
293

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Quality-Oriented Design of Software Services

in Geographical Information Systems

Michael Gebhart

Gebhart Quality Analysis (QA) 82

Karlsruhe, Germany

michael.gebhart@qa82.de

Suad Sejdovic

Campana & Schott

Stuttgart, Germany

suad.sejdovic@campana-schott.com

Abstract—Distributed information, such as sensor information,

increasingly constitutes the basis for geographical information

systems. For that reason, these systems are designed according

to services-oriented design principles, which means that they

require software services returning necessary information and

provide higher-value ones. These services are expected to

follow quality attributes, such as loose coupling and autonomy,

which have been identified as important in the context of

service-oriented architectures. For measuring these quality

attributes, metrics have been derived that enable

quantifications. They can be directly evaluated on basis of

formalized service designs and indicate the extent of quality

attributes. This article shows the application of these service

design metrics for a quality-oriented design of services in

geographical information systems. The considered system is

part of the Personalized Environmental Service Configuration

and Delivery Orchestration project of the European

Commission.

Keywords-service; design; quality; geographical information

system; case study

I. INTRODUCTION

A geographic information system (GIS) is a computer
system, which is used for capturing, storing, analyzing and
also displaying geospatial data, whereas geospatial data is
data that is describing characteristics of spatial features on
the Earth’s surface which are referenced to by a location [1].

In order to access this data in a standardized manner, it is
provided by means of software services that base on
standardized protocols and interface description languages,
such as Simple Object Access Protocol (SOAP) over
HyperText Transfer Protocol (HTTP) and Web Services
Description Language (WSDL) [2]. Besides the usage of
services, the information systems themselves are often
required to be integrated in a more complex architecture.
This is why the systems are additionally supposed to not
only invoke but also to provide services that enable
accessing higher-value functionality. As result, geographical
information systems apply services as architecture paradigm
and follow service-oriented design principles.

In the context of service-oriented architectures (SOA)
several quality attributes have been identified as important
depending on higher-level quality goals that are associated
with the system. In order to easily switch between several
data sources, for geographical systems a very important

aspect is to build a flexible and maintainable architecture.
These higher-level quality goals can be broken down into
more fine-grained quality attributes, such as loose coupling
and autonomy, affecting the building blocks of the
architecture, in this case the services. Accordingly, the used
services in the context of the geographical information
system have to be designed in a way that these quality
attributes can be fulfilled. The design of services can be
confined to a service interface and a service component.
Whilst the service interface describes the externally visible
access point to the service, the service component focuses on
the internal behavior of the service itself. In order to
formalize the design of a service, the Service oriented
architecture Modeling Language (SoaML) as profile for the
Unified Modeling Language (UML) can be applied [3]. It
represents an emerging standard to describe service designs
in a standardized manner and gains increasing tool support,
which leads to an increasing acceptance in development
processes.

For measuring the quality of software, metrics can be
used as quantified values of quality indicators [4], [5], [6],
[7], [8]. In the context of service-oriented architectures and
in particular for the design of services, Gebhart et al.
identified metrics especially evaluating service designs based
on the Service oriented architecture Modeling Languages
(SoaML) [4]. These ones refer to model elements available
within this Unified Modeling Language (UML) profile,
which simplifies the evaluation of formalized service
designs. Compared to other non-formalized quality
indicators, such as textual descriptions, or metrics not
designed for SoaML, the usage of these SoaML-oriented
metrics avoids interpretation effort with possibly faulty
interpretation and accordingly faulty measurement. Finally,
the metrics can be automatically calculated as implemented
by the QA82 Architecture Analyzer [9].

In order to demonstrate the quality-oriented design of
services based on these metrics, this article considers the
design of a geographical information system in a service-
oriented manner [1]. This means that metrics especially
designed for service designs based on SoaML are applied for
designing services of a geographical information system with
certain quality attributes fulfilled. In this article, the project
Personalized Environmental Service Configuration and
Delivery Orchestration (PESCaDO) is considered [10].

294

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The article is organized as follows: Section II introduces
the service design process, the formalization of service
designs using SoaML, and wide-spread quality attributes.
The scenario is introduced in Section III and in Section IV
the services are designed. Section V concludes this article
and introduces future research work.

II. BACKGROUND

This section describes fundamentals for the article. This
includes especially the understanding of service designs in
the context of software service engineering and its
formalization using SoaML.

A. Service Design Process

The service design phase is a primary ingredient of the
software service engineering that can be understood as the
“discipline for development and maintenance of SOA-
enabled applications” [11]. The central purpose of the
service design phase is to create a formalized draft of
services, so-called service designs, before implementing
them. This enables the adaptation and optimization of the
entire services architecture without cost-intensive source
code changes. That is why analyses of the designs regarding
quality attributes, such as loose coupling, are required to be
performed within the service design phase. In [12], Gebhart
introduces a service design process reusing existing work of
Erl, IBM et al. [13], [14], [15], [16], [17], [18] and describes
necessary steps within the service design phase for fulfilling
this requirement. Figure 1 illustrates this process.

Figure 1. Quality-oriented service design process.

The service design process is a combination of
systematic derivations and subsequent analyses and
revisions. The systematic derivation especially considers the
fulfillment of functional requirements that have been
identified within the requirements analysis phase: In a first
step, the functional requirements are transferred into so-
called service candidates. These represent preliminary
services that are not fully specified yet [13]. Especially,
when existing services have to be taken into account, there is
no necessity to specify new service designs. Instead, the
existing specifications can be reused. Otherwise, the service
candidates are transferred into elements of service designs.
For example, for each service candidate a service interface
and implementing service component is created.

The iterative analysis and revision focuses on the
fulfillment of non-functional requirements, such as quality
attributes. Within each iteration first the current state is
analyzed regarding non-functional requirements. For
example, the quality attributes are determined using
appropriate metrics as demonstrated by Gebhart et al. in [19].
Afterwards, the artifacts are revised for improving the
quality attributes or other non-functional requirements. As a
result, service designs are created that both fulfill functional
requirements that have been determined within the
requirements analysis phase and non-functional ones, such as
loose coupling, that support higher-level quality goals.

The created service designs can be used to derive web
service implementation artifacts in a model-driven way as
introduced by Hoyer et al. in [20] and Gebhart et al. in [21].

B. Service Design Formalization

For formalizing a service design, in this article SoaML is
applied [3]. In comparison to other proprietary languages,
such as the UML Profile for Software Services developed by
IBM [22], SoaML is a profile for UML [23] and a
metamodel standardized by the Object Management Group
(OMG). It provides elements necessary to describe service-
oriented architectures and its building blocks, the services. In
the meanwhile, SoaML is an emergent standard adopted by
several tool vendors. Even IBM has replaced its proprietary
UML profile with SoaML [24]. In this article SoaML is
applied as UML profile.

