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Abstract—The effectiveness of compression algorithms is increas-
ing as the data subjected to compression contains patterns which
occur with a certain regularity. This basic idea is used to detect
the existence of regularities in various types of data ranging from
market basket data to undirected graphs. The results are quite
independent of the particular algorithms used for compression
and offer an indication of the potential of discovering patterns
in data before the actual mining process takes place.
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I. INTRODUCTION

Our goal is to show that compression can be used as a tool
to evaluate the potential of a data set of producing interesting
results in a data mining process. The basic idea that data that
contains patterns that occur with a certain regularity will be
compressed more efficiently compared to data that has no such
characteristics. Thus, a pre-processing phase of the mining
process should allow to decide whether a data set is worth
mining, or compare the interestingness of applying mining
algorithms to several data sets.

Since compression is generally inexpensive (and certainly
less expensive than mining algorithms), and compression
methods are well-studied and understood, pre-mining using
compression will help data mining analysts to focus their
efforts on mining resources that can provide a highest payout
without an exorbitant cost.

Compression has received lots of attention in the data min-
ing literature. As observed by Mannila [14], data compression
can be regarded as one of the fundamental approaches to data
mining [14], since the goal of the data mining is to “compress
data by finding some structure in it”.

The role of compression developing parameter-free data
mining algorithms in anomaly detection, classification and
clustering was examined in [8]. The size C(x) of a compressed
file x is as an approximation of Kolmogorov complexity [4]
and allows the definition of a pseudo-distance between two
files x and y as

d(x, y) =
C(xy)

C(x) + C(y)
,

where xy is the file obtained by concatenating x and y. Note
that this is not the common definition of a pseudo-distance
(see, for example [21]); instead, it is simply a numerical
evaluation of the similarity of the files x and y; its minimal
value is obviously equal to 0.5.

Further advances in this direction were developed in [9],
[10] and [23]. A Kolmogorov complexity-based dissimilarity
was successfully used to texture matching problems in [3]
which have a broad spectrum of applications in areas like
bioinformatics, natural languages. and music. Compression
algorithms are used in the actual mining process to handle
data mining explorations that return huge sets of results by
extracting those results that actually are representative of the
data set (see, for example [19], [22]).

Our goal in this paper is to show that compression can be
used for assessing the interestingness of applying an actual data
mining process. In other words, to evaluate the minability of
a data set using compression. We justify experimentally this
idea by evaluating data sets that have different characteristics
and sources.

In general, data mining is task-oriented and the mining
process entails seeking specific patterns. Thus, our assessment
of minability will not necessarily help identify patterns of
interest; instead, it will signal that such patterns may exist
and will invite to further exploration.

There are two broad classes of compression algorithms:
lossy compression, that reduces significantly data but does not
allow the full inverse transformation, from compressed data to
the original data, and lossless compression, that achieves data
reduction and can be completely reversed. We illustrate the
use of lossless compression in pre-mining data by focusing on
several distinct data mining processes: files with frequent pat-
terns, frequent item sets in market basket data, and exploring
similarity of graphs.

The LZW (Lempel-Ziv-Welch) algorithm was introduced in
1984 by T. Welch in [24] and is among the most popular com-
pression techniques. The algorithm does not need to check all
the data before starting the compression and the performance
is based on the number of the repetitions and the lengths of
the strings and the ratio of 0s/1s or true/false at the bit level.
There are several versions of the LZW algorithm. Popular
programs (such as Winzip or the zip function of MATLAB) use
variations of the LZW compression. These algorithms work
both at the bit level and at the character level.

An important role in evaluating concentrations of values
in various probability distributions is played by the notion
of entropy, Namely, if p = (p1, . . . , pn) is a probability
distribution with pi 6 0 and

∑n
i=1 pi = 1, the entropy of
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this distribution is

H(p) =
n∑
i=1

pi log2
1

pi
.

It is well-known (see [6], [13]) that the maximum value of the
entropy is obtained when

p1 = p2 = · · · = pn =
1

n

and this value is log2 n. The minium value is 0 and this occurs
when there exists pi with pi = 1 and pj = 0 for j 6= i,
1 6 j 6 n. The entropy helps us to evaluate the diversity of the
values assumed by a random variable: the more concentrated
these values are the lower the entropy.

