

C. GML

The Generative-Modeling-Language (GML) is a procedu-
ral modeling environment predominantly used in the context
of Cultural Heritage [37]. The corresponding translation
mechanism within Euclides has already been described in
“Euclides – A JavaScript to PostScript Translator” and
presented at the International Conference on Computational
Logics, Algebras, Programming, Tools, and Benchmark-
ing [1].

Data Types: In JavaScript each variable has a par-
ticular, dynamic type. It may be undefined, boolean,
number, string, array, object, or function. GML
also has a dynamical type system. Unfortunately, both type
systems are incompatible to each other. Therefore, trans-
lating JavaScript data types to GML poses two particular
problems: On the one hand, the dynamic types must be
inferred at run time. On the other hand, GML’s native data
types lack distinct features needed by JavaScript. GML-
Strings, for example, cannot be accessed character-wise. We
solved these problems by implementing JavaScript-variables
as dictionaries [25] in GML. Dictionaries are objects that
map unique keys to values. These dictionaries hold needed
metadata and type information as well as methods, which
emulate JavaScript behavior. As we will show later, we will
utilize GML’s dictionaries for scoping as well.

The system translation library for GML, which every
JavaScript-translated GML program defines prior to ac-
tual program code, contains the function sys_init_data,

which defines an anonymous data value in the sense of
JavaScript data.

/sys_init_data {
dict begin
/content dict def
content begin
/type edef
/value edef
/length { value length } def

end
content
end

} def

sys_init_data opens a new variable-scope by defining
a new, anonymous dictionary and opening it. In this new
scope, another newly created dictionary is defined by the
name content. This content-dictionary receives three en-
tries: type, value and the method length. Each entry
value is taken from the top of GML’s stack. The newly cre-
ated dictionary is then pushed onto the stack and the current
scope is destroyed by closing the current dictionary, leaving
the anonymous dictionary on the stack. In GML notation,
a JavaScript-variable’s content is defined by pushing the
actual value and a pre-defined constant to identify the type of
the variable (such as Types.number, Types.array, etc.)
onto the stack, and calling sys_init_data. The translator
prefixes all JavaScript-identifiers with usr_ (in order to
ensure that all declarations of identifiers do not collide with
predefined GML objects) and uses the following translations:

Undefined: Variables of type undefined result from op-
erations that yield an undefined result or by declaring a
variable without defining it. var x; leads to x being of
type undefined. It is translated to

/usr_x Nulls.Types.undefined
Types.undefined sys_init_data def

Boolean: In JavaScript, boolean values are denoted by the
keywords true and false. The translation simply maps
these values to equivalent numerical values in GML, which
interprets them. The JavaScript-statement var x = true;

becomes

/usr_foo 1 Types.bool sys_init_data def

Number: All JavaScript numbers (including integers) are
represented as 32-bit floating point values. As GML stores
numbers as 32-bit floats internally as well, we simply map
them to GML’s number representation. For the sake of
completeness, var x = 3.14159; is translated to

/usr_x 3.14159 Types.number sys_init_data def

String: Although GML does support strings, they cannot
be accessed character-wise. We cope with this limitation by
defining strings as GML-arrays of numbers. Each number
is the Unicode of the respective character. As GML allows
to retrieve and to set array-elements based on indexes, this
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approach meets all conditions of JavaScript-strings. The
statement var x = "Hello World"; becomes

/usr_x
[ 72 101 108 108 111 32 87 111 114 108 100 ]
Types.string sys_init_data def

Array: JavaScript arrays allow to hold data with dif-
ferent types, the array’s contents may be mixed. This
behavior is in line with GML. The JavaScript-example
var x = [true, false, "maybe"]; has a straightfor-
ward translation:

/usr_x [ 1 Types.bool sys_init_data
0 Types.bool sys_init_data
[109 97 121 98 101]
Types.string sys_init_data ]
Types.array sys_init_data def

Object: In JavaScript an object consists of key-value-pairs,
e.g., var x = {x: 1.0, y: 2.0, z: 42}; This struc-
ture is mapped to nested GML-dictionaries. The value of a
variable’s content is a dictionary of its own. This dictionary
contains the entries corresponding to JavaScript-object’s
members, which are also defined as variable contents.