In order to model service designs with SoaML, necessary
elements of the profile have to be identified. This article uses
the elements as introduced by Gebhart et al. in [25]. The
service design formalization consists of both the
formalization of service candidates and service designs.
Thus, for both sub-phases of the service design phase the
adequate formalization has to be determined.

According to Erl [26], a service candidate represents a
preliminary service on a high level of abstraction. During
this phase, only possible operations, called operation
candidates, service candidates as grouping of these
capabilities, and dependencies between service candidates
are determined. In SoaML the Capability element exists,
which corresponds to this understanding. The following table
shows the mapping of service candidate elements on a
conceptual level onto elements within SoaML.

Requirements Analysis

Domain

Model

Quality

Attributes

Legacy

Systems
…

Business Processes
Business Use

Cases

Functional Requirements

Non-Functional Requirements

S
e

rv
ic

e
 I
d

e
n

ti
fi

c
a

ti
o

n

S
e

rv
ic

e
 S

p
e

c
if

ic
a

ti
o

n

Analysis and

Revision

Service

Candidate

Service

Candidate

Service

Candidate

Service

Candidate
Existing Service

Service Designs

Analysis and

Revision

Service

Component

P
ro

v
id

e
d

S
e

rv
ic

e

In
te

rf
a

c
e

s

R
e
q
u

ir
e

d
 S

e
rv

ic
e

In
te

rf
a

c
e

s

Composition

Logic

295

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. MAPPING BETWEEN SERVICE CANDIDATE ELEMENTS
AND SOAML

Service Candidate Element SoaML Element

Service Candidate
Capability (UML class that is
stereotyped with “Capability”)

Operation Candidate Operation within a Capability element

Dependency
Usage Dependency between Capability

elements

This table demonstrates that there is a one-to-one
mapping between service candidate elements and elements
within SoaML possible. Figure 2 illustrates the modeling of
service candidates in SoaML.

Figure 2. Service candidates in SoaML.

The example includes three service candidates with each
of them containing two operation candidates. In this case
ServiceCandidate1 requires operations of ServiceCandidate2
and ServiceCandidate3 for fulfilling its functionality.

TABLE II. MAPPING BETWEEN SERVICE DESIGN ELEMENTS
AND SOAML

Service Design Element SoaML Element

Service Interface
ServiceInterface (UML class that is

stereotyped with “ServiceInterface”)

Provided Operation
Operation within an interface that is
realized by the ServiceInterface

element

Realized Operation
Operation within an interface that is

associated with the ServiceInterface by
using a Usage Dependency in UML

Role

Property within the ServiceInterface
that is typed by the interface that

contains the provided operations or by
the interface that contains the required

operations

Interaction Protocol A behavior, such as an UML Activity

Service Component
Participant (UML component that is
stereotyped with “Participant”)

Provided Service
Service (UML Port that is stereotyped
with “Service”)

Required Service
Request (UML Port that is stereotyped
with “Request”)

Internal Behavior
UML Activity that is added as

OwnedBehavior to the Participant

A service design represents a full specification of a
service [27]. It includes both the service interface as
externally visible access point and the service component as
realization of the business logic. The service interface has to
specify the operations provided by the service and the ones
required in order to receive callbacks. Additionally, the
participating roles and the interaction protocol have to be
determined. Latter describes in which order the operations
have to be called for obtaining a valid result.

The service component consists of the services provided
by the component and the ones required by the component
for fulfilling its functionality. Additionally, the internal
behavior is specified by means of a flow of activities that is
the composition in case of a composed service. In SoaML
there exist elements that directly correspond to the described
understanding.

Table II shows the mapping according to [27]. Whilst the
original work bases on SoaML in version 1.0 Beta 1, the
table was adapted that it corresponds to the standard in the
current version 1.0 final.

To illustrate the modeling of service designs, the
following figures illustrate the modeling of a service
interface and a service component in SoaML. The service
interface in Figure 3 assumes two participants interacting,
the provider and the consumer. The provider offers two
operations the consumer can call. Furthermore, also the
consumer has to provide one operation for receiving
callbacks. The interaction protocol describes the operation
call order for a valid result.

Figure 3. Service interface in SoaML.

«Capability»

ServiceCandidate1

+ OperationCandidate1()

+ OperationCandidate2()

«use»«use»

«Capability»

ServiceCandidate2

+ OperationCandidate3()

+ OperationCandidate4()

«Capability»

ServiceCandidate3

+ OperationCandidate5()

+ OperationCandidate6()

«ServiceInterface»

Service1

«interface»

Service1

+ Operation1(: Operation1Request) : Operation1Response

+ Operation2(: Operation2Request) : Operation2Response

consumer:

«interface» Service1 Requester

provider:

«interface» Service1

+

Interaction Protocol

: provider : consumer

Operation1

«use»

«interface»

Service1 Requester

+ CallbackOperation1(: CallbackOperation1Request) :

CallbackOperation1Response

CallbackOperation1

Operation2

296

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The service component illustrated in Figure 4 provides
one service and requires one service for fulfilling its
functionality. It consists of two internal components, one
realizing the composition logic and one implementing further
internal logic. The internal behavior can be described by
means of an owned behavior in UML. For the sake of
simplicity, the internal behavior is not illustrated.

Figure 4. Service component in SoaML.

C. Quality Attributes and Metrics

With the establishment of service-oriented architectures,
several strategic goals are associated. Examples are the
higher flexibility of the architecture and its easier
maintenance [28]. In order to fulfill these strategic goals,
quality attributes, such as loose coupling and autonomy, for
the building-blocks of the architecture, the services, have
been identified. The fulfillment of these quality attributes
provides the basis for achieving the strategic goals. As these
quality attributes yet are described on an abstract level, they
can be further broken down into measurable quality
indicators that refer to concrete elements of the services [25].
If these elements are described during design time, the
quality indicator can be determined on basis of a service
design model. A metric describes the formula for a certain
quality indicator and enables its concrete quantification.

In [27], Gebhart et al. identified quality attributes for
services that are considered as important in this context.
Quality indicators and metrics that enable their determination
on basis of formalized service designs are derived in [4].
Based on this work, this article uses the following quality
attributes and quality indicators.

1) Unique Categorization: The first quality attribute is
the unique categorization, which is comparable to cohesion.
According to its description, a service should provide
functionality that belongs together. In literature the
categorization is mostly described by means of service
categories, such as entity, task, and utility services [29]. The
quality attribute can be described in detail by means of
quality indicators:

First, technical and business-related functionality should
be separated up into two services. As technical functionality
is used by a different target group than business-related one

this helps to maintain the services. This corresponds to the
distinction between entity / task services and utility services
as introduced by Erl [13], [30].

