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Abstract—This paper extends recent work studying the de-
velopment of human expertise in the game of Go. Although it
appears like a simple game on the surface, Go is actually the
most difficult of all established games for artificial intelligence,
with no computer program yet reaching the top international
level on a full 19×19 board. On smaller boards with sizes like
9×9, computers are competitive, implying that the understanding
of complex global interactions is the key to human superiority.
The temporal analysis of game positions yields some interesting
insights in into local/global analysis. By mining thousands of
positions from online games, we show that at some player levels,
the sequence of plays leading up to a local position is a stronger
determinant of the next move than the position alone. This
suggests that the sequence of plays is an indicator of global
strategic factors and thus provides a context for the next move
in addition to the local position. Using perceptual templates
introduced in other work, we demonstrate that this global context
appears at the very earliest stages of cognition.

Keywords—game of go; decision making; entropy; online data
mining

I. INTRODUCTION

The big picture often influences or overrides local factors

in many areas of human expertise, from board games to

politics. Challenging games, such as Chess and Go, provide an

excellent framework for studying expertise [1][2][3][4], since

they are both strategically deep but tightly constrained. This

paper presents a striking demonstration of this, using data

mined from thousands of decisions in online games. In recent

work, we have demonstrated transitions in the acquisition of

expertise in the game of Go [5]. This game is interesting

because it is currently the most difficult of all established

games for computational intelligence. This contrasts with

Chess, where the IBM computer Deep blue [6][7] was able

to defeat world champion Garry Kasparov.

We also demonstrated therein, from calculation of mutual

information (eqn. 5) between moves, that one of these has

the character of a phase transition [8]. The idea of a phase

transition comes originally from physics, from the study of

phenomena like the melting of ice to give water. When

such a physical phase transition occurs, there is a dramatic

reorganisation of the system. In this case, water molecules

which were fixed rigidly in place in ice become free to move

around, and perhaps travel long distances. During a phase

transition, systems exhibit long-range order, where there are

correlations in activity or structure over large distances and

system parameters often exhibit power-law behaviour, or fat-

tailed distributions. Another example of a phase transition is

in adding edges to random graphs. At a certain point each

graph shows a transition: the average path length (the number

of steps from one node to another) rises to a peak, and then

drops back down again.

A dynamical system example is the Vicsek model developed

for studying magnetic transitions in solid-state physics [9]. In

this model particles travel around a two dimensional grid, and

when they come within some specified distance of each other,

their directions of movement partially align. Phase transitions

occur in this system as particles flow around in groups, like

flocks of birds, but dynamically—continually forming and

dissolving.

Mutual information is a precisely defined quantity, origi-

nating from Shannon’s mathematical theory of communica-

tion [10]. It is a system property which measures the extent

to which the structure or behaviour of one part of a system

predicts the behaviour of another. In the Vicsek model above,

the direction and velocity of one particle provides some

information about the direction of all the other particles. The

mutual information peaks during the phase transition [9][11]

and, along with other characteristics like long-range order and

power-law behaviour, is thought to be a general property of

phase transitions.

Previous work [8] has already demonstrated phase transi-

tions in collective human decisions in Go. In this paper, we

found a peak in mutual information as a function of rank

amongst Go players, from 1 Dan Amateur through to the very

top players, 9 Dan Professionals [8]. We also present evidence

that there is global influence on local decisions, and that the

influence is greatest during the phase transition. The evidence
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for the global factors arises from temporal analysis: the next

move is more predictable given the sequence which led up to

it, compared with just using the position at which it is made.

We argue below that this arises from the global information

inferred from the sequence.

Section II describes the conceptual background or expertise

(sections II-B and III-B discuss perceptual templates, which

form one of the earliest stages of processing of a Go board.

It turns out that for professional players, these templates

have a strong non-local character, supporting the findings

from mutual information.) Sections III and IV describe the

methods and results respectively. The discussion (section V)

and conclusions (section VI) round off the paper.