After examining compressibility of binary strings in Sec-
tion II we explore several experimental settings that provide
strong empirical evidence of the correlation between compres-
sion ratio and the existence of hidden patterns in data. In
Section III we discuss the compressibility of sequences of sym-
bols produced by various generative mechanisms. Section IV is
dedicated to the compressibility of adjacency matrix for graphs
relative to the entropy of distribution of subgraphs. Finally, in
Section V, we examine the compressibility of files that contain
market basket data sets. This paper is an extension of our
contribution [1].

II. PATTERNS IN STRINGS AND COMPRESSION

An alphabet is a finite and non-empty set whose elements
are referred to as symbols. Let A∗ be the set of sequences on
the alphabet A. We refer to these sequences as words or strings.
The length of a string w is denoted by |w|. The null string on
A is denoted by λ and we define A+ as A+ = A∗−{λ}. The
subsets of A∗ are referred to as languages over A.

If w ∈ A∗ can be written as w = utv, where u, v ∈ A∗ and
t ∈ A+, we say that the pair (t,m) is an occurrence of t in
w, where m is the length of u.

The occurrences (x,m) and (y, p) are overlapping if p <
m + |x| and m < p + |y|. If this is the case, m < p and
p+ |y| > m+ |x| then there is a proper suffix of x that equals
a proper prefix of y. If x is a word such that the sets of its
proper prefixes and its proper suffixes are disjoint, there are
no overlapping occurrences of x in any word.

The number of occurrences of a string x in a string w is de-
noted by nx(w). Clearly, we have

∑
{na(w) | a ∈ A} = |w|

for any symbol a ∈ A. The prevalence of x in w is the number
fx(w) = nx(w)·|x|

|w| which gives the ratio of the characters
contained in the occurrences of t relative to the total number
of characters in the string.

The result of applying a compression algorithm C to a string
w ∈ A∗ is denoted by C(w) and the compression ratio is the
number

CRC(w) =
|C(w)|
|w|

.

We shall use the binary alphabet B = {0, 1} and the
LZW algorithm, the compression algorithm of the package
java.util.zip, or the zip function of MATLAB.
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Figure 1. Baseline CRjZIP Behavior

We generated random strings of bits (0s and 1s) and
computed the compression ratio for strings with a variety of
symbol distributions. A string w that contains only 0s (or only
1s) achieves a very good compression ratio of CRjZIP (w) =
0.012 for 100K bits and CRjZIP = 0.003 for 500K bits, where
jZIP denotes the compression algorithm from the package
java.util.zip. Figure 1 shows, as expected, that the worst
compression ratio is achieved when 0s and 1s occur with equal
frequencies.

For strings of small length (less than 104 bits) the compres-
sion ratio may exceed 1 because of the overhead introduced
by the algorithm. However, when the size of the random
string exceeds 106 bits this phenomenon disappears and the
compression ratio depends only on the prevalence of the bits
and is relatively independent on the size of the file. Thus, in
Figure 1, the curves that correspond to files of size 100K bits
and 500K bits overlap. We refer to the compression ratio of
a random string w that contains n0(w) zeros and n1(w) ones
as the baseline compression ratio for this distribution of bits.

We created a series of binary strings ϕt,m which have a
minimum guaranteed number m of occurrences of patterns
t ∈ {0, 1}k, where 0 6 m 6 100. The compression baselines
for files containing the patterns 01, 001,0010, and 00010 are
shown in Table I.

TABLE I. BASELINE COMPRESSION RATIO FOR FILES CONTAINING A
MINIMUM GUARANTEED NUMBER OF PATTERNS

Pattern Proportion of 1s Baseline
01 50% 1.007
001 33% 0.934
0010 25% 0.844
00010 20% 0.779

Specifically, we created 101 files ϕ001,m for the pattern 001,
each containing 100K bits and we generated similar series
for t ∈ {01, 0010, 00010}. In the case of the 001 pattern
the baseline is established at 0.934, and after the prevalence
exceeds 20% the compression ratio drops dramatically. Results
of the experiment for 001 are shown in Table II. In Figure 2
we show that similar results hold for all patterns mentioned
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TABLE II. PATTERN ’001’ PREVALENCE VERSUS THE COMPRESSION
RATIO CRjZIP

Prevalence of CRjZIP

’001’ pattern
0% 0.93
10% 0.97
20% 0.96
30% 0.92
40% 0.86
50% 0.80
60% 0.72
70% 0.62
80% 0.48
90% 0.31
95% 0.19
100% 0.01
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Figure 2. Dependency of Compression Ratio on Pattern Prevalence

above.