The example above defines a JavaScript-object of name x

with key-value-pairs x to be 1, y to be 2, and z to be 42:

/usr_x dict begin
/obj dict def obj begin
/usr_x 1.0 Types.number sys_init_data def
/usr_y 2.0 Types.number sys_init_data def
/usr_z 42.0 Types.number sys_init_data def
end obj

Types.object sys_init_data end def

Opening an anonymous dictionary creates a new scope. In
this scope, a dictionary is created and bound to the name
/obj. It is then opened and its members are defined, just like
anonymous variables would be. The object dictionary is then
closed, put on the stack, and used to define an anonymous
variable. The enclosing anonymous scoping dictionary is
then closed and simply discarded.

JavaScript objects may hold functions. Our translator
Euclides handles JavaScript object-functions like ordinary
functors (next subsection) and assigns their internal name to
a key-value-pair.

Function: JavaScript has first-class functions. There-
fore, it is possible to assign functions to variables,
which can be passed as parameters to other func-
tions, for example. In the following example, a func-
tion function do_nothing() {} is declared and de-
fined. Afterwards, the function is assigned to a variable
var x = do_nothing;. If we abstract away from the
translation of the function do_nothing, the statement
var x = do_nothing; becomes:

/usr_do_nothing {
%% ... definition of function omitted ...

} def

/usr_x
/usr_do_nothing Types.function

sys_init_data def

In JavaScript, x can now be used as a functor, which acts
the same ways as do_nothing. Because such functors can
be reassigned, it is necessary to handle functor calls (x())
differently than ordinary function calls (do_nothing()).
In this situation Euclides creates a temporary array, which
contains the functor parameters and passes this array as well
as the variable referencing the function name to a system
function sys_execute_var. This system function resolves
the functor and determines the referenced function, unwraps
the array and performs the function call.

Functions: In GML, functions are defined using clo-
sures, such as /my_add { add } def. If this function
my_add is executed, the closure { add } is put onto the
stack, its brackets are removed, and the content is executed.

To execute a GML function, its parameters need to be put
on the stack prior to the function call: 1.0 2.0 my_add

The resulting number 3.0 will remain on the stack. Please
note, that GML functions may produce more than one result
(left on the stack) at each function call. This allows to
define functions with more than one result value. Following
JavaScript, called functions return only one value by con-
vention. The number and names of function parameters are
known at compile time. Only functors (referenced functions
stored in variables) may change at run time and cannot be
checked ahead of time.

Translated functions and parameters are named just like
their JavaScript-counterparts (except for their usr_ prefix).
Scopes: As JavaScript uses a scoping mechanism different
to GML, it has to be emulated. This is a rather difficult
task, which has to take the following properties of JavaScript
scopes into account.
• JavaScript functions may call other functions or them-

selves.
• Called functions may declare the same identifiers as the

calling functions.
• Within functions other functions may be defined.
• Blocks might be nested inside functions, redefining

symbols or declaring symbols of the same name.
The translator uses GML’s dictionary mechanism to emulate
JavaScript-scopes. A dictionary on the dictionary stack can
be opened and it will take all subsequent assignments to
GML-identifier (variables). Since only the opened dictionary
is affected, this behavior is the same as the opening and
closing scopes in different scoped programming languages,
such as C or Java.

Thus an assignment /x 42 def can be put into an
isolated scope by creating a dictionary (dict), opening
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it (begin), performing the assignment, and closing the
dictionary (end). The following example shows how such
GML scopes can also be nested:

dict begin
/x 3.141 def %% x is 3.141
dict begin %%
/x 4 def %% x is 4.0

end %% x is 3.141
end %% x is unknown

As noted before, JavaScript supports redefinition of iden-
tifiers that were declared in a scope below the current one.
Fortunately, GML exhibits just the same behavior when
reading out the values of variables/keys from dictionaries of
the dictionary stack. Consequently, the following example
works as expected.

dict begin
/x 42 def
dict begin
/y x 1 add def %% y is now 43

end
end

However, assignments to variables have to be handled
differently in GML. The Generative Modeling Language
does not distinguish between declaration and definition, any
declaration must be a definition and vice versa.