II. EXPERTISE AND PERCEPTION

The study of expertise in games owes much to Fernand

Gobet and his colleagues, summarised in his book Moves in

Mind [1]. However, the methods used in Go in this paper

rely on a new methodology introduced in [12]. The next two

sections discuss these in turn.

A. State of the Art in Game Expertise

Much of the work on human expertise has been based on

games, especially Chess, as in Gobet’s extensive work [1][13].

One of the key ideas, essentially from Nobel Laureate Herbert

Simon, is that human expertise involves building a huge library

of patterns [14][15]. The application of these ideas in artificial

intelligence for games is relatively new however [16].

These patterns build up through the formation of chunks,

psychological observables like the memory of Chess positions,

well predicted by models like CHREST [3]. The way the

cognitive structures in the brain might change as expertise

develops, and in particular the appearance of phase transitions,

is a relatively new idea introduced by Harré and Bosso-

maier [8][5].

Further recent advances have been limited, particularly in

Go, where a combination of the gamespace complexity [17]

and a lack of genuinely human-like heuristics like an evalua-

tion function make progress difficult. However with the devel-

opment of ever more effective random sampling techniques,

such as the UCT-Monte Carlo approach currently favoured

by AI system developers [18], some progress has been made

in achieving strong amateur play. However, these techniques

do not address the inherent complexity of the game nor the

techniques that humans have developed in order to address

this, almost completely because it is difficult to investigate.

Of relevance to game players is the current state of the

game, the likely future states of the game and in what order

those future moves will be played. The current state of the

game is very well approximated by the pieces currently on

the board (this excludes some technical rules about repeated

positions that are only rarely relevant), and these can be

divided up loosely into tactical, strategic and distracting pieces.

Tactical pieces are involved in local battles for territory, while

strategic pieces play a role in long-term plans spanning the

entire board. Distractors play only weak roles in either of the

preceding plan types. Of course, a single stone can participate

in both local and global strategies. In terms of future states

of the game, we considered only local patterns and what was

played in the local area – a purely tactical aspect of the game.

This leaves only the strategic relationships as a source of

information that might perturb the actual moves made. It is

this external influence on tactical plays that is implicit in the

global contextual analysis of this paper.

We argue that the sources of information players use in

order to make good decisions are of two types: local and

global. Every level of player in our study has learned a great

deal about the game of Go over the course of their lives; we

now want to make explicit and quantify this information. We

do this by looking at the probability distributions of moves

made in a variety of different positions. The relevance of the

division of the problem space into these two parts can be seen

in the work of Stern et al. [19]. They were able to produce

‘best-in-class’ move prediction for professional players in Go,

achieving a 34% success rate. This was achieved by training

their system on 181,000 expert game records and using a

Bayesian framework for matching moves to positions.

The level of success achieved in this work highlights one

of the principal difficulties of good performance in complex

tasks: exact pattern matching is not enough. AI systems need to

be able to model how non-local aspects – i.e., information that

cannot be derived by exactly matching board configurations –

influence decisions. Loosely interpreted, this is what is called

influence in Go and had not been reported in the research

literature before our recent work.

B. Kohonen Maps & Perceptual Templates

If local decisions involve global factors, the question arises

as to where in the cognitive hierarchy global information

appears. We use the recent work on perceptual templates

to show that it starts at the very lowest levels. Perceptual

templates are the building blocks of perception, experienced

preattentively and fundamental to rapid decision making – the

instant appraisal of situations by experts, the guiding of eye

movements and expert memory for real-world positions.

A novel way to determine such perceptual templates in-

volves the use of Kohonen maps trained on game data [12].

The templates so found can then be analysed for global prop-

erties. Teuvo Kohonen [20] introduced self-organising maps

(SOMs) as a model of human visual information processing.

Although they help explain some structural characteristics of

the visual cortex, they have found considerable practical use

in the signal-processing domain, especially image processing.

A SOM is a competitive learning process, comprising of

a selectable number of neurons. Each neuron has a random

weight vector, and a set of inputs of the same dimension. In the

case of an image, the inputs would be the colour components

of each pixel.

