
283

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Process Mining in a Manufacturing Company for Predictions and Planning

Milan Pospíšil

Department of Information Systems

BUT, Faculty of Information Technology

Brno, Czech Republic

ipospisil@fit.vutbr.cz

Vojtěch Mates

Department of Information Systems

BUT, Faculty of Information Technology

Brno, Czech Republic

imates@fit.vutbr.cz

Tomáš Hruška

Department of Information Systems

BUT, Faculty of Information Technology

IT4Innovations - Center of excellence

Brno, Czech Republic

hruska@fit.vutbr.cz

Vladimír Bartík

Department of Information Systems

BUT, Faculty of Information Technology

Brno, Czech Republic

bartik@fit.vutbr.cz

Abstract—Simulation can be used for analysis, prediction and

optimization of business processes. Nevertheless, process

models often differ from reality. Data mining techniques can

be used to improve these models based on observations of a

process and resource behavior from detailed event logs. More

accurate process models can be used not only for analysis and

optimization, but also for prediction and recommendation as

well. This paper analyses process models in a manufacturing

company and its historical performance data. Based on the

observation, a simulation model can be created and used for

analysis, prediction, planning and for dynamic optimization.

Focus of this paper is in different data mining problems that

cannot be solved easily by well-known approaches like

Regression Tree.

Keywords - business process simulation, business process

intelligence, data mining, process mining, prediction,

optimization, recommendation, association rules, genetic

algorithms.

I. INTRODUCTION

Classic simulation can be used for the analysis of
business processes. It is useful to test many variations of
processes, measure the effects and then choose the optimal
process settings. Thus, the process can be redesigned. It is
possible to change resource allocation and search for the
most optimal configuration with respect to context-based
requirements (price, effectiveness, customer satisfaction,
etc.). The current process configuration can be tested to
discover how many cases it can handle over periods of time.

These models can be built manually but this is time
consuming and error prone. The main disadvantage is that
this approach cannot be used for predictions of operational
decision, but only for strategic decisions if there exist some
dependency on case attributes (see later). The operational
decisions are important for internal logistics purposes. The

casual models have some simplifications – for example
overall probabilities of routing and naive execution time of
the task. These parameters are set with respect to on long
observation of processes, so they can work in a long-term
simulation for strategic decisions. Nevertheless, operational
decisions require short-term simulation. These two
simulation approaches differ significantly. The short-term
simulation starts in the current state of the process with
allocated resources, cases in progress with known parameters
and with waiting cases to handle. Routing probabilities and
execution times can differ significantly for different case
variables, therefore, mining of deeper dependencies is
needed for better solution.

For example, let us assume a repair process. There are
two tasks – repair of a basic item and repair of an advanced
item, repair of a basic item is executed in 90% of cases and
repair of an advanced item only in 10% of cases. Execution
time for a basic item is about one hour and execution time
for an advanced item is about eight hours. If our current case
has attributes and these attributes lead to advanced repair
with 80% probability, classic approach using overall routing
probabilities is not precise enough to be used. And there is
one another problem – execution time of a task is also
influenced by case attributes – some case attributes may lead
to longer execution time. Resources have to be also taken
into account, e.g., some people work faster and some of them
slower.

Predictions, recommendations, and dynamic
optimizations could be accomplished by operational
simulation. The system can warn us that some cases will be
probably late, based on comparison with historic
performance data. Then, some different scenarios can be
simulated and evaluated. After that, the system can
recommend us actions and provide dynamic optimization of
current running cases – for example; assigning extra

284

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

resources from a non-critical case to critical or use a different
sub-process – if we have a slower and cheaper or faster but
more expensive variation.

This paper analyses processes of a manufacturing
company. Simulation model is built using process mining
and it is used for predictions. Based on these predictions,
managers can change priorities (reallocation of resources) or
better plan their storage space, because working front is
known and, therefore, they can better predict manufacturing
time. Building of simulation model from discovered model is
beyond that paper, because analysis of data is also quite hard
problem because of many real issues that need to be solved –
that leads to some different problems. So this paper is mainly
about analysis of data and then, these results could be used
for the simulation and for other problems as well.