III. COMPRESSIBILITY OF LANGUAGES AND SEQUENCES

Sequences or sets of sequences of symbols are often sub-
jected to data mining processes and identifying those se-
quences that contain interesting patterns before the actual
mining process may be computationally significant.

We begin by examining the well-known sequence called the
Thue-Morse sequence [2] that has many applications rang-
ing from crystal physics [16], counter synchronization [25],
metrology [7], [11], and chess playing [15], as well as in game
theory, fractals and turtle graphics, chaotic dynamical systems,
etc.

This sequence contains patterns but not repetitions.
Definition 3.1: Let n ∈ N be a natural number. The Thue-

Morse sequence sn = s0s1 · · · sn is a word over the alphabet
{0, 1} defined as:

si =


1 if i has an odd number of 1s

in its binary representation
0 otherwise,

for 0 6 i 6 n.

TABLE III. THE COMPRESSION RATIO CRjZIP (S2k ) FOR
THUE-MORSE SEQUENCES

k |seq
2k
| CRjZIP (seq

2k
)

5 32 34
8 256 4.625
10 1024 1.226
12 4096 0.328
14 16384 0.0932
15 32768 0.0542
16 65536 0.0322
17 131072 0.0208
18 262144 0.0151
19 524288 0.012
20 1048576 0.010
21 2097152 0.010
22 4194304 0.009

For example, we have

s16 = (0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0).

It is clear that if m,n ∈ N and m 6 n, sm is a prefix of sn.
Thus, the successive Thue-Morse sequences define an infinite
sequence.

An equivalent method for defining the Thue-Morse sequence
is by starting with 0 and concatenating the complement of the
sequence obtained so far. This procedure yields 0, then 01,
0110, 01101001, and so on. It is known (see [18], for example)
that the Thue-Morse sequence is a cube-free sequence, that is,
the sequence does not contain substrings of the form www.

We generated the Thue-Morse sequences and stored this
sequence of 0s and 1s at the bit level. By using the zip
compression utility from the java.util.zip package the
compression ratios shown in Table III were obtained.

For small values of k, the sequence is incompressible due
to the overhead produced by the compression process. As
Table III and Figure 3 show, for k big enough (2k > 2000)
the sequence becomes compressible and the compression ratio
reaches a low value (of less than 1%) for Thue-Morse se-
quences longer than 4, 000, 000 characters. Since the Thue-
Morse sequence s2k has equal number of 0s and 1s for
any value of k and its compression ratio is well below the
baseline compression ratio established for sequences of bits
in Section II, we can conclude that even in the absence of
repetitions, compression can be used for the detections of
patterns.

In a series of experiments involving generative grammars we
examined the compressibility of language fragments generated
by these grammars. A generative grammar, or in short, a
grammar is defined as a 4-tuple G = (AN , AT , S, P ), where
AN and AT are non-empty, finite and disjoint sets referred
to as the non-terminal and the terminal alphabet, respectively,
S ∈ AN is the initial symbol of the grammar G, and P is a
finite set of pairs of the form (α, β), where α ∈ (AN ∪AT )+
and β ∈ (AN ∪ AT )∗. A pair (α, β) ∈ P is a production of
the grammar G. Productions are used for rewriting words over
AN ∪ AT . Namely, if γ, δ ∈ (AN ∪ AT )∗, γ = γ1αγ2, and
δ = γ1βγ2 for some production (α, β) ∈ P , we write γ ⇒

G
δ.

The reflexive and transitive closure of the binary relation ⇒
G

is denoted by “
∗⇒
G

”. The language generated by G is the set
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Figure 3. Compression Ratio Behavior of Thue-Morse Sequence

L(G) = {x ∈ A∗T | S
∗⇒
G
}.