In order to further increase the maintainability of services
also functionality that can be reused in several contexts, i.e.,
general one or also known as agnostic, should be separated
from specific one [26]. This encourages the reuse of general
functionality and avoids the influence of changes concerning
specific functionality on the general and highly used one.
This results in a distinction between entity services that
provide general and entity-based operations and task services
with mostly specific operations [29]. However, whether
functionality is agnostic or not depends on personal
estimation.

According to the data superiority, when a service
manages a business entity, it should be the only one. This is
important to avoid redundant functionality within various
services. For the categorization this means that there are no
entity services for the same business entity.

Finally, all operations within one service should work on
the same business entities. This means that within all
operations the same business entity is used. As result, this
quality indicator measures whether an entity service is
managing only one business entity as expected for an entity
service.

2) Discoverability: The best service cannot be leveraged
when it cannot be found. That is why discoverability is an
important aspect concerning the reusability of services [30].
The discoverability as quality attribute can be refined by the
following quality indicators:

First, services and operations should have functional
names. Only in this case a service and the contained
operations can be found.

In order to increase this aspect, the naming should follow
known naming conventions. This can be both the language
of the artifacts and the case sensitivity. Also other rules, such
as naming operations by using a verb and a noun, are often
applied [31].

Finally, the more information is provided the faster a
service can be found. This means that especially when
modeling services, as most information as possible should be
given.

3) Loose Coupling: One of the most often referred
quality attribute is loose coupling. It focuses on the
dependencies between services, which influences the
flexibility and maintainability of services. The following
quality indicators that are measurable on service designs can
be identified:

In order to support long-running operations, these
operations should be provided asynchronously. This means
that if an operation provides a long-running functionality an
appropriate callback operation should be provided by the
consumer and invoked when the operation is finished. This
enables the exchange of service provider and consumer
during the operation execution.

The dependency between services is also influenced by
commonly used data types. Especially when services
commonly use complex data types they are dependent as
changing one data type requires changes within all using

«Participant»

Service1

Component

«Service»

service1 :

Service1

«Request»

service2 :

Service2

scc :

«Participant» Service1

Composition

Component

sic :

«Participant» Service1

Internal

Component

297

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

services. The loose coupling can be measured by the degree
to which complex data types are commonly used. Best,
services share only simple types. Of course, services can
work on the same business entity, such as a Person entity,
however the data types should be only copies. A canonical
data schema as part of an enterprise service bus should map
similar or identical data.

To further increase the independence between services
the operations and parameters should be abstract. This means
that no technical background information should be
necessary to use a service [31]. Also parameters should not
include technical data types. This supports the exchange of
services as the implementation details are hidden.

If an operation provides functionality resulting in state
changes there should be always a compensating undo
operation. This again reduces the dependency between
services.

4) Autonomy: Finally, the autonomy is one of the
considered quality attributes. It also considers the
dependency between services but focuses on the ability of a
service to be used without other services.

The first quality indicator considers the direct
dependency between services, i.e., how many other services
are required for fulfilling the own functionality. Basic
services are mostly highly autonomous. Composite services
instead are composing existing functionality and are thus not
autonomously usable.

The second quality indicator focuses on the functional
overlap between services. If the functionality of a service
overlaps with the one of other services, in most cases the
service can also be only used together with the other ones,
because in most scenarios functionality of all these services
is required. Thus, even though there is no direct dependency
between the services, because of the overlapping
functionality the service cannot be used solely.

III. SCENARIO

This section introduces the underlying scenario for the
exemplary quality-oriented design of software services in
this article, the project Personalized Environmental Service
Configuration and Delivery Orchestration (PESCaDO) of the
European Commission (EC) [10], [32]. The overall goal of
the system is to assist human beings in decision-finding
under consideration of the personal profile. For example, a
user with a pollen allergy and heart problems at very high
temperatures wants to know, whether it is advisable for him
to book a bicycle tour within the next few months. As
described in [1], one special requirement is the semantic
support for accessing environmental data. Thus, the system
should be capable to identify any related data sources for a
requested phenomenon like pollen. That is, the system has to
be able to extend a single requested phenomenon by other
more specific related ones, like “Birch Pollen”.

Figure 6. Considered business use case.

Regarding PESCaDO the business use case in Figure 6
can be identified. The business use case describes the
requirement to get an observation, which results in a value
describing some phenomenon. It is modeled using the
adapted notation for use case diagrams by the UML profile
for business modeling as introduces by IBM [33], [34]. It is
very important to achieve a deep understanding about the
business use case, as it is the basic artifact for the
identification of service candidates in the service design

Get

Observation

User

User

O
b

s
e
rv

a
ti
o
n

P
ro

v
id

e
r

Query Inferior

Concept

D
a

ta

P
ro

v
id

e
r

Get

Sensor

Description

Provide

Sensor

Information

Provide

Observation

Data

Get

Observation

Data

Needed area

covered?

no
yes

K
n

o
w

le
d
g

e

P
ro

v
id

e
r

Describe

Sensor
Get Data

Get Observation

Provide

Capability

Information

Get

Capabilities

Determine

Inferior

Capabilities

Get

Capabilities

Query Superior

Concept

Create

Capability

Response

Process

Query
Query

Ontology

Query Inferior

Concept

Figure 5. Considered business process.

298

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

phase. Thus, knowledge about the internal behavior of the
business use case is important within the service design
process. This internal behavior can be modeled using the
Business Process Model and Notation (BPMN) [35],
whereby the modeling concentrates on activities that could
be processed automatically.

Figure 6 shows the business process that covers the data
access under consideration of the semantic information that
is given within the request. The BPMN model consists of
four pools. The first pool, labeled with “User” represents the
user and is collapsed, as the contained activities are not
relevant for automation. The three remaining pools are
expanded, as they contain relevant activities for further steps
in the development process. Interactions between the
different providers are shown by message flows between the
pools, whereas the message flows are representing requests
and the resulting answers. As the business process is a
fundamental artifact, it has to be clear and unambiguous
before entering the service design phase.