This work is an extension of our previous research in
process mining and simulation field [1]. Paper is organized
as follows. Section II describes related papers. Section III is
overview of whole idea with some topics as utilization in real
processes or problems with data preparation. Our real
manufactory is described in Section IV. Then, three different
approaches are described in Sections V, VI and VII. It is
because different types of real problems that are needed to
achieve our goal. Section V describes prediction using
standard classification (like regression trees). Section VI
solves the same problem but with variable feature vector
length. This type of problem could be solved by
classification methods, but many of them has problem with
variable vectors. So we chose Association Rules to solve
this. Both sections are based on existing methods with some
extensions to better fit our problem. These extensions are
described quite in general, not only for our company. Section
VII solves another type of common problems – unmeasured
processes. These are processes that are not fully measured
and we propose some solutions to deal with it. Also, some
further research is consulted. Section VIII is about analyzing
errors. Previous sections are about predicting execution
times, but errors are also important. Section IX is our
summary of experience in real manufacture and about
problem with measurement, because it is costly. Last section
is conclusion. Experiments are provided in all of three main
sections (V, VI, VII and partly VIII) for better intelligibility.

II. RELATED WORK

Data mining techniques can be used in Business Process
Management. The research area is referred to as Process
Mining [2][3][4][5][6]. It is focused on analysis of
information from event logs that were produced by business
processes. Process discovery (Figure 1) is one of the
methods and it is able to find a process model from an
unknown process using many sequence examples of tasks
and case parameters.

Except process model, also decision rules, social
networks [3][7][8] and simulation models [7][8][9][10]
could be discovered.

Resource behaviour is also a point of interest
[11][12][13]. Example of simulation model [7] is depicted in
Figure 2.

Figure 1. Process discovery. It is possible to discover a process model from

the trace log.

It is possible to see routing probabilities and decision
rules (decision rules are used when case attributes are known
– that leads to better routing rules) and it is possible to see
time distribution of tasks.

Some other research on process prediction was published
in [8][14][15][16]. Wetzstein [15] used decision trees to
analyse process performance (see Figure 3). As it can be
seen, if the response time of a banking service is higher than
210, KPI (key performance indicator) is always violated. If
customer id is 1234, manager can observe process
bottlenecks and try to make banking service faster or find out
why the customer 1234 has problems.

Grigori [16][17] uses similar approach used not for
analysis but for predictions. Huge classifier is learned based
on case attributes, start time and end time of task execution.
Classifier can predict final execution time of a case based on
case parameters and time information from executed tasks.
Evaluation of that approach compared to our approach is
discussed in [10]. In addition, our work uses similar
approach as [15][16][17] but it combines it with process
mining.

Figure 2. Simulation model. Classic simulation model is enhanced by

decision rules. Decision rules can make our routing probabilities more

precise, because they depend on case attributes.

Finally, when we discover deeper dependencies between
routing rules and execution time of cases, we can use it for
simulation related to decision support [10].

285

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3. Process performance analysis (taken from [4]). Decision tree is

used to discover factors that lead to KPI violation. We can see that KPI is

violated when response time of a banking service is larger than 210.

Our previous work [1] is an extension of papers
[7][8][10] and it adds some important features, some of them
inspired by papers [15][16][17]. For example, execution time
of cases could be also predicted by a classifier such as
decision rules. This paper shows that our theory of [10] can
be applied in a real large manufactory company. It also adds
some additional theory in Section III.

III. MORE PRECISE SIMULATION MODEL

As it is said in [10], there is a demand on building more
precise models than the one described by papers [7][8]. We
will describe steps needed to accomplish it.

A. Process Discovery

If a process is not known, it is possible to discover it
using process discovery techniques [4][6]. However, only
process discovery is not sufficient to build simulation model.
If an explicit model is not present, it is possible to discover
it, but the precision of the model will be lower than the
explicitly given by a real model. In some companies,
discovered model could be more precise than an official
model but it is because these companies do not have their
models well-structured in many cases. This is not the case
for manufacturing companies where prediction and usage of
short time simulation is considered to be better.

B. Decision Mining

Decision mining is based on discovering routing rules in
OR split nodes. These rules could be also available but
sometimes they are not applicable. Let us assume that a
routing rule is based on one parameter, which is inserted into
the system just before the decision. Thus, our predictor will
know the next path only in the time of decision – this is a
useless prediction. In these situations, decision mining has to
be used. The topic of decision mining is described in [7],
[8][10]. Classifier is learned on training data where inputs
are case attributes and output is the next path in process. Our
work [10] describes another problem, which is missing
attributes or 100% precise attribute known in the time of
decision inserted by human (described earlier). If some
attributes are missing, classic classifiers will not work in a
proper way. If there is a 100% precise attribute then
classifier is based only on that attribute. Solution is the same
for both problems – it is necessary to build several classifiers
for several milestones of the process – from the start (only
subset of case attributes are known) to the end (all attributes
are known).