Grammars are used as generative devices that produce
languages over their terminal alphabet. Chomsky’s hierarchy
(see [17] or [20]) defines four classes of grammars based on
the complexity of their productions. In turn, these classes of
grammars, define a strict hierarchy of classes of languages
L3 ⊂ L2 ⊂ L1 ⊂ L0, where L3 is the class of regular
languages, L2 is the class of context-free languages, L1 is
the class of context-sensitive languages, and L0 is the class
of recursively enumerable languages. It is worth noting that
the classes L3 and L2 collapse on languages over one-symbol
alphabet. In other words, if L is a language over an one-symbol
alphabet, then L ∈ L2 implies L ∈ L3.

We evaluate the compressibility of a language L over an
alphabet A by considering the increasing sequence of finite
languages S(L) = (L0, L1, . . . , Ln, . . .), where Ln consists of
the first n words of L in lexicographic order, computing the
compression ratios CRjZIP (Ln), and examining the depen-
dency of this ratio on n.

We examinine comparatively the compressibility of the
languages L1 = {ww | w ∈ {0, 1}∗} (a context-sensitive
language) versus the compressibility of a similar language
L2 = {wwR | w ∈ {0, 1}∗} (a context-free language)
which has a simpler structure. Here, the word wR is the
reversal of the word w and is defined as λR = λ and
(ai1 · · · ain)R = ain · · · ai1 .

The results shown in Figures 4 and 5 show that L2, the less
complex language has a better (lower) compression ratio, and
therefore, higher compressibility.

Similar results are obtained when comparing the compress-
ibility of the context-sensitive languages Lexp and Lprime over
the one-symbol alphabet {a} defined by

Lexp = {a2
n

| n ∈ N},
Lprime = {ap | p is a prime number}.

The reference [17] (see Chapter 1, section 2) contains specific
grammars developed for both languages. Namely, the grammar
for Lexp has 6 productions, while the second grammar that
generates Lprime has 42 productions. As expected, experi-
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Figure 4. Compression Ratio Behavior of the language L1
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Figure 5. Compression Ratio Behavior of the language L2

ments summarized in Figure 6 show that the Lexp is more
compressible than Lprime which has a rather complex gener-
ating process.

These results suggest that the compressibility of languages is
related to the complexity of the generative process that produce
them. This will be the object of further investigations.

IV. RANDOM INSERTION AND COMPRESSION

For a matrix M ∈ {0, 1}u×v denote by ni(M) the number
of entries of M that equal i, where i ∈ {0, 1}. Clearly, we
have n0(M) + n1(M) = uv.

For a random variable V which ranges over the set of
matrices {0, 1}u×v let νi(V) be the random variable whose
values equal the number of entries of V that equal i, where
i ∈ {0, 1}.

Let A ∈ {0, 1}p×q be a 0/1 matrix and let

B :

(
B1 B2 · · · Bk
p1 p2 · · · pk

)
,

be a matrix-valued random variable where Bj ∈ Rr×s, pj > 0

for 1 6 j 6 k, and
∑k
j=1 pj = 1.
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Figure 6. Compression Ratios of Languages Lexp and Lprime

Definition 4.1: The random variable A ← B obtained by
the insertion of B into A is given by

A⊗ B =

a11B . . . a1nB
...

. . .
...

am1B . . . amnB

 ∈ Rmr×ns

In other words, the entries of A ← B are obtained by
substituting the block aijB` with the probability p` for aij
in A.

Note that this operation is a probabilistic generalization of
Kronecker’s product for if

B :

(
B1

1

)
,

then A ← B has as its unique value the Kronecker product
A⊗B.

The expected number of 1s in the insertion A← B is

E[ν1(A← B)] = n1(A)

k∑
j=1

n1(Bj)pj

When n1(B1) = · · · = n1(Bk) = n, we have E[ν1(A ←
B)] = n1(A)n.

In the experiment that involves insertion, we used a matrix-
valued random variable such that n1(B1) = · · · = n1(Bk) =
n. Thus, the variability of the values of A ← B is caused
by the variability of the matrices B1, . . . , Bk which can be
evaluated using the entropy of the distribution of B,

H(B) = −
k∑
j=1

pj log2 pj .

We expect to obtain a strong positive correlation between the
entropy of B and the degree of compression achieved on the
file that represents the matrix A ← B, and the experiments
support this expectation.