Training proceeds as follows. A pattern from the training

set is presented to each neuron in the map. There will be one

neuron which is closer (different metrics of proximity may

be used) to the pattern than any of the others. The weights of
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the position in which the move was made. If we now average

over all positions, we get the entropy of moves given positions.

This is the conditional entropy, defined in eqn. 4.

For each possible move on the Go board mi, three proba-

bility distributions were computed:

1) the probability of the move occurring, P (mi)
2) the conditional probability, P (mi|qi), of the move, mi

occurring from a given position, qi
3) the conditional probability, P (mi|si) of the move oc-

curring from a given position, reached by a particular

order of moves, si.

From these results, the entropy and mutual information

(eqn. 5) were calculated, but this paper addresses findings from

the entropies alone. A discussion of the primary results from

mutual information is given in [8].

The move entropy, H(M), is taken over all moves which

can arise at each level in the game tree (i.e., for the six moves

in the sequence):

H(M) = −
∑

i

P (mi) log2[P (mi)] (3)

For the first move in the region there are 49 possible

positions, decreasing to 44 after five moves, giving a maximal

entropy of log
2
44 = 5.5 bits, which would occur if all

moves were equally likely. But since the moves are chosen

strategically, they are far from random, so the measured

entropies are much lower than this.

The conditional entropy, C(M |Q), is the move entropy

calculated from the moves which can arise in a given context,

such as position qj , or sequence of moves sj leading to a

position:

C(M |Q) = −
∑

i

∑

j

P (mi|qj) log2[P (mi|qj)] (4)

From the conditional entropies, we can calculate the mutual

information, I(Q,M) using Shannon’s formula [10], eqn. 5:

I(Q,M) = H(M)− C(M |Q) (5)

The same expressions are used for an ordered sequence of

moves, replacing qj with sj . These entropic quantities are now

calculated across all ranks, from 2 Kyu Amateur (am2kyu),

through the amateur ranks to am6d, onto the highest rank of 9

Dan Professional (pr9d). The results are shown in Figs. 1–3.

B. Perceptual Templates

For our work, we use a separate 50x50 SOM (2500 neurons)

for each of the 361 intersections of the Go board. Each SOM

is trained on board states directly preceding a move at that

point, mined from the online gameplay database. Board states

are represented as linearized length-361 vectors with values

equal to −1, 0 or 1, representing black stone, empty or white

stone respectively. Games were normalized to always start with

a white stone, and no deduplication along axes of symmetry

Threshold # Templates Average Size

0.9 10,929 11.1

0.8 26,318 13.8

0.7 55,553 15.2

0.6 145,534 16.5

0.5 364,557 18.3

TABLE I. Number of perceptual templates and their average sizes
(maximum Euclidean distances) per threshold.

was carried out. The weight vectors of the neurons was also

constrained to this range, facilitating easy template extraction.

Further details may be found in [12], from which trained

SOMs were reused. The ones used for this paper are taken

from games 5 Dan Professional and above. 18,000 games were

used in training each map.

The spatial topology of a trained SOM is usually of signifi-

cance in typical uses, however we discard this information. We

consider the weight vectors of each neuron at every point as

potential perceptual templates. Neurons which have strongly

learned patterns of stones across the board will then be

extracted as templates. Thus the number of potential templates

equals the total number of neurons, 361× 2500 = 902, 500.

However, since there are on average only about 7 training

games per neuron, the learned weights are still quite noisy.

Therefore, actual templates are extracted from the weight

vectors by thresholding the weights to 1, 0, or −1 using

thresholds of k and −k, for values of k of 0.5, 0.6, 0.7, 0.8

and 0.9. After thresholding, empty and duplicate templates

are removed, leaving useful templates. Table I records the

resulting number of templates at each threshold. Examples of

these templates are shown in Fig. 2, which may be locally

clustered as in subfigures a. and b., but are often non-local as

in c. and d. Further procedural details can be found in [12].

IV. RESULTS

Fig. 3 summarises the key findings of the paper. It shows the

conditional entropy as a function of move in the sequence of

six, averaged across all ranks, both amateur and professional.