C. Execution Time of Tasks

Execution time of tasks is the most important issue in the
short-term simulation. Process model and routing rules are
important as well. However, in companies with predictable
business processes (especially manufacturing companies),
control flow and routing rules are used to be formalized and
nearly 100% precise.

Execution time of tasks will be described precisely in
Sections V, VI and VII where different approaches for
different problems will be introduced.

D. Usage of analysis and simulation

There are several ways to use our methods in practice.
We must realize that we must do two tasks. First task is the
analysis of historic data, which is the main focus of the
paper. Second task is to build the simulation model for
predictions based on previous data discovery. Second task is
not the main topic of this paper, but it is the main goal. Now,
we will describe utilization of both steps.

1) Prediction, Planning, Reccomendation
First usage is obvious and we described it in Section I. If

we know the task execution times (does not matter if it is the
result of data mining or manual measurement), we can better
plan our whole work, material flow, inventory, machine and
resource utilization. Using simulation, we can evaluate
multiple plans and choose the most suitable of them. Also,
we can monitor running process and check if some problem
is going to come in future. Of course, with some probability
– there must be multiple simulation runs.

There is other utilization in scenario testing. Managers
can make some change in the process (better machine) to test
what is the influence and cost of the change.

2) Analysis
Because the first step is about data mining, we can use

these discovered information for another use. If we know
what case attribute causes what time and variation, manager
could ask for most influential attribute combinations (low or

286

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

high time and variation). Variation is also very important
because high variation suggest some production problems,
which is not good for planning. With these tools, managers
can focus on most problematic attribute combinations and try
to solve them.

Another usage is for worker performance [13]. There is a
problem with computation of worker performance, because it
is dependent on attributes. Paper [13] describes it in further
detail.

Error analysis is also an important part. Some attributes
have higher error probability. Errors are important not only
to predict execution time of tasks but also to predict routing
between tasks – faulty product could be sent to repair and
could not almost affect time of task where it occurred.
Analysis of error is important for execution time of
prediction and there is whole short section at the end of the
paper that describes it more deeply.

Last usage is about analysis of changes. Suppose
management of company bought new machine (or new
working method). Was it really an improvement and how
much? If we analyze both old and new task data, we can
discover differences between them. For example, new
machine could be overall better, but only for some attribute
combination.

Analysis of time and variations based on attributes could
be also good for advertising. Management could focus on
products that have good attribute combinations for
manufactory – in our door company, some doors are
produced fast, some more slowly. If there is a big
commercial on some more problematic doors, production
should be late and it could harm name of the company.

3) Simulation based on historic data
This type of simulation is not for prediction, but for

analysis. It is not the simulation as we know it, but only
replaying of historic log data. Using this, we could analyse
effect of changes on queues and much more interesting
features. But this type of analysis is beyond the scope of our
paper.

E. Problems in preprocessing step

Every data mining needs data cleaning and
preprocessing. This is the step most dependent on data type.
We should describe some problems we encounter in our
practice.

1) Analysing quality of data set
First step we must always do is to gain information about

data set reliability. We must analyse records with the same
attributes, if they are available – they may not, but almost
every data set contains some set of records with identical
attributes. Then, we must compute variance of those similar
records. For example, if there are twenty records with
attributes A, B, C, we have to compute their variance
execution times. If A, B, C = 250s, A, B, C = 300s, A, B, C
= 350s, etc., then we have to compute variance from these
numbers. If the result variance of nearly all of types of record
set is not lower than the variance of whole data set (variance
of all record times), the data set is useless. It means there is
no dependency on attributes or some attributes are missing or

there was some problem in measurement – last problem is
the most probable in our experience.

2) Low and High Values
Beware extreme values in data sets, it means different set

of scenarios. Extremely low values are probably errors that
were discovered and sent to repair. Extremely high values
are errors or poorly measured values. We must be careful,
because sometimes break can affect time dramatically –
suppose start of task was measured correctly, but then break
occurred and then work continued – total task time will not
be useful at all. So high values do not mean automatically
error, if we want to analyze errors (see later), we need
information about errors explicitly given in data. Another
possibility is schedule of breaks.

3) “Half Measurement”
Another problem, sometimes solvable, is the “half

measurement”. Sometimes, there is only information about
start or end of the process. Sure, we can deduct these times to
get real time. Deduct means that if product A enters into a
task and (for example) start time is measured, then product B
enters the machine and another start time is measured. Then,
if a task could contain only one product, we can compute
Time as Start(B) – Start(A). It is easy, but it may not work. If
we are deducting times (start or end), there must be quite
high utilization of task (low waiting for product processing –
pause). Every waiting could be considered as production
because we have no idea if there was waiting or our product
took more time to produce.