The observation provider offers two functionalities to the
user. The first functionality “Get Capabilities” refers to the
capabilities of the observation provider. It represents the self-
description capability of the service. By requesting the
capabilities the user initiates a procedure, which dynamically
generates the information about the capabilities with regard
to the underlying data sources. For this, the capabilities of
the underlying data provider have to be requested. The data
provider also offers the self-describing functionality “Get
Capabilities”, which returns information about its
functionality and the type of data that is available. The
information about the available data is returned as a concept
referring to the content in an ontology [36], [37]. The
returned data can now be used within the observation
provider to generate a semantic hierarchy by gaining details
about the inferior and superior concepts of the retrieved
concept. All the required data is provided by the knowledge
provider, which knows all relevant concepts and
relationships between them. An important functionality to
enable such hierarchies is the functionality “Query
Ontology”. Through this functionality it is possible to query
the ontology and determine the required information. For
instance, a data source may contain information about birch
pollen and refers as a consequence to a concept called
“BirchPollen” within the ontology. The knowledge provider
may now generate a hierarchy, which is presenting the
position of this concept within a hierarchy, if one exists. For
example, the knowledge provider may return a relationship
between the concepts “Pollen” and “BirchPollen”. Thus, a
request for data containing information about the concept
“Pollen” should also take into consideration any data about
the inferior concept “BirchPollen”. This feature supports the
requester to find information for more complex concepts,
which are referring to composite phenomena, such as air
quality.

After retrieving all necessary information, the
observation provider processes all retrieved data and
generates the requested reply. Thus, the user gets a
structured, hierarchical view on the available data. This

dynamic approach ensures that users can always get a current
view on all available information.

The second functionality of the observation provider,
“Get Observation” realizes the data access, whereas the
request is addressed to the knowledge provider to determine
the inferior concepts of the user input. Thus, all relevant data
is found and returned. The next step is to verify that any
relevant data is also available for the given area and/or date
before requesting the quality parameters from the data
provider. The quality parameters give some indication of the
quality and accuracy of the available data. Within the last
step, all available information is retrieved and delivered to
the user.

IV. QUALITY-ORIENTED SERVICE DESIGN

In this section, the services for the described scenario are
designed considering the quality attributes introduced in the
Background section. For this purpose, first service
candidates are systematically derived from the business
requirements. Afterwards, these candidates are analyzed and
revised according the quality attributes. The revised service
candidates are used to derive service designs as full
specifications of the required services. Finally, the service
designs are again analyzed and revised. As result, service
designs are created that fulfill both the functional
requirements and certain quality attributes.

A. Derivation of Service Canditates

In a first step, service candidates have to be derived from
the modeled business requirements. This step can be
performed systematically, as there exist clear descriptions
about which elements are transformed into which ones. For
this step especially the business process has to be considered
as it describes provided functionality and the dependencies
between participating roles. Figure 7 shows the methodology
for service candidate derivation.

Figure 7. Derivation of service candidates.

Each pool is transformed into a service candidate and
each message start event that represents an available
operation is transformed into an operation candidate.

«Capability»

Observation Provider

+ Get Capabilities()

+ Get Observation()

User

O
b

s
e

rv
a

ti
o

n

P
ro

v
id

e
r

Determine

Inferior

Capabilities

Get

Capabilities

Find Superior

Concept

Create

Capability

Document

Find Inferior

Concept

299

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The dependencies between the service candidates are
derived from the operation calls between the pools. As result
three service candidates can be derived as shown in Figure 8.

Figure 8. Derived service candidates.

B. Service Candidate Analysis and Revision

In order to assure a high quality of the services already
during this phase, a quality analysis is performed. For that
purpose, the service candidates are analyzed by measuring
the quality indicators introduced in the Background section.
During this phase not all quality indicators are applicable as
some information might be missing. Based on the available
information, the following quality indicators are determined.
The used metrics are taken from Gebhart et al. [4].

1) Unique Categorization: In order to measure the
separation of technical and business-related functionality,
the following metric is applied.

| () |

| |

TABLE III. VARIABLES AND FUNCTIONS USED FOR DBTF

Element Description

DBTF Division of Business-related and Technical Functionality

sc service candidate: the considered service candidate

s service: the considered service that is provided or

required, represented by an ServicePoint or RequestPoint
in SoaML

BF(oc)

Business-related Functionality: operation candidates
providing business-related functionality out of the set of

operation candidates oc

BF(o) Business-related Functionality: operations providing

business-related functionality out of the set of
operations o

OC(sc) Operation Candidates: operation candidates of the
service candidate sc

SI(s) Service Interface: service interface of the service s. In

SoaML it is the type of the ServicePoint or RequestPoint
s

RI(si) Realized Interfaces: realized interfaces of the service

interface si

O(i) Operations: operations within the interface i

| oc | Number of operation candidates oc

| o | Number of operations o

As all service candidates were derived from the business
process they provide business-related functionality only. The
value of DBTF for all service candidates is 1. The following
table shows the interpretation of this value.

TABLE IV. INTERPRETATION OF VALUES FOR DBTF

Value Interpretation

0 Only technical functionality is provided

Between 0
and 1

Both business-related and technical functionality is
provided

1 Only business-related functionality is provided

This table acknowledges that only business-related
functionality is provided. As 0 and 1 are desired values, all
service candidates fulfill this aspect optimally. The next
quality indicator measures the separation of agnostic and
non-agnostic functionality, i.e., the separation of general and
highly specific operations. The following metric is applied.

| () |

| |

TABLE V. VARIABLES AND FUNCTIONS USED FOR DANF

Element Description

DANF Division of Agnostic and Non-agnostic Functionality

AF(oc)

Agnostic Functionality: operation candidates providing

agnostic functionality out of the set of operation
candidates oc

AF(o) Agnostic Functionality: operations providing agnostic
functionality out of the set of operations o

The determination whether an operation provides

agnostic functionality or not requires personal estimation. As
all operations are generally named and provide functionality
that is not specific to a certain scenario, they are assumed as
agnostic. As result the metric returns 1 for all service
candidates. According to the following table, this represents
the case that only agnostic functionality is provided.

TABLE VI. INTERPRETATION OF VALUES FOR DANF

Value Interpretation

0 Only non-agnostic functionality is provided

Between 0
and 1

Both agnostic and non-agnostic functionality is provided

1 Only agnostic functionality is provided

Also in this case the values 0 and 1 are desired for a
unique categorization. Accordingly, a revision regarding this
quality indicator is not necessary. For measuring the data
superiority the following metric is applied.

| () ()|

| () |

«Capability»

Data Provider

+ Get Capabilities()

+ Describe Sensor()

+ Get Data()

«Capability»

Observation Provider

+ Get Capabilities()

+ Get Observation()

«use»

«Capability»

Knowledge Provider

+ Get Capabilities()

+ Query Ontology()

«use»

300

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE VII. VARIABLES AND FUNCTIONS USED FOR DS

Element Description

DS Data Superiority

M1 \ M2 Elements of set M1 without elements of set M2 or the
element M2

ALLSC All existing service candidates

ALLS All existing services

MBE(oc) Managed Business Entities: business entities that are

managed by operation candidates oc

MBE(o) Managed Business Entities: business entities that are
managed by operations o

In order to determine the results, the service candidates

have to be inspected in detail. All service candidates do not
manage business entities as it is known in a typical business
environment. In this case, a more data-centric view is
required that can be mapped onto the quality indicator.