Note that the moves are logged as they occur in the game.

They are not necessarily in sequence. In other words, this is

not a game on a small board region but a window on a full

19×19 game. Since the standard of play is professional for

this analysis, extremely weak moves are unlikely to occur and

will not appear in the game records. Error bars are calculated

as in Harré et al. [5]. Up to move three, the entropy for both

the ordered and unordered cases are the same. At move three,

they fall dramatically, but the ordered average falls about a

third more.

Fig. 4 shows the entropy at each move from a given position.

For purely random moves, the entropy at each move in the

sequence would be between 5 and 6 bits (Section III). The

entropies observed are of course much lower – usually less

than 2 bits – reflecting the structure inherent in the game.
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Figure 6. Number of templates containing a given number of stones,
threshold = 0.9.
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Figure 7. Number of templates containing a given number of stones,
threshold = 0.8.

the templates have a distance of 12 or greater, implying that

they include stones in different corners of the board. There

could be a small number of templates occupying one corner

and the centre, but these would need to have distances around

12, where we find a minima instead.

Also salient are the twin peaks around 3 and 18, possibly

representing corner clusters and cross-board patterns respec-

tively. As we lower the threshold, the proportion of templates

spanning the board increases until it dominates at 0.5, while

the peak at 3 stones vanishes.

V. DISCUSSION

There are three very interesting features of these results,

which we consider in turn: a) the difference between ordered

and unordered play, b) the way the conditional entropy varies

with rank, and c) how perceptual templates span the entire
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Figure 8. Number of templates containing a given number of stones,
threshold = 0.7.
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Figure 9. Number of templates containing a given number of stones,
threshold = 0.6.

board.

That the ordered and unordered play differ, implies that

the position at each move is not the sole determinant of the

opponent response. The much lower conditional entropy after

the first three moves for the ordered case strongly suggests that

the sequence of moves has revealed something of the global

context which has in turn fed back into move selection. To see

this, imagine that black is strong in one area of the board and

white in another. Since relationships between localised groups

of stones are of great strategic importance in Go, the locations

of these areas will strongly influence the order of moves made

in the local area we examine. The first three moves implicitly

contain some of this information, which subsequently reduces

the range of options in the next three moves.

The gradual decline in entropy with rank for amateur and

professional reflects a gradual reduction in the space or range
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Figure 10. Number of templates containing a given number of stones,
threshold = 0.5.
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Figure 11. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.9.

of options, which we could conceive of as the elimination of

poor moves in established situations, similar to mastering the

openings in Chess.

Our data and results are explicitly based on an analysis of

the local information, but by implication they also say a great

deal about the global context that influences these localised

decisions. The first three moves in our study have a reason-

ably similar conditional entropy of about 1.4 – 1.6 bits of

information. This is the amount of information that is common

between each successive move within the local region. Such

measures of information are the best estimate of how much

one stochastic variable can tell us about another [10].

The only other source of information available to the players

are the pieces on the board that were not included within

our local region. We exclude the possibility of being able
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Figure 12. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.8.
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Figure 13. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.7.

to read the other opponent. While it is a debated issue as

to the importance of opponent-reading skills in a complete

information game such as Go, we believe that it is relatively

insignificant. The strategical influence of the other stones on

the board that were not within the local area of study, is a

much more significant factor. The changing influence that non-

local information has on decisions during a game, is evident in

the significant drop-off in the conditional entropy after move

three in Fig. 3, a drop in shared information of nearly an

order of magnitude for the ordered play and about half that

for unordered play. This is consistent with the observation

that, at the time of writing, the best computer Go programs

are close to professional-level on small boards like 7×7,

but rapidly deteriorate on larger boards, as global influences

become important.