Fortunately, this problem could be sometimes solved, but
only in tasks with low variation based on attributes. Global
variation could be high, but there is a need that cases with
identical attributes must be produced with little variation. If
this is true, we could analyze different sets of records divided
by attributes (every set of record has its own attributes and
every records in set have the same attributes). The sets will
have some execution times and time of every set will be
ordered ascending. We will get something like this for some
set of records with the same attribute. For example, there are
twenty records for attributes A, B, C: 100s, 101s, 102s, etc.,
110s, 112s, etc. 140, etc..If we suppose low variations of
executions for the same attributes, first records are the real
execution time whereas others are probably affected by
waiting time.

Half measurement is not only burden that negatively
affects accuracy of prediction but it can be also advantage.
Measurement devices are also quite expensive so every
saving counts.

IV. MANUFACTURING COMPANY

The manufacturing company is specialized in door
production. Uniqueness of door is characterized by their
attributes (about twenty) and based on these attributes,
different operations are executed. Doors have different
material, size, weight, different corner and edge types,
different handle and glasses, etc. Every door has its ID and it
can be modeled as a case. Doors are mainly manufactured in
machines (tasks). Some machines work in parallel; some
machines are bound to several tasks, thus these machines

287

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

must be treated as resources, because machine could be
down or working. People are working with machines or in
manual workplaces. Routing probabilities are 100%
accurate, because doors with specific attributes must be
manufactured only by a specific machine and with specific
settings.

Resources are quite predictable, because they work on
shifts and they are always available and planned several days
ahead. The only unknown parameter is execution time of
tasks that depends on case attributes – every case is modeled
as one door, so case attributes are door parameters. Door
parameters are known at the beginning of the process and are
constant, so there is no need to build several classifiers for
several periods of case execution [10]. Execution time also
depends on people work rate, work queue and error rate
(especially in manual workplaces), but this is issue beyond
the paper.

Context-based predicting the execution time of tasks can
help with several issues quite precisely. First, it is possible to
decrease storage spaces, because they could plan execution
order of cases in order to decrease waiting times. Our
prediction decreases variances of execution time and thus
logistics can have methods to plan storage spaces with better
results when there is a low variance. They will also know if
some doors will be probably late and for example they can
respond to that changing priorities, resource allocation, etc.
Another important issue is the analysis. Managers could
measure which door types take long time to be produced and
based on that, they can calculate their price more precisely.
For logistics, execution time is not as much important as
influence of variance of execution time. It is possible to
measure which door types (based on parameters) have high
variance. Process engineers can focus on those door types
and try to find out the cause of high variance, or produce
them only in situations (if it is possible to wait) when
variance is not such important issue.

A. Usage in Company

Because our manufacturing company has quite a lot
dependence on door attributes, it is important to discover
them to better plan production. Order of different doors for
production is also important, because some machines could
produce some door types faster, some more slowly and we
need to better balance the product flow.

V. PREDICTION OF TASKS EXECUTION TIME USING

CLASSIFICATION

The time deviation is sometimes high, but it can be
decreased by data mining techniques. Thus, it is useful to
examine data and find relationships between case parameters
and execution time for each task in the process. This can be
solved as a classification problem, where case parameters are
considered as input attributes and execution time is
considered as the target attribute.

A. Classification and Prediction Models

There are many kinds of classification models; every
model has its advantages and disadvantages based on
properties of data used for classification. Our problem is

rather prediction than classification, but both issues are
related and many models support both of them. One common
definition is that prediction predicts future and classification
works as pattern recognition. Other definition is that
prediction works with numerical target attributes and
classification with categorical target attributes. Prediction
can be transformed to classification by transforming target
attribute from numerical to categorical, where categories are
intervals that covers whole domain.

In our case, we have 18 case attributes and one numerical
target attribute. All case attributes are categorical. Even
through there are also some of them numerical (width,
height), but they are standardized to only few distinct values,
so they can be considered as numerical or categorical
depending on requirements of classification or prediction
model. It is more difficult for prediction (even in our case)
that target attribute varies even for cases with the same
values of input attributes. This is typical for execution time,
because work is performed not only by machines, but also by
people and people do not often work in coherent speed.

High variability of door types is another problem. In our
manufacturing company, it is possible to make millions
kinds of doors, which causes problem in prediction, because
it is difficult to obtain enough examples for prediction.
Attributes can also contain high number of distinct values
which correspond with high variability of door type (this is a
problem for neural network classification).

In the next section, some prediction models will be
described and its applicability is discussed.