The translator solves this problem. It uses a system
function called sys_def, which is included into all trans-
lated JavaScript sources automatically. This function applies
GML’s where operator to the dictionary stack in order to
find the uppermost dictionary, where the searched name is
defined. The operator returns the reference to the dictionary,
in which the name was found.
Control Flow for Functions: The Generative Modeling
Language and all PostScript dialects lack a dedicated jump
operation in control flow. Imperative functions often require
the execution context to jump to a different point in the
program at any time - and to return from there as well.

Fortunately, GML provides an exception mechanism. A
GML exception is propagated down GML’s internal execu-
tion stack until a catch instruction is encountered. In this
way it overrides any other control structure it encounters. We
use GML’s exception mechanism to jump outside a function
as illustrated in the following empty function skeleton:

/usr_foo {
dict begin
/return_issued 0 def
{ dict begin
%% ... function body omitted ...
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

In this empty skeleton, the function opens a new anonymous
scope. Inside this scope dict begin . . . end the local
identifier /return_issued is set to 0. Afterwards a GML
try-catch-statement { try_block } { catch_block }
catch contains the JavaScript-function implementation. In
this translation, the catch block redefines /return_issued
to 1 to indicate that a JavaScript return statement has been
executed in the function body. JavaScript functions without
any return statement automatically return null resp.
in GML Nulls.Types.undefined Types.undefined

sys_init_data. A corresponding JavaScript-return
statement, e.g., return 42;, is translated to

42.0 Types.number sys_init_data end throw

In this example, the number 42.0 is put onto the stack. The
actual function body’s scope is closed end, and the throw

operator is applied. The distinction of whether the end of
the function body was reached by normal program flow or
via a return statement determines, if a return value needs to
be constructed (null) and put onto the stack.

Parameters to functions are simply put on the stack. The
function body retrieves the expected number of parameters
and assigns them to dictionary entries of the outer scope
defined in the function translation. A complete example of
a translated JavaScript-function shows the interplay of all
mechanisms. The simple JavaScript-function

function foo(n) { return n; }

is translated to

/usr_foo {
dict begin
/usr_n edef
/return_issued 0 def
{ dict begin
usr_n
end
throw
end }

{ /return_issued 1 def }
catch

return_issued not
{ Nulls.Types.undefined
Types.undefined sys_init_data } if

end
sys_exception_return_handler

} def

A function call, for example foo(3), yields the trans-
lation 3.0 Types.number sys_init_data usr_foo. If
we assign the function foo to a variable foo_functor, the
calling convention in GML would change significantly.
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/usr_foo_functor
/usr_foo Types.function sys_init_data def

is called via

[ 3.0 Types.number sys_init_data ]
usr_foo_functor sys_execute_var

and represents the JavaScript call foo_functor(3.0);
Exceptions: The language JavaScript offers support for

throwing exceptions as shown in the following example:

throw "Error: unable to read file.";

Its syntax is similar to a return statement. To implement such
behavior, we also use GML’s exception handling mechanism.
The Euclides translator adds a call to the predefined system
function sys_exception_return_handler at the end of
each translated function (see example above).

Throwing an exception in JavaScript translates into a
global GML variable exception_thrown being set to 1,
closing the current dictionary and calling GML’s throw.
The sys_exception_return_handler will check if an
actual exception is being thrown, and if so, calls throw

again. A catch-block inside a JavaScript program would set
exception_thrown to 0.

Operators: The evaluation of expressions demands
variables to be accessed. While GML provides operators that
operate on their own set of types, they obviously cannot be
used to access the translated/emulated JavaScript-variables.
For this reason, the Euclides translator automatically in-
cludes a set of predefined GML functions that substitute
operators defined in JavaScript.
Value Access: Performing the opposite operation to
sys_init_data, sys_get_value will retrieve the data
saved in a JavaScript-variable resp. its GML-dictionary. For
example, to retrieve v.value the function sys_get_value

is applied to v.