Figure 9. Accessed data storages.

Figure 9 illustrates the services and their access to data
storages. This shows that the Data Provider accesses
observation data and the Knowledge Provider manages
ontology data. The Observation Provider is not responsible
for any data directly. As result, for each service candidate but
Observation Provider the metric returns 1, which represents
the desired value. For Observation Provider this metric is not
defined. To exemplify the calculation, the following formula
demonstrates it for the Knowledge Provider.

|{ } { }|

|{ }|

TABLE VIII. TEXT INTERPRETATION OF VALUES FOR DS

Value Interpretation

Less than 1 No data superiority regarding the managed business
entities

1 Data superiority regarding the managed business entities

As result, also in this case there is no revision necessary

as all service candidates fulfill the unique categorization
concerning this quality indicator optimally. The usage of
common business entities can be measured using the
following metric.

| ((
 ()

 ()
)) |

 | |

TABLE IX. VARIABLES AND FUNCTIONS USED FOR CBEU

Element Description

CBEU Common Business Entity Usage

CMP(oc, be1,
be2)

Composition: biggest set of business entities
managed by operation candidates oc out of be2 that

depend on business entitites be1

CMP(o, be1,
be2)

Composition: biggest set of business entities
managed by operations o out of be2 that depend on

business entitites be1

UBE(oc) Used Business Entities: business entities that are
used within operation candidates oc as input

UBE(o) Used Business Entities: business entities that are
used within operations o as input

MOUBE(oc) Mostly Often Used Business Entities: business

entities that are mostly often used within one
operation candidate out of operation candidates oc

MOUBE(o) Mostly Often Used Business Entities: business
entities that are mostly often used within one

operation out of operations o

OCUBE(oc, be) Operation Candidates Using Business Entities:

operation candidates out of operation candidates oc
that only use business entities out of be

OUBE(o, be) Operations Using Business Entities: operations out
of operations o that only use business entities out of

be

The calculation of this metric is exemplified for
Observation Provider that does not use business entities in
any of its operation candidates. In order to comprehend the
calculation every function within the formula is calculated
separately.

 { }

 () {}

 {}

 { }

|{ }|

|{ }|

Summarized, every service candidate uses in all of its
operation candidates the same business entity and thus is
only responsible for one certain business entity or parts of it.
Also in this case there is no revision necessary. Thus, the
service candidates fulfill the unique categorization optimally.

Observation

Provider

Data

Provider

Knowledge

Provider

Observation

Data

Ontology

Data

301

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Discoverability: As service candidates describe
services and their dependencies in an abstract manner, the
discoverability is only important for service designs. Thus,
the discoverability will not be measured during this phase
but later during the analysis and revision of service designs.

3) Loose coupling: In order to measure the asynchrony
for long-running operations details of the service designs are
necessary. During the specification of service designs it is
determined whether an operation is provided synchronously
or asynchronously. Similarly, the complexity of common
data types can only be determined when the data types are
specified. Thus, also this aspect cannot be measured on
service candidates but only on service designs. As provided
operations are not final yet and parameters are not defined
also the abstraction cannot be measured.

The only quality indicator measurable on basis of service
candidates is the compensation. For that purpose, the
following metric can be applied.

| ((()))|

| (()) |

TABLE X. VARIABLES AND FUNCTIONS USED FOR CF

Element Description

CF Compensating Functionality

NC(oc)
Non-Compensating: non-compensating operation
candidates out of the set of operation candidates oc

NC(o)
Non-Compensating: non-compensating operations out of
the set of operations o

SC(oc)
State Changing: operation candidates out of the set of

operation candidates oc that provide state-changing
functionality

SC(o)
State Changing: operations out of the set of operations o
that provide a state-changing functionality

CFP(oc)
Compensating Functionality Provided: operation
candidates out of the set of operation candidates oc a

compensating operation candidate exists for

CFP(o)
Compensating Functionality Provided: operations out of
the set of operations o a compensating operation exists

for

TABLE XI. INTERPRETATION OF VALUES FOR CF

Value Interpretation

Less than 0 There exist state-changing operation candidates
respectively operations without compensating operations

candidates respectively operations

1 For all operation candidates respectively operations that

provide state-changing functionality a compensating
operation candidate respectively operation exists

As the Observation Provider only returns information and
does not change the state of any artifact, the metric is not
defined and there is no revision necessary. Otherwise, the
table above lists the values and their interpretation.

4) Autonomy: The dependencies between services can
be measured on basis of service candidates using the
following metric.

 | |

TABLE XII. VARIABLES AND FUNCTIONS USED FOR SD

Element Description

SD Service Dependency

RS(sc) Required Services: service candidates the service
candidate sc depends on

SCT(s) Service Component: service component of the service s

RS(sct) Required Services: services the service component sct
depends on

For the Observation Provider the metric returns the value

2 as the candidate depends on two other services.

TABLE XIII. INTERPRETATION OF VALUES FOR SD

Value Interpretation

0 the service candidate or the functionality fulfilling

service component depends on no other service candidate
respectively service

n (n > 0) the service candidate or service component requires n
other services to fulfill its functionality

Although the value is not optimal, there is no revision

possible. The quality indicator shows that there are
dependencies, however as the Observation Provider
represents a composed service, there is no possibility to
improve the quality indicator. Additionally, solving these
dependencies would impact other quality indicators, such as
those determining the unique categorization.

The functional overlap can be measured using the
following metric.

| () |

| |

TABLE XIV. VARIABLES AND FUNCTIONS USED FOR FO

Element Description

FO Functionality Overlap

OF(oc1,
oc2)

Overlapping Functionality: operation candidates out of
the set of operation candidates oc1 with overlapping

functionality to the operation candidates oc2

OF(o1, o2) Overlapping Functionality: operations out of the set of

operations o1 with overlapping functionality to the
operations o2

As in case of the Observation Provider there is no

functional overlap, the metric returns 0.
As 0 represents the desired value, there is no revision

required. Summarized, the service candidates fulfill nearly
all quality indicators optimally. Only the autonomy is not
optimal, however this quality indicator cannot be improved

302

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

without worsen other quality indicators. Additionally, the
composition including the dependencies is intended.
Nevertheless, the quality indicators points to the fact that we
have dependencies that influence the maintainability and
flexibility of the architecture. This has to be kept in mind.

TABLE XV. INTERPRETATION OF VALUES FOR FO

Value Interpretation

0 The operation candidates respectively operations of the
considered service candidate or service do not provide

functionality that overlaps with functionality of other

service candidates or services

Between 0
and 1

The operation candidates respectively operations of the
considered service candidate or service provide

functionality that overlaps with functionality of other

service candidates or services

1 The operation candidates respectively operations of the
considered service candidate or service provide only

functionality that overlaps with functionality of other

service candidates or services

C. Derivation of Service Designs

Subsequent to the service identification, the service
specification can be performed.