In a first series of experiments, we worked with a matrix
A ∈ {0, 1}106×106 and with a matrix-valued random variable

B :

(
B1 B2 B3

p1 p2 p3

)
,

where Bj ∈ {0, 1}3×3, and n1(B1) = n1(B2) = n1(B3) = 4.
Several probability distributions were considered, as shown

in Table IV. Values of A← B had 1062∗32 = 101124 entries.
In Table IV, we had 39% 1s and the baseline compression

rate for a binary file with this ratio of 1s is 0.9775. We
also computed the correlation between the CRjZIP and the
Shannon entropy of the probability distribution and obtained
the value 0.98 for the insertion of a matrix-valued random
variable having three values.

In Table V, we did the same experiment but with 4 different
matrices of format 4× 4. An even stronger correlation (0.99)
was observed between CRjZIP and the Shannon entropy of
the probability distribution.

TABLE IV. INSERTION OF A THREE-VALUED RANDOM VARIABLE,
ENTROPY AND COMPRESSION RATIOS

Probability Compression Entropy
distribution Ratio

p1 p2 p3
0 1 0 0.33 0
1 0 0 0.33 0
0 0 1 0.33 0

0.9 0.1 0 0.51 0.46
0.8 0 0.2 0.61 0.72
0 0.3 0.7 0.7 0.88

0.2 0.2 0.6 0.77 1.37
0.6 0.2 0.2 0.74 1.37
0.15 0.35 0.5 0.78 1.44
0.49 0.25 0.26 0.77 1.5
0.33 0.33 0.34 0.79 1.58

TABLE V. INSERTION OF A FOUR-VALUED RANDOM VARIABLE,
ENTROPY AND COMPRESSION RATIOS

Probability Compression Entropy
distribution Ratio

p1 p2 p3 p4
0 1 0 0 0.23 0

0.4 0 0.2 0.4 0.53 1.52
0.45 0.12 0.22 0.21 0.61 1.83
0.3 0.1 0.2 0.4 0.65 1.84
0.2 0.2 0.2 0.4 0.69 1.92
0.25 0.25 0.25 0.25 0.69 2

The relationship between the compression ratio CRjZIP
and the Shannon entropy of the probability distribution of
the inserted random variable is shown in Figure 7 for both
experiments.

This experiment reconfirms that data that contains patterns
can be better compressed than randomly generated files and
that the compressibility is less pronounced when the diversity
of these patterns increases.
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Figure 7. Evolution of CRjZIP and Shannon Entropy for Insertions

Next, we examine the compressibility of binary square
matrices and its relationship with the distribution of principal
submatrices. An m × m principal submatrix of a matrix
A ∈ Rn×n is the matrix A[I] defined by a non-empty m-
element subset I of the set {1, . . . , n} and is obtained by
selecting entries of A of the form aij , where i, j ∈ I .
We mention that the principal submatrices of the adjacency
matrix of a graph correspond to the adjacency matrices of the
subgraphs of that graph. The patterns in a graph are captured
in the form of frequent isomorphic subgraphs.

A binary square matrix is compressed by first vectorizing
the matrix and then compressing the resulting binary sequence.
There is a strong correlation between the compression ratio of
the adjacency matrix of a graph and the frequencies of the
occurrences of isomorphic subgraphs of it. Specifically, the
lower the compression ratio is, the higher are the frequencies
of isomorphic subgraphs and hence the worthier is the graph
for being mined.

Let Gn be an undirected graph having {v1, . . . , vn} as its
set of nodes. The adjacency matrix of Gn, AGn ∈ {0, 1}n×n
is defined as

(AGn)ij =

{
1 if there is an edge between vi and vj in Gn

0 otherwise.

We denote with CRC(AGn) the compression ratio of the
adjacency matrix of graph Gn obtained by applying the com-
pression algorithm C.

Let S = {i1, . . . , ik} be a subset of {1, . . . , n}. The
principal submatrix AGn [S] is the adjacency matrix of the
subgraph of Gn which consists of the nodes with indices in
S along with those edges that connect these nodes. We denote
by Pn(k) the collection of all subsets of {1, 2, . . . , n} of size
k where 2 6 k 6 n. We have |Pn(k)| =

(
n
k

)
.