1) Neural Network
We have tested Neural Network approach, but results

have not been satisfactory. Neural Network was not able to
learn. It was caused by the high number of input neurons -
303. Every categorical column had to be transformed into
new columns. Every distinct value of that column created a
new column, which holds 1 or 0 value. For example, the
column corner has four distinct values – left, right, top, and
bottom. It creates four new columns that can acquire value 1
only once for a row (for the columns that belong to one
categorical column). That transformation was necessary,
because neural network can handle only numerical attributes.
Target attribute was divided into several intervals and every
interval was modeled as a single output neuron.

We think that network was not able to learn because of
high number of inputs compared to number of training
examples and mainly because of the output variability of
(even identical training examples had little different outputs).
Thus, we think network is not sufficient for our problem
because of high number of categorical attributes and
variability of the target attribute.

2) K-Nearest Neighbour (KNN)
The method is based on a simple idea of finding several

examples from training set closest to an input pattern. We
simply computed number of differences between training
example and input pattern. These differences (0 or 1, equals
or not equals) were weighted. Weight of each attribute was
computed by the same method described below by the
regression tree. Higher weight means that attribute has
higher influence on execution time and it is considered more

288

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

important. Then twenty nearest examples were given and
mean, minimum, maximum and deviation of time was
computed (we measured only mean, but deviation is also
important in simulation and it is a good indicator of supposed
reliability of prediction).

Results (Figure 4) were quite satisfactory (there is only
subset of real workplaces). We have compared prediction to
a simple algorithm – prediction based on mean of all
execution times. The simplest predictor is the predictor that
assumes mean value for every example. Differences in table
are mean of all differences between real values and predicted
values for every tested example. We have run the test with
600 examples and we have compared them to a dataset that
contained approx. 10-20 thousands records for every
workplace. Rating was computed as a ratio between
difference computed by the algorithm and difference
computed by mean. Thus, the result 0.5 means that we have
decreased the variance of execution time of task by about
50%.

Figure 4 shows that some results are satisfactory, others
are worse. For example, ratio of workplace A seems to be
good, Workplace C is not as good as Workspace A.
Nevertheless, it is not the problem related to the method,
execution time does not rely only on attributes. It is for
example the case of workplaces C, which perform packaging
and that type of work is naturally quite independent of door
types. .Workplace A is a machine that does not depend on
resource skills, workplace B is a workplace with dependence
on resource skills and workplace C is a manual workplace
(packaging) that does not depend so much on door type, but
on resource performance

3) Regression Tree
Decision tree is a popular model. It is simple, readable by

human and quite fast. Precision has not been as satisfactory
as results given by the K-Nearest Neighbor classifier.
However, the classification speed is several hundred times
faster. Regression tree is a decision tree with numerical
target value. Nodes contain information about mean,
minimum, maximum and deviation of predicted value.
Learning algorithm is similar to decision tree, but selection
of split nodes differs. We have numerical target attribute,
therefore, algorithm can be as follows:

Input: A table, which contains a numerical target attribute.

Output: Decision powers of all attributes.

1. For each column C

2. For each distinct value vi of column C

3. Take all n target values ti of column grouped

by current distinct value and compute their

deviation i.

4. Count the decision power of the column as:

 DP(C) = 1 / (i / n), i.e., mean of all deviations.

Algorithm 1: Regression Trees

This algorithm is similar to entropy computation, which

is computed for categorical target values. The deviation is
closed to entropy because lower deviation points to better
decision power. Computing of deviation can be also

weighted by count of rows related to groups divided by
distinct values of column – distinct value with more rows
should be more important. We have tried both approaches,
but no significant precision difference was observed, even
maybe precision has been a bit lower. Algorithm described
above works similar to ID3 algorithm. C4.5 algorithm has
been also tried, however, no significant difference has been
found. Post-pruning was based on removing nodes with low
row count (every node corresponds to a subset of the whole
data set), because nodes with low row count are not
representative.

Regression Tree has had worse precision compared to K-
Nearest-Neighbor (about 1.2 – 1.3 times worse), but it has
had also several advantages. It is more readable to human
and it can be used to examine some properties of tasks – for
example, which combination of attributes affects execution
time positively or negatively or which combinations of
attributes have little ratio of prediction – that is represented
by deviation of target values corresponding to some node of
tree.