Figure 10. Derivation of service interfaces.

Also in this case, first the service candidates are
systematically transformed into service designs. Afterwards,
the service designs are iteratively analyzed and revised.

As described in the Background section, a service design
consists of a service interface and a service component.
Figure 10 illustrates the derivation of a service interface from
a service candidate. The service component can be similarly
derived as shown in Figure 11.

Figure 11. Derivation of service components.

The initial service interfaces and service components are
derived from the corresponding capability elements. To
create a reference between the service design and the
business, the related capability element is attached to the
service interface by means of an «Expose» association. The
dependencies of the capability elements are reflected with
«use» relationships. This relationship information provides
the input for the derivation of the ports of the service
component. Further details about the systematic derivation
are described by Gebhart et al. in [27].

D. Service Design Analysis and Revision

Similarly to the service identification phase, also within
the service specification phase an analysis and revision is
performed after the systematic derivation of service designs.
As the service designs were derived from service candidates
with optimized quality indicators, also on basis of service
designs most quality indicators will be optimal from the
beginning. However, there are some indicators that were not
measurable on basis of service candidates. For the sake of
completeness, in this section metrics for all quality indicators
with focus on service designs are listed. The metrics use the
variables and functions introduced above. Also the
interpretation of values is identical.

1) Unique Categorization: The quality indicators for the
unique categorization can be measured by the following
metrics. These metrics focus on the specifics of service
designs. The first metric measures the division of business-
related and technical functionality.

| ((())) |

| (()) |

«interface»

Observation Provider

«Expose»

«ServiceInterface»

Observation Provider

observationProviderRequester :

«interface» Observation ProviderRequester

observationProvider :

«interface» Observation Provider

+ Get Capabilities()

+ Get Observation()

+

Interaction Protocol

: observationProvider : observationProviderRequester

Get Capabilities

Get Observation

«Capability»

Observation Provider

+ Get Capabilities()

+ Get Observation()

«interface»

Observation ProviderRequester

«use»

«Participant»

Observation ProviderComponent

«Service»

observationProvider :

Observation Provider

«Capability»

Observation Provider

«use»

«Capability»

Knowledge Provider

«use»

«Capability»

Data Provider

«Request»

knowledgeProvider :

Knowledge Provider

«Request»

dataProvider :

Data Provider

303

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As service within the formula the service described as
UML port within the service component, i.e., the Participant
in SoaML, has to be chosen.

The division of agnostic and non-agnostic functionality is
measured by the following metric.

| ((())) |

| (()) |

Also the data superiority differs only in the methodology

how to determine the relevant operations. Compared to the
service candidates, the operations within the realized
interface of the service interface have to be chosen.

||

 ((()))

 (((())))
||

| ((()))|

The common business entity usage can be measured

using the following metric.

|

|

(

 (())

 (
 (()) ((()))

 ((()))
)

)

|

|

 | (()) |

As the service designs were derived from high-quality
service candidates, all metrics have the same results as on
basis of service candidates. So, there is no revision
necessary.

2) Discoverability: The discoverability could not be
measured on service candidates as they only represent
abstract services with non-final names. Thus, new metrics
have to be introduced.

The functional naming of service interfaces, roles,
operations, parameters, and data types are measured by the
following metrics.

| () |

| |

| (()) |

| () |

| ((()))|

| (()) |

| (((())))|

| ((())) |

| ((((()))))|

| (((()))) |

TABLE XVI. VARIABLES AND FUNCTIONS USED FOR FNSI, FNR, FNO,
FNP, AND FNDT

Element Description

FNSI Functional Naming of Service Interface

FNR Functional Naming of Roles

FNO Functional Naming of Operations

FNP Functional Naming of Parameters

FNDT Functional Naming of Data Types

FN(me) Functional Naming: set of functionally named elements
out of the set of modelling elements me

P(o) Parameters: parameters of the operations o and in case of
messages the contained parameters

DT(p) Data Types: used data types (recursively continued) of

parameters p

R(si) Roles: roles of service interface si

As the original service candidates were derived from

business requirements the metric always returns 1 with the
following interpretation.

TABLE XVII. INTERPRETATION OF VALUES FOR FNSI, FNR, FNO, FNP,
AND FNDT

Value Interpretation

Less than 1 There are elements that are not functionally named

1 All elements are functionally named

The naming convention compliance of service interfaces,

roles, operations, parameters, and data types, can be
measured as follows:

| () |

| |

| (()) |

| () |

| ((()))|

| (()) |

| (((())))|

| ((())) |

| ((((()))))|

| (((()))) |

304

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE XVIII. VARIABLES AND FUNCTIONS USED FOR NCCSI, NCCR,
NCCO, NCCP, AND NCCDT

Element Description

NCCSI Naming Convention Compliance of Service Interface

NCCR Naming Convention Compliance of Roles

NCCO Naming Convention Compliance of Operations

NCCP Naming Convention Compliance of Parameters

NCCDT Naming Convention Compliance of Data Types

NCC(me) Naming Convention Compliance: set of elements out of

the set of modelling elements me that follow specified
naming conventions

The used names do not correspond to naming

conventions specified in the project. For example, spaces are
not allowed within names, which is why the NCCSI for the
Observation Provider service interface returns 0.

Figure 12. Revised service interface.

TABLE XIX. INTERPRETATION OF VALUES FOR NCCSI, NCCR, NCCO,
NCCP, AND NCCDT

Value Interpretation

Less than 1 There are elements that do not follow naming
conventions

1 All elements follow naming conventions

As result, the names of the artifacts have to be revised in

order to fulfill the naming conventions and support the
discoverability. Figure 12 shows the revised service interface
for the Observation Provider.

Whether all possible five information is provided can be
measured by the following metric.

 () (()) (())

 (()) (())

TABLE XX. VARIABLES AND FUNCTIONS USED FOR IC

Element Description

IC Information Content

EX(e) Exists: returns 1 if the element e exists, else 0

IP(si) Interaction Protocol: interaction protocol of the service
interface si

UI(si) Used Interfaces: used interface provided by the service

consumer

As in this article all information is provided, the metric

returns 1 for all services.

TABLE XXI. INTERPRETATION OF VALUES FOR IC

Value Interpretation

Less than 1 Within the service design not all possible information is
available

1 All possible information is available

3) Loose Coupling: Most quality indicators for loose

coupling were not measurable on basis of service
candidates. Thus, entirely new metrics have to be
introduced.