/sys_get_value { begin value end } def

Element Access: The system function sys_get imple-
ments string, array and object access. Applied to a string / an
array Arr and index k, it will return the element Arr[k]. If
its parameters are an object Obj and an attribute name, the
function sys_get executes Obj.name. This may result in a
value, which is put on the stack or in a function, which
is called. Conforming to JavaScript, it returns JavaScript
undefined for any requested elements that do not exist.

/sys_get {
dict begin
/idx exch def /var exch def

var.type Types.string eq {
%% ... handling strings ...

} if

var.type Types.array eq {

%% ... handling arrays ...
} if

var.type Types.object eq {
var sys_get_value idx known 0 eq {

%% return null, if element
%% does not exist
Nulls.Types.undefined
Types.undefined sys_init_data

} if
var sys_get_value idx known 0 ne {

%% access element
var sys_get_value idx get

} if
} if
end

} def

Analogous to sys_get, sys_put inserts data into strings
and arrays, or defines members of objects. If sys_put

encounters an index k that is out of an array’s range, the
array is resized and filled with JavaScript undefineds.
Functors: The already mentioned routine
sys_execute_var inspects a given variable. If it is
a function, it will retrieve the array supplied to hold all
parameters and execute the function. The dynamic binding
of functions to variables requires to consider two situations
at run time: The functor receives the correct amount of
parameters for its function, or the number of parameters
does not correspond to the referenced function. In the
latter case, the function is not called and null is returned
instead.

At compile time, a function is defined to expect a concrete
number of parameters. This information is kept to perform
parameter checks at run time. In this way, the correct number
of parameters for all functors can be determined any time.
JavaScript built-in Operators: To illustrate the translation
of relational, arithmetical or bit-shift operators defined by
JavaScript, we discuss the equal operator ==. It is (like
all such operators) mapped to a corresponding routine
sys_eq. Depending of the operands’ types it delegates the
comparison to subroutines such as bool_eq, string_eq
or array_eq that perform the actual comparison. If the
types and the values do match, sys_eq directly returns the
JavaScript-value true. If types do not match, the variable is
converted to the type of the respective operand, as specified
by JavaScript, and then compared.

Control Flow: The JavaScript if-then-else statement
corresponds one-to-one to the same GML statement. Con-
sequently, the conditional expression is translated straight-
forwardly. Using the expression mapping introduced in
the previous section (e.g. sys_eq implements the equality
operator), the JavaScript statement

if(a == b) { c = a; } else { c = b; }

is translated into:
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%% if (a==b)
usr_a usr_b sys_eq sys_get_value
{ %% then:

dict begin {
dict begin

/usr_c usr_a sys_def
end

} exec end
}
{ %% else:

dict begin {
dict begin

/usr_c usr_b sys_def
end

} exec end
} ifelse

The exec-statements (and their closures) stem from the fact
that both sub-statements, the then-part and the else-part, are
statement blocks { ... }. These blocks are executed within
their own, new scopes.

Loops: GML supports different types of looping control
structures, which have similar names to JavaScript-loops
(e.g., both languages have a for-loop). However, the GML
counterparts have different semantics (e.g., GML’s for-loop
has a fixed, finite number of iterations, which is known
before execution of the loop body, whereas JavaScript-loops
evaluate the stop condition during execution, which may
result in endless loops). The Euclides translator uses the
GML loop mechanism, which is an infinite loop that can
be quit using the exit operator.

An important problem is that control structures such as
for, while and do-while are not only controlled by the
loop’s stop condition, but also by JavaScript statements such
as continue and break within the loop body (besides
return and throw as mentioned before). The statement
break immediately stops execution of the loop and leaves
it, whereas continue terminates the execution of the cur-
rent loop iteration and continues with the next iteration
of the loop. Therefore, we translate an empty while loop
while(false) { ... } to

{ /continue_called 0 def
{ 0 Types.bool sys_init_data
sys_get_value not { exit } if
{ dict begin

%% ... loop body omitted ...
end

} exec
} loop
continue_called not { exit } if

} loop

GML’s exit keyword terminates the current loop. This
behavior is leveraged by the Euclides translator to implement
break and continue. The translation uses two nested loops
that will run infinitely.