4) Regression Tree Forest
Regression Tree Forest is based on several Regression

Trees. Obvious example can be the Random Forest. The
Random Forest creates many decision trees (more than one
hundred) using classic (ID3 or C.45) algorithm with several
differences:

1. Every tree randomly selects subset of rows from a
training set (about 2/3).

2. Every tree randomly selects subset of attribute
columns (about 2/3).

3. Every tree is not pruned and full-grown.
4. Predictions are made by voting of all trees by

computing mean.
It is known that Random Forest is a very precise model

and it is still quite fast, because it is semantically similar to
K-Nearest-Neighbor algorithm. However, learning time is
quite long (it requires more than one hundred trees), we have
found it not suitable for real-time decision support. However,
we have tried some trade-of between Random Forest and
normal Decision Tree. We created several (about ten) trees
and enforced different first splitting column for every tree.
Enforced columns were ordered by their decision power.
Thus, first tree root node begins with the first (best) column;
second tree root node begins with second column, etc. In
addition, every tree randomly selects 70% of dataset and
70% decision attributes as it is used in Random Forest
algorithm. Trees were pruned (opposite to Random Forest,
which is not pruned) to about 10 rows in a node.

It should be stressed out that in normal Random Forest,
result is computed by mean of all tree results. We have
selected the best tree result by looking to the deviation of
tree node. Best prediction could be measured by deviation of
particular rows covered by a tree node. Node with lowest
deviation wins. This rule was necessary because mean of all
tree votes gave very unsatisfactory results – mainly because
we have had only low count of trees compared to Random
Forest.

Then, we designed another improvement – tree result
(mean and deviation) was not computed only by looking at

289

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the leaf node but also the parent node is taken into account.
We have computed mean by both nodes mean values
weighted by their deviation (if a child node had much better
result – low deviation – than parent, its result will have
bigger vote). That improvement has also been tested in a
single ordinary Regression Tree and it increased precision
too, but only slightly.

Figure 4. Experiments. Four methods were used on three workplaces. Note

that a higher column means lower precision.

Our Tree Forest significantly improved accuracy of
classifier, the ratio was only about 1.05 times worse
compared to K-Nearest-Neighbor, however, it was the order
of magnitude faster than K-Nearest-Neighbor, usability of
which could be problematic in real time monitoring for all
tasks due to performance issues. Similar results can be
explained, because random forest works similar to K-
Nearest-Neighbor. It returns items that are close (by
attributes) to a predicted item, but it uses tree searching
instead of searching in the whole table.

B. Execution Time and Resources

There is a little problem with resources. The resource
information can be treated as a normal case attribute, because
it has impact on execution time of task, but there can be
some difficulties. For example, if we allow decision tree to
build tree using resource attribute, final leaf will contain only
records that were executed only by that resource. This could
cause problems because sometimes it is better to look for
more examples, even from another resource. However, if we
do not have such training examples and resource
performance does not differ too much from other resources,
it is useful to look also to another resource records and
consider them.

The second problem is related to dynamic changes. Even
if the process is the same (e.g., technological process),
workers performance changes over time. More experienced
workers may be faster, thus our algorithm should be
prepared for dealing with that kind of issues. We recommend
the following method, which slightly improved prediction in
our manufacturing company.

Suppose K-Nearest-Neighbour or Regression Tree (or
Forest) classifier. All that classifiers could be implemented
to return set of records rather than final prediction (mean and
deviation). The result (mean, deviation) could be

implemented over those records, but with different weights.
First, records that belong to the resource, performance time
of which is now predicting, should have bigger weight (for
example two times higher) than other records. Second, these
records (of our resource) should be considered in the time
plan. Newest records should have also higher weights (for
example two times higher than the oldest). Why it is not
possible to take into account time plan also for other records
(other resources)? Because it is very difficult to know about
them enough information in order to take into account their
improvement and skills compared to our resource. This could
be issue to another paper.

C. Computing Variance

As we mentioned, low variance is important for good
process of planning and material flow. It is useful to know
variance of a task based on its attributes. Our tested method
returns the set of examples and then computes means from
them. It is not difficult to compute variance as well. But
there can be a problem with different methods that do not
return a set of examples, but only the final decision (not a
regression tree problem, because leaves contains mean and
also variance information even if algorithm is not built to
return set of examples). For example, it can be problem with
Neural Network, which is not built to return examples at all.

D. Test on Validation Data

Previous results were tested on training dataset. We have
done another test using test dataset (about 20% of whole
data) to prevent overfitting. Results were very similar to
previous tests; therefore, we did not include them here. It is
because methods like KNN and Regression Tree are quite
robust to overfitting. The second reason is related to data –
there is some variance even for records with the same
attributes. So overfitting is not an issue here.