The asynchrony for long-running operations can be
determined as follows.

| (()) ((())) |

| ((())) |

TABLE XXII. VARIABLES AND FUNCTIONS USED FOR ASYNC

Element Description

ASYNC Asynchrony

ASO(ip) Asynchronous Operations: asynchronous operations

within the interaction protocol ip

LRO(o) Long Running Operations: long-running operations out
of the set of operations o

Whether an operation is provided synchronously or

asynchronously can be determined by means of the
“synchronous” flag of a UML CallOperationAction within
the interaction protocol. As there is no long-running

«interface»

ObservationRetrievalService

«ServiceInterface»

ObservationRetrievalService

observationRetrievalServiceRequester :

«interface» ObservationRetrievalServiceRequester

observationRetrievalService :

«interface» ObservationRetrievalService

+ getCapabilities() : getCapabilitiesResponse

+ getObservation(: getObservation) : getObservationResponse

+

Interaction Protocol

: observationRetrieval

Service

: observationRetrieval

ServiceRequester

getCapabilities

getObservation

«interface»

ObservationRetrievalServiceRequester

«use»

305

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

operation in this scenario, the metric is not defined and
cannot be determined. Otherwise the results can be
interpreted as follows.

TABLE XXIII. INTERPRETATION OF VALUES FOR ASYNC

Value Interpretation

Less than 1 There are long-running operations that are not provided
asynchronously

1 All long-running operations are provided asynchronously

The common data type complexity is measured by the

following metric.

|
|

(

 (((())))

 (((())))
)

|
|

| (((())))|

TABLE XXIV. VARIABLES AND FUNCTIONS USED FOR CDTC

Element Description

CDTC Common Data Types Complexity

SDT(p) Simple Data Types: simple data types within the

parameters pt

The service designs in the considered scenario use own

packages for own data types, i.e., they do not have common
complex data types. Within the numerator the intersection is
empty, which is why the metric returns 0 for all services. As
the values 0 or 1 represent desired ones, there is no revision
necessary.

TABLE XXV. INTERPRETATION OF VALUES FOR CDTC

Value Interpretation

0 There are no common data types used

Between 0
and 1

There are common and complex data types used

1 The commonly used data types are simple

The following metrics measure the abstraction of

operations and parameters.

| ((())) |

| (())|

| (((())))|

| ((()))|

TABLE XXVI. VARIABLES AND FUNCTIONS USED FOR AO AND AP

Element Description

AO Abstraction of Operations

AP Abstraction of Parameters

A(o) Abstract: set out of operations o that are abstract

A(p) Abstract: set out of parameters p that are abstract

As the operations and parameters are derived from

business requirements, they are abstract by nature and do not
contain any technical details. The metrics return 1 for all
services. This again represents the desired value, which is
why there is no further revision required.

TABLE XXVII. INTERPRETATION OF VALUES FOR AO AND AP

Value Interpretation

Less than 0 There exist operations respectively parameters that are

not abstract

1 All operations respectively parameters are abstract

Determining the compensation is similar to the one on

basis of service candidates.

| ((((()))))|

| (((()))) |

As there have been no changes on service designs, the

results are the same as on basis of service candidates.
4) Autonomy: Instead of using the dependencies

between service candidates the required services of a service
component can be considered to determine the dependencies
to other services.

 | () |

The values for the metric are the same as on basis of

service candidates, i.e., the metric returns 2 for the
Observation Provider and 0 for the other services.

The functional overlap is determined by the following
metric, which returns 0 for the Observation Provider.

| ((()) (())) |

| (()) |

In a next step, the analysis and revision phase is

iteratively repeated until there is no further revision
necessary. This is why the service design phase ends at this
step for the considered scenario. As result, the analysis and
revision phase enabled to create service designs with
verifiable fulfilled quality indicators. This will support
common and wide-spread quality attributes and strategic
goals, such as a high maintainability, flexibility and cost-
efficiency.

306

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

V. CONCLUSION AND OUTLOOK

In this article, the creation of a service-oriented system
with quality attributes kept in mind was demonstrated by a
geographical information system. As these kinds of systems
access distributed information and are expected to be
accessible from other systems, an architecture with service-
oriented design principles is necessary. Since strategic goals
are associated with this decision, the services within the
system have to follow certain quality attributes, such as loose
coupling and autonomy. As concrete scenario a system of the
PESCaDO project of the European Commission was chosen.

After an introduction and the definition of relevant terms
in the Background section, the scenario and the artifacts of
the business analysis phase were presented. The considered
business use case described the requirement to get an
observation by using different other services to ensure that
all relevant information for the user are found and retrieved.
The resulting business process served as the input for the
second phase in the service development process, the service
design phase, which was performed afterwards.

The service design phase consists of the combination of a
systematic derivation of artifacts and the subsequent analysis
and revision. The first enables the fulfillment of functional
requirements and the latter ensures the compliance with non-
functional ones, such as the quality attributes. As result,
formalized service designs based on SoaML were created for
the PESCaDO scenario that consider quality attributes and
thus support the achievement of strategic goals.

With this systematic approach, the IT architect is assisted
with performing the complex service design task. The
application of this approach on a real world scenario
exemplifies its usage and shows its benefits. On the one
hand, the methodology enables the creation of service
designs in an engineering manner. On the other hand, the
quality indicators provide a catalog of criteria an IT architect
has to consider during this task. This ensures that important
quality aspects are not overseen. Additionally, the metrics
help with analyzing models and improving them cost-
efficiently.

The usage of SoaML as emerging standard for modeling
service-oriented architectures and service designs enables the
embedding of this approach into existing tools and entire tool
chains. As SoaML provides a UML profile, any tool
supporting UML can be used. However, there exist also
several tools supporting SoaML natively. The possibility to
apply this approach with common and wide-spread tools
increases its practical applicability.

In the future, we plan to enhance the analysis
methodology. There are some terms that are not concretely
defined within existing work. For example, when is a service
agnostic and when specific? In order to avoid ambiguity
these terms have to be specified in detail. Additionally, the
quality analysis is supposed to consider further quality
attributes especially with regards to the internal component-
oriented architecture that implements the service
components. Also specifics of paradigms for realizing
services, such as the resource-centric approach used in
RESTful Web services, will be considered.

Finally, to further increase the cost-efficiency and
productivity of the service design task we have implemented
the metrics within our QA82 Architecture Analyzer tool [9]
for an automatic analysis of service designs. Thus, in the
future, IT architects, developers, executive board, or
customers will be able to automatically evaluate the quality
of developed or acquired products and provided services.
This simplifies the analysis whether services increase the
flexibility, maintainability, and cost-efficiency of the IT.

REFERENCES

[1] M. Gebhart, S. Sejdovic, and S. Abeck, “Case study for a quality-
oriented service design process”, Sixth Internation Conference on
Software Engineering Advances (ICSEA 2011), Barcelona, Spain,
October 2011, pp. 92-97.