This change in conditional entropy in the corner regions of
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Figure 14. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.6.
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Figure 15. Maximum Euclidean distance between stones in a tem-
plate, threshold = 0.5.

the board as the game progresses might be due to the shrinking

size of the move space as the board fills up. While this might

have some minor influence on our results, we should also

expect such changes to be almost linear as the number of

available positions only drops by a total of 1/43 per move. It

is also possible, but exceptionally unlikely, that after the third

move, players choose much more randomly – i.e., without

concern for pieces on the board, local or not – than they

did for the first three moves. Considering the vast training

literature available to players that readily teaches them the

many different variations of the first six moves within a corner,

and how to contextualise these decisions by considering what

stones occupy nearby areas, we consider this to be an unlikely

proposition.

Instead we argue that it is just this external influence, the

influence of the stones arrayed on the rest of the board that is

having such a striking influence on the conditional entropy.

This is perhaps not so surprising when considered in the

light of the state of the game itself, after three moves have

been played in the corner. These first moves can be thought

of as establishing the board layout in terms of an ‘opening

book’; highly stylised placement of local stones, where the

local pattern can be thought of as effectively uncoupled from

the rest of the board, or at least equally coupled for these

first moves. This coupling then changes significantly from the

fourth move onwards, where greater consideration needs to

be afforded to the other pieces on the board. This change in

the focus of gameplay significantly reduces the information

coupling between local moves and local stones on the board.

The use of global information is supported by the analysis

of the perceptual templates. A large fraction of templates

cover more than one corner of the board, implying that global

analysis starts at the very earliest perceptual levels. As the

threshold is reduced to 0.5, the number of local templates

actually gets eclipsed by non-local ones. An additional finding

from our results is that the majority of perceptual templates

contain less than ten stones, regardless of noise threshold and

number of templates. Even at the 0.5 threshold, where most

templates are non-local, the average number of stones remains

small. This median figure of around 5 – 7 is on the order of

human working memory capacity and similar to the figures in

Gobet’s CHREST models [1]. This is therefore an important

issue, subject to future research.

The complete disappearance of entropy at the high amateur

ranks is very interesting. It suggests that at this level, play

has become somewhat stereotyped, and a major change in

thinking is needed to advance—which indeed seems to happen

on turning professional. Thus, this loss of entropy is consistent

with the long-range order found in phase transitions by Harré

et al. [8]. They observed a peak in mutual information at the

transition to professional play, indicating some sort of major

cognitive reorganisation.

At present, we do not know how to quantify such a

reorganisation, and this remains an exciting open question.

Ongoing work is attempting to apply the CHREST models to

Go [3], and to determine how the phase transitions might be

predicted.

A. Implications for Computer Go

The objective of this study was to determine some character-

istics of human Go expertise. These may subsequently be fed

into the computer Go domain, but that was not our motivation

here. Our analysis is once-off, so the time-complexity of our

computations is irrelevant. The methods as described in this

paper have never been used before, and no prior work has

attempted to identify the influence of global factors in Go.

VI. CONCLUSIONS

The analysis of large volumes of data has generated pow-

erful new insights into human cognition in the Game of Go,

with potential applicability to other domains. We have shown
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that low-level perceptual templates of professional players are

non-local, i.e., include features from the whole board. The

paper links this to earlier work on mutual information in

local positions, which we infer to be influenced by global

factors. The sequence of moves leading to a position was

shown to provide more information about the next move than

the position alone, which could be accounted for by global

contextual information provided by the former.

The big challenge for future work is to determine if these

properties hold in other domains. Poker is the ideal next game

to study: it is the second most difficult established game

for computers to play well, and has the additional features

of incomplete information, stochastic elements and theory of

mind.

In 2012, Zen, one of the top computer Go programs, won

games against 6 Dan Amateur players, and came much closer

to beating professional-level players than any program has

before. But computer Go relies heavily on Monte Carlo Tree

Search, which is nothing like human tactics or strategy. It

remains desirable to try to understand and mimic the way

humans learn and play. A big open question is whether the

future of game playing software, or software in general, will

adopt these strategies. The human brain trades off search speed

and accuracy for robustness and possibly scalability. Human

decisions may sometimes be inferior, but they rarely exhibit

the catastrophic failures resulting from software bugs. The

extent to which the strategies of human expertise and computer

algorithms hybdridise will be one of the really exciting topics

of the next decade.
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