Prior to the begin of the inner loop /continue_called

is set to 0. At the top of the inner loop, the loop condition is

tested. If the condition evaluates to false, the inner loop is
exited using GML’s exit. Otherwise a new scope is created
and the loop-statement executed within that scope.

During loop iterations, there are three scenarios under
which a loop can terminate:

1) If the loop condition is met: When the condition
evaluates to false, the inner loop is exited. Since
continue_called is not set to true, the outer loop
will terminate as well.

2) If the loop body encounters JavaScript break

(resp. GML exit): Again, the inner loop is left.
continue_called will not be set to true, hence
the outer loop will also terminate.

3) If the function returns: GML’s exception throwing
mechanism will unwind the stack until the catch-
handler at the end of the function is encountered.

If the loop body encounters a JavaScript-continue state-
ment, continue_called will be set to true and the GML
exit command will immediately stop the inner loop. Since
continue_called is set, execution does not leave the
outer loop, however. As a consequence, continue_called
becomes 0 again, and execution re-enters the inner infinite
loop.

The do-while-statement is translated very similar to the
while-statement. The only semantic differences in JavaScript
are that execution will enter the loop regardless of the
loop-condition and that the loop-condition is tested after
loop body execution. Euclides translates an empty do-while-
statement do { ... } while(false) as follows:

{ /continue_called 0 def
{ { dict begin

%% ... loop body omitted ...
end

} exec
0 Types.bool sys_init_data

sys_get_value not { exit } if
} loop
continue_called not { exit } if
0 Types.bool sys_init_data
pop

} loop

Due to a semantic difference of JavaScript continue in
do-while-loops, this statement needs to be handled differ-
ently. If continue is encountered, the loop condition must
still execute before the loop body is re-entered, because
side effects inside the loop condition may occur (such as
incrementing a counter). Euclides handles this problem by
executing the condition expression a second time in the
outer loop. Since expressions always return values, any value
resulting from the loop-expression has to be popped off the
stack.

Although GML has a for operator, it is semantically
incompatible with JavaScript’s one. Its increment is a con-
stant number, and so is the limit. In JavaScript, both in-
crement and limit must be evaluated at each loop body
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execution. Therefore, we translate for just like the pre-
vious constructs by two nested loops with the increment
condition repeated in outer loop (due to continue seman-
tics). Finally, Euclides translates the JavaScript statement
for (var i=0; i<1; i++) { } to GML via

dict begin
%% initialization (i=0)
/usr_i 0.0 Types.number sys_init_data def
{ /continue_called 0 def

{ %% condition (i<1)
usr_i 1.0 Types.number
sys_init_data sys_lt
sys_get_value not { exit } if
{ dict begin

%% ... loop body ...
end

} exec
%% increment (i++)
usr_i

usr_i 1 Types.number
sys_init_data sys_add

/usr_i sys_edef
pop

} loop
continue_called not { exit } if
%% increment again (i++)
usr_i
usr_i 1 Types.number
sys_init_data sys_add

/usr_i sys_edef
pop

} loop
end

In JavaScript, the following for-in statement
for(var x in array) statement; is semantically
equivalent to:

for(var i = 0; i < array.length; i++) {
var x=array[i]; statement;

}

This construction loops over the elements of an array
provides the loop body with a variable holding the current
element.
Selection Control Statement: The translation of the
JavaScript switch statement poses several difficulties:
• If a case condition is met, execution can “fall through”

till the next break is encountered.
• If a break is encountered, the currently executed
switch statement must be terminated.