[2] W3C, “Web Services Description Language (WSDL)”, Version 1.1,
2001.

[3] OMG, “Service oriented architecture modeling language (SoaML) –
specification for the uml profile and metamodel for services
(UPMS)”, Version 1.0, 2012.

[4] M. Gebhart and S. Abeck, “Metrics for evaluating service designs
based on soaml”, International Journal on Advances in Software,
4(1&2), 2011, pp. 61-75.

[5] M. Perepletchikov, C. Ryan, K. Frampton, and H. Schmidt,
“Formalising service-oriented design”, Journal of Software, Volume
3, February 2008.

[6] M. Perepletchikov, C. Ryan, K. Frampton, and Z. Tari, “Coupling
metrics for predicting maintainability in service-Oriented design”,
Australian Software Engineering Conference (ASWEC 2007), 2007.

[7] M. Hirzalla, J. Cleland-Huang, and A. Arsanjani, “A metrics suite for
evaluating flexibility and complexity in service oriented architecture”,
ICSOC 2008, 2008.

[8] S. W. Choi and S. D. Kimi, “A quality model for evaluating
reusability of services in soa”, 10th IEEE Conference on E-Commerce
Technology and the Fifth Conference on Enterprise Computing, E-
Commerce and E-Services, 2008.

[9] Gebhart Quality Analysis (QA) 82, QA82 Architecture Analyzer,
http://www.qa82.de. [accessed: July 11, 2012]

[10] The PESCaDO Consortium, “Service-based infrastructure for user-
oriented environmental information delivery”, EnviroInfo, 2010.

[11] W. van den Heuvel, O. Zimmermann, F. Leymann, P. Lago, I.
Schieferdecker, U. Zdun, and P. Avgeriou, „Software Service
Engineering: Tenets and Challenges”, 2009.

[12] M. Gebhart, “Service Identification and Specification with SoaML”,
in Migrating Legacy Applications: Challenges in Service Oriented
Architecture and Cloud Computing Environments, Vol. I, A. D.
Ionita, M. Litoiu, and G. Lewis, Eds. 2012. IGI Global.
ISBN 978-1-46662488-7.

[13] T. Erl, Service-Oriented Architecture – Concepts, Technology, and
Design, Pearson Education, 2006. ISBN 0-13-185858-0.

[14] IBM, “RUP for service-oriented modeling and architecture”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
downloads/06/rmc_soma/, 2006. [accessed: July 11, 2012]

[15] U. Wahli, L. Ackerman, A. Di Bari, G. Hodgkinson, A. Kesterton, L.
Olson, and B. Portier, “Building soa solutions using the rational sdp”,
IBM Redbook, 2007.

[16] A. Arsanjani, “Service-oriented modeling and architecture – how to
identify, specify, and realize services for your soa”, IBM Developer
Works, http://www.ibm.com/developerworks/library/ws-soa-design1,
2004. [accessed: July 11, 2012]

[17] A. Erradi, S. Anand, and N. Kulkarni, “SOAF: An architectural
framework for service definition and realization”, 2006.

[18] P. Kroll and P. Kruchten, The Rational Unified Process Made Easy, a
Practitioner’s Guide to the RUP, Addison-Wesley, 2003.

307

International Journal on Advances in Software, vol 5 no 3 & 4, year 2012, http://www.iariajournals.org/software/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[19] M. Gebhart, M. Baumgartner, and S. Abeck, “Supporting service
design decisions”, Fifth International Conference on Software
Engineering Advances (ICSEA 2010), Nice, France, August 2010, pp.
76-81.

[20] P. Hoyer, M. Gebhart, I. Pansa, S. Link, A. Dikanski, and S. Abeck,
“A model-driven development approach for service-oriented
integration scenarios”, 2009.

[21] M. Gebhart and J. Bouras, “Mapping between service designs based
on SoaML and web service implementation artifacts”, Seventh
International Conference on Software Engineering Advances (ICSEA
2012), Lisbon, Portugal, November 2012, pp. 260-266.

[22] S. Johnston, “UML 2.0 profile for software services”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/05/
419_soa/, 2005. [accessed: July 11, 2012]

[23] OMG, “Unified modeling language (UML), superstructure”, Version
2.2, 2009.

[24] J. Amsden, “Modeling with soaml, the service-oriented architecture
modeling language – part 1 – service identification”, IBM Developer
Works, http://www.ibm.com/developerworks/rational/library/09/
modelingwithsoaml-1/index.html, 2010. [accessed: July 11, 2012]

[25] M. Gebhart, M. Baumgartner, S. Oehlert, M. Blersch, and S. Abeck,
“Evaluation of service designs based on soaml”, Fifth International
Conference on Software Engineering Advances (ICSEA 2010), Nice,
France, August 2010, pp. 7-13.

[26] T. Erl, SOA – Principles of Service Design, Prentice Hall, 2008.
ISBN 978-0-13-234482-1.

[27] M. Gebhart and S. Abeck, “Quality-oriented design of services”,
International Journal on Advances in Software, 4(1&2), 2011, pp.
144-157.

[28] D. Krafzig, K. Banke, and D. Slama, Enterprise SOA – Service-
Oriented Architecture Best Practices, 2005. ISBN 0-13-146575-9.

[29] M. Gebhart and S. Abeck, “Rule-based service modeling”, The
Fourth International Conference on Software Engineering Advances
(ICSEA 2009), Porto, Portugal, September 2009, pp. 271-276.

[30] T. Erl, SOA – Design Patterns, Prentice Hall, 2008.
ISBN 978-0-13-613516-6.

[31] T. Erl, Web Service Contract Design & Versioning for SOA, Prentice
Hall, 2008. ISBN 978-0-13-613517-3.

[32] Fraunhofer Institute of Optronics, System Technologies and Image
Exploitation, “D8.3 Specification of the pescado architecture”,
Version 1.0, 2010.

[33] S. Johnston, “Rational uml profile for business modeling”, IBM
Developer Works, http://www.ibm.com/developerworks/rational/
library/5167.html, 2004. [accessed: July 11, 2012]

[34] J. Heumann, “Introduction to business modeling using the unified
modeling language (UML)”, IBM Developer Works,
http://www.ibm.com/developerworks/rational/library/360.html, 2003.
[accessed: July 11, 2012]

[35] OMG, “Business process model and notation (BPMN)”, Version 2.0
Beta 1, 2009.

[36] W3C, “OWL 2 web ontology language (OWL)”, W3C
Recommendation, 2009.

[37] M. Horridge, “A practical guide to building owl ontologies using
protégé 4 and co-ode tools”, http://owl.cs.manchester.ac.uk/tutorials/
protegeowltutorial/, Version 1.2, 2009. [accessed: July 11, 2012]