E. Summary

We have tested three tasks: One machine with little
human interaction, second machine with manual work and
third packaging with little dependence on door type, but with
dependence on resource. As it was presented, Regression
tree is always less precise than other methods, while
Regression Tree Forest is as precise as K-Nearest-
Neighbour, because it is like the optimized K-Nearest-
Neighbour. Last method was the weighted Regression Tree
Forest. As it has been shown, weighting on workplace A did
not improve result at all, because machine works
independent on resources and time (it does not learn to work
faster). In Workplaces B and C, there was some
improvement. Workplace C had the worst results, because
packaging is not dependent on door type too much, but it is
dependent on resource – we can see that weighting slightly
improved performance.

VI. PREDICTION OF EXECUTION TIME OF TASKS USING

ASSOCIATION RULES

In some cases, there is a need to process non-relational
data because sometimes the sizes of various cases can be
different. Their main difference from classic relational data

290

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

is the fact that various records can contain various counts of
values (case parameters). To predict execution time of a
process, it is suitable to use the association rule based
classification because data are similar to a transactional
database. For our task, we will consider each case as a
transaction.

A. Mining Association Rules

Association rules were first introduced by Agrawal et al.
[18]. Mining association rules was primarily designed for
usage in transactional data. Therefore, it is not any problem
with discovering association rules from this kind of data. A
lot of algorithms for mining association rules in transactional
data have been developed. The Apriori algorithm [19] is
probably the most famous of them because of its simplicity.
On the other hand, the FP-Growth algorithm [20] proved to
be much more efficient than the Apriori algorithm.

Association rules are most frequently used in market
domain, typically for market basket analysis, where
transactional databases are used. Here, the goal of mining

association rules is to find rules of a form AB where A and
B are sets of items. If this association rule is found, it is
usually interpreted as: “If a transaction contains a set of
items A, it is likely to contain a set of items B”.

A formal description of the association rule mining
problem is specified as follows. Let I = {i1, i2, …, in} be a
set of items, which can be contained in a transaction. Let T =
{t1, t2, …, tm} be a set of all transactions, where each
transaction ti = {ii1, ii2, …, iik} is a set of items, where each

item iij I (for i 1,m and j1,k). If A is a set of items, a

transaction t contains A in case that A t. Then, an
association rule is defined as an implication of the form

AB, where A, B I are sets of items, which are called
itemsets. These sets must be disjoint. An itemset that
contains k items will be called k-itemset.

Potential usefulness of a rule is usually expressed by
means of two measures – support and confidence. The rule

AB has a support s, if s% of transactions contains both
itemsets A and B. It represents the probability of occurrence
of the rule in the database. This probability can be expressed
as

 support (AB) = P (AB)

Confidence of the rule represents the strength of
implication in the rule. It is the conditional probability that a
transaction contains the set B provided that it contains the set
A. This is expressed as

 confidence(AB) = P(B|A) = P(AB)/P(A)

For each association rules mining task, a value of
minimal required support and confidence must be specified.
If the condition of minimal support and confidence is
satisfied, the association rule is called a strong association
rule. A frequent set is an itemset satisfying user-defined
minimum support and strong rules are generated from

frequent itemsets that satisfy also user-defined minimum
confidence.

B. Association Rule Based Classification

The model described above can be also adapted for
classification. The association rule based method was
originally designed for classification of text documents into a
set of predefined categories. Each text document is
represented as a transaction – a set of words (terms), which
occur together in the corresponding text document.
Generally, a transaction is defined as a set of items.
Therefore, the only required information is the occurrence of
the term in a document.

Association rule based classification method was first
introduced in [21]. The main advantage of it is that it
provides a human understandable classification model in a
form of association rules and good accuracy of classification.
The Apriori-based algorithm is used to generate association
rules.

The next method called CMAR [22] was based on a well-
known FP-growth method for mining association rules,
which is significantly faster than Apriori-based algorithms.

The method described in this paper is a modification of
association rule based classification method designed for text
classification. The original method described in [23] works
with text documents represented as transactions (set of terms,
which occur in the document). In the training phase,
association rules are discovered from these transactions for
each class separately by use of the Apriori algorithm.

For this classification method, we are focused only on a
special form of association rules, which is usable for
classification. The required form of a rule, which is a result
of the training phase, is the following:

 term1 term2 … termn Cat,

where the antecedent of a rule contains a set of terms,
which frequently occur together in documents that belong to
category (class) Cat, which is contained in the consequent of
an association rule.

We can see that the task of training phase of the
classification method is to obtain a set of association rules
for each category. This set of rules is forming the classifier.

While the set of categories is predefined and there is a set
of documents belonging to each category, we can obtain a set
of association rules separately for each category. For each
category, a set of frequent itemsets is found with use of
Apriori algorithm in a set of documents belonging to the
corresponding category. Each frequent itemset is then
associated with that category.