• Of course, switch statements may be nested.
To develop a semantically consistent solution, we did

not want to alter the translation of JavaScript-break inside
switch statements (compared to loops). We solve the prob-
lem of breaking outside the switch statement by imple-
menting it as a loop that is run exactly once. In GML it reads
like 1 { loop_instructions } repeat. This way our
translation of break shows semantically correct behavior,

it terminates the loop. Consider the following JavaScript-
program:

var x = 0, y = 0;

function bar() { return 3; }

function foo(i) {
switch(i) {
case 0:

case 1:

case 2: x = 1;

case 4: x = 3;

case bar(): x = 2; break;

default: y = 5;

}
}

The function foo will be translated to:

/usr_foo
{ dict begin

/usr_i edef
/return_issued 0 def
{ dict begin
/switch_cnd_met1 0 def
1 { usr_i 0.0

Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
} if

usr_i
1.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
} if

usr_i
2.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 1;
/usr_x 1.0 Types.number
sys_init_data sys_def

} if

usr_i
4.0 Types.number sys_init_data
sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 3;
/usr_x 3.0 Types.number
sys_init_data sys_def

} if

usr_i usr_bar
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sys_eq sys_getvalue
switch_cnd_met1 1 eq or {

/switch_cnd_met1 1 def
%% x = 2;
/usr_x 2.0 Types.number
sys_init_data sys_def
exit

} if
%% y = 5;
/usr_y 5.0 Types.number
sys_init_data sys_def

} repeat
currentdict /switch_cnd_met1 undef end

}
{ /return_issued 1 def } catch

return_issued not {
Nulls.Types.undefined
Types.undefined sys_init_data

} if
end
sys_exception_return_handler

} def

This example shows that we introduce an internal vari-
able /switch_cnd_metX for traversing the case state-
ments. As soon as a case statement condition is met,
/switch_cnd_metX is set to true, leading execution into
every encountered case statement.

The Euclides translator takes into account that switch
statements may be nested. As it traverses the AST,
it keeps book of all internal variable to ensure a
unique name (switch_cnd_met1, switch_cnd_met2, . . . ,
switch_cnd_metN).

The example translation shows that for foo(3) the cases
0, 1, 2, 4 and 3 (= bar()) will only execute case 3, where
the 1 { } repeat statement will be broken out of with the
GML exit operator. The default block will be executed in
any case if execution is still inside the repeat statement,
no further state is checked for default.

The JavaScript to PostScript translation target reduces
the inhibition threshold of the GML significantly. Even
advanced GML users, who already know how to program
in PostScript style, can use Euclides to translate algo-
rithms, which are often presented in a imperative, procedural
(pseudo-code) style [38].

V. CONCLUSION AND FUTURE WORK

The correct translation of control flow structures to vari-
ous target platforms is a non-trivial task. For example, due
to the fact that there is no concept of goto in the PostScript
language and its dialects, the main challenge is the complete
translation of JavaScript into a PostScript dialect including
all control flow statements. To the best of our knowledge,
this is the first complete translator. Other projects (PdB
by Arthur van Hoff, pas2ps by Dulith Herath and Dirk
Jagdmann) do not support e.g., return statements.

The main contribution is the meta-modeler concept, which
allows a user to export generative models to other platforms
without losing its main feature the procedural paradigm. It is
well suited for procedural modeling, has a beginnerfriendly
syntax and is able to generate and export procedural code for
various, different generative modeling or rendering engines.
The source code does not need to be interpreted or unfolded,
it is translated. Therefore, it can still be a very compact
representation of a complex model.

The target audience of this approach consists of beginners
and intermediate learners of procedural modeling techniques
and addresses application domain experts (e.g., archaeolo-
gists in a cultural heritage project) who are seldom computer
scientists. These experts are needed to tap the full potential
of generative techniques.

The current IDE only offers basic functionality and some
convenience when creating, editing or translating source
code. For further improvements, we envisage using a Swing-
based IDE framework like the NetBeans Platform, which of-
fers a modular approach for creating rich applications. In the
backend, further optimizations concerning the performance
of the generated code are planned - e.g., more direct mapping
onto native data types. Additional target languages would
extend the application field of the framework.

The Euclides modeler is available in version 2.0 and can
be downloaded at: http://www.cgv.tugraz.at/euclides.
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