Let (Ak1 , . . . ,A
k
`k
) be an enumeration of possible adjacency

matrices of graphs with k nodes where `k = 2
k(k−1)

2 . We
define the finite probability distribution

P (Gn, k) =

(
nk1(Gn)
|Pn(k)|

, . . . ,
nk`k(Gn)

|Pn(k)|

)
,

where nki (Gn) for 1 6 i 6 `k is the number of subgraphs of
Gn with adjacency matrix Aki . The Shannon entropy of this
probability distribution is:

HP (Gn, k) = −
`k∑
i=1

nki (Gn)
|Pn(k)|

log2
nki (Gn)
|Pn(k)|

.

If HP (Gn, k) is low, there are to be fewer and larger sets
of isomorphic subgraphs of Gn of size k. In other words,
small values of HP (Gn, k) for various values of k suggest that
the graph Gn contains repeated patterns and is susceptible to
produce interesting results. Note that although two isomorphic
subgraphs do not necessarily have the same adjacency matrix,
the number HP (Gn, k) is a good indicator of the diversity of
isomorphic subgraphs and hence of the frequency subgraph
patterns.

We evaluated the correlation between CRjZIP (AGn) and
HP (Gn, k) for different values of k.

As expected, the compression ratio of the adjacency matrix
and the distribution entropy of graphs are roughly the same for
isomorphic graphs, so both numbers are characteristic for an
isomorphism type. If φ is a permutation of the vertices of Gn,
the adjacency matrix of the graph Gφn obtained by applying the
permutation is defined by A

G
φ
n

is given by

A
G
φ
n
= PφAGnP

−1
φ .

We compute the adjacency matrix A
G
φ
n

, the entropy
HP (G

φ
n, k), and the compression ratio CRjZIP (AG

φ
n
) for

several values of k and permutations.
Graphs with n = 60 nodes and various number of

edges ranging from 5 to 1765 were randomly generated.
For each generated graph, we randomly produced twenty
permutations of its set of nodes and computed HP (G

φ
n, k) and

CRjZIP (AG
φ
n
).

Finally, for each graph we calculated the ratio of standard
deviation over average for the computed compression ratios,
followed by the same computation for distribution entropies.

The results of this experiment are shown in Figures 8 and 9
against the number of edges. As it can be seen, the deviation
over mean of the compression ratios for n = 60 does not
exceed the number 0.05. Also, the deviation over average of
the distribution entropies for various values of k do not exceed
0.006. In particular, the deviation of the distribution entropy
for the graphs of 100 to 1500 edges falls below 0.001, which
allows us to conclude that the deviations of both compression
ratio and distribution entropy with respect to isomorphisms are
negligible.

For each k ∈ {3, 4, 5}, we generated randomly 560 graphs
having 60 vertices and sets of edges whose size were vary-
ing from 10 to 1760. Then, the numbers HP (Gn, k) and
CRjZIP (AGn) were computed. Figure 10 captures the results
of the experiment. Each plot contains two curves. The first
curve represents the changes in average CRjZIP (AGn) for
forty randomly generated graphs of equal number of edges.
The second curve represents the variation of the average
HP (Gn, k) for the same forty graphs. The trends of these two
curves are very similar for different values of k.
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Figure 8. Standard deviation vs. average of the CRjZIP (AGn ) for a number
of different permutations of nodes for the same graph. The horizontal axis is
labelled with the number of edges of the graph.

Figure 9. Standard deviation vs. average of the HP (Gn, k) of a number
of different permutations of nodes for the same graph. The horizontal axis is
labelled with the number of edges of the graph. Each curve corresponds to
one value of k.

Table VI contains the correlation between CRjZIP (AGn)
and HP (Gn, k) calculated for the 560 randomly generated
graphs for each value of k.

TABLE VI. CORRELATIONS BETWEEN CRjZIP (AGn ) AND
HP (Gn, k)

k Correlation
3 0.92073175
4 0.920952812
5 0.919256573

V. FREQUENT ITEMS SETS AND COMPRESSION RATIO

A market basket data set consists of a multiset T of
transactions. Each transaction T is a subset of a set of items
I = {i1, . . . , iN}. The multiplicity of a transaction T in the
multiset T is denoted by m(T ).

A transaction is described by its characteristic N -tuple t =
(t1, . . . , tN ), where

tk =

{
1 if ik ∈ T.
0 otherwise,

for 1 6 k 6 N . The length of a transaction T is
|T | =

∑N
k=1 tk, while the average size of transactions is∑

{|T | |T in T}
|T| .

n = 60 and k = 3

n = 60 and k = 4

n = 60 and k = 5

Figure 10. Plots of average CRjZIP (AGn ) (CMP RTIO) and average
HP (Gn, k) (DIST ENT) for randomly generated graphs Gn of equal number
of edges with respect to the number of edges.

The support of a set of items K of the data set T is the
number

supp(K) =
|{T ∈ T | K ⊆ T}|

|T|
.

The set of items K is s-frequent if supp(K) > s.
The study of market basket data sets is concerned with

the identification of association rules. A pair of item sets
(X,Y ) is an association rule, denoted by X → Y . Its
support, supp(X → Y ) equals supp(X) and its confidence
conf(X → Y ) is defined as

conf(X → Y ) =
supp(X ∪ Y )

supp(X)
.

Using the artificial transaction ARMiner generator described
in [5], we created a basket data set.
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Transactions are represented by sequences of bits
(t1, · · · , tN ). The multiset T of M transactions was
represented as a binary string of length MN obtained by
concatenating the strings that represent transactions.

We generated files with 1000 transactions, with 100 items
available in the basket, adding up to 100K bits.

For data sets having the same number of items and trans-
actions, the efficiency of the compression increases when
the number of patterns is lower (causing more repetitions).
In an experiment with an average size of a frequent item
set equal to 10, the average size of a transaction equal to
15, and the number of frequent item sets varying in the
set {5, 10, 20, 30, 50, 75, 100, 200, 500, 1000}, the compres-
sion ratio had a significant variation ranging between 0.20
and 0.75, as shown in Table VII. The correlation between
the number of patterns and the compression ratio was 0.544.
Although the frequency of 1s and baseline compression ratio
were roughly constant (at 0.75), the number of patterns and
compression ratio were correlated.

TABLE VII. NUMBER OF ASSOCIATION RULES AT 0.05 SUPPORT
LEVEL AND 0.9 CONFIDENCE

Number of Frequency Baseline Compr. Number of
Patterns of 1s compression ratio rules

5 16% 0.75 0.20 9,128,841
10 17% 0.73 0.34 4,539,650
20 17% 0.73 0.52 2,233,049
30 17% 0.76 0.58 106,378
50 19% 0.75 0.65 2,910,071
75 18% 0.75 0.67 289,987
100 18% 0.75 0.67 378,455
200 18% 0.75 0.70 163
500 18% 0.75 0.735 51

1000 18% 0.75 0.75 3

Further, there was a strong negative correlation (-0.92)
between the compression ratio and the number of association
rules indicating that market basket data sets that satisfy many
association rules are very compressible.

VI. CONCLUDING REMARKS

Compression ratio of a file can be computed fast and easy,
and in many cases offers a cheap way of predicting the exis-
tence of embedded patterns in data. Thus, it becomes possible
to obtain an approximative estimation of the usefulness of an
in-depth exploration of a data set using more sophisticated and
expensive algorithms.

The presence of patterns in strings leads to a high degree of
compression (that is, to low compression ratios). Thus, a low
compression ratio for a file indicates that the mining process
may produce interesting results. Compressibility however, does
not guarantee that a sequence contains repetitions. Strings that
are free of repetitions but contain patterns can display a high
degree of compressibility as shown by the well-known Thue-
Morse binary string.

The use of compression as a measure of minability is
illustrated on a variety of paradigms: graph data, market basket
data, etc. Compression has been applied in bioinformatics as
a tool for reducing the size of immense data sets that are
generated in the genomic studies. Furthermore, specialized

algorithms were developed that mine data in compressed
form [12].

Our current work shows that identifying compressible areas
of human DNA by comparing the compressibility of certain
genomic regions is a useful tool for detecting areas where the
gene replication mechanisms are disturbed (a phenomenon that
occurs in certain genetically based diseases).
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