That is why the method is called ARC-BC (Association
Rule Classification – By Category). This property allows to
perform so-called multiple-class classification, because there
can exist rules with the same antecedent and different
category in the consequent. If it is necessary to assign only
one category for each document, we have to decide
according to the value of support or confidence of a rule. The
association rules with lower value of support/confidence are
omitted from the classifier.

291

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

If the set of rules is generated, it very often contains very
high number of similar association rules. To reduce their
quantity, pruning techniques can be used. The task is to find
association rules that are more general and have higher
confidence.

If we have a suitable number of rules for each category,
we can use these rules to classify new objects (records,
documents, etc.). We have to obtain a set of terms
representing the new object. If there is an association rule
that contains the same set of terms, the corresponding
category is assigned to the object.

Usually, more than one association rule (for more than
one category) is found for a classified document. It is
necessary to set a dominance factor, which is counted as a
sum of association rules’ confidences. This allows getting a
most dominant category or k most dominant categories for a
document.

In [24], this method was adapted to use it for
classification of classical relational based data but the
experiments presented showed that it is not very accurate if
the table contains more quantitative attributes, which must be
discretized before association rules are going to be
discovered. In our process mining task, discretization of
input data is not required.

C. Usage in Process Mining

The main difference between our process mining task
and the process described above is the target attribute,
because we have to predict a numeric value of processing
time in our data mining task. The task must be transformed
into a classification task. The only possibility to do it is to
discretize the target attribute. Regarding the discretization,
we have to make two decisions – we have to choose the
discretization method and the size of intervals created from
the values of the target attribute. This choice depends
primarily on the end user’s requirements.

Sometimes there may be a need to make some post
processing steps after the training phase of the method
because the same frequent itemset can be obtained for
different categories by this classification method. There are
two possible post processing tasks resulting from this fact:

If the same frequent itemset is obtained for two adjacent
categories (intervals in the antecedent of a rule), these two
(or more) categories can be joined to form one association
rule.

If this appears for two or more intervals that are not
adjacent, we can omit the rule with lower value of support, if
it is significantly lower. If the difference between two
support values is not very high, we should keep all those
association rules in the result of the training phase.

Discussion about this solution and presentation of some
other interesting properties of this method will be contained
in the experimental part of this paper.

D. Experiments

We have made some experiments with a real dataset from
a door producer. The task was to predict time needed to
make a door from the set of input attributes, such as material,

size, weight, etc. The dataset consists of 17 input attributes
and its size is 10000 records.

It was necessary to discretize the time attribute to apply
the association rule based classification - the attribute was
discretized into three categories (intervals), which represent
low, standard and high time needed to produce the door.

1) Classification Accuracy
Our dataset is a relational table and, therefore, it is

possible to compare association rule based classification with
other classification methods.

The value of classification accuracy is between 75% and
80%, depending on values of minimum support and
confidence thresholds given by the user. This value of
accuracy is comparable with other classification methods
such as naïve Bayesian classifier, decision trees or support
vector machines. This leads us to a conclusion that our
method is suitable to predict time also in data with variable
number of attributes.

2) Examples of Association Rules
As the association rule based classifier provides a user

understandable model, it is also possible to analyze the
association rules for individual categories. Probably the most
interesting for the user will be the category, which represents
high produce time.

We can mention an example of association rule obtained

by our method: door_construction = type_1

edge_D=CH001 high_time.
This kind of association rule helps producer to plan his

production and to find the reason of delays during the
production process. We have obtained about 30 association
rules for the category representing “high production time”.
Similar count of association rules has been obtained also for
other categories.

It is also interesting to analyze association rules obtained
for more classification categories. This denotes for higher
dispersion of time value. This fact also means that attributes
contained in those rules have less influence on the time of
production. If these association rules are joint into one rule,
we have association rules of the form from the following

example: hardness = 1 filling_type = DTA high_time

avg_time low_time.
At the end, we can take only interesting associations

(only those with class high_time or low_time) and then
select all records that contain these attributes and compute

mean and variance for them. For example: type_1 edge_D

= CA003 230s ± 100s.

VII. UNMEASURED PROCESSES

Unmeasured processes are processes with known process
model, however, only the length of execution of the whole
process is known. This case can be related to many
companies, because measurement of every process step is
expensive. But even if we do not know the exact time for
every task, we are able to discover some of them if enough
data is available.

Unmeasured processes could be static or dynamic. Static
processes are processes that have always the same tasks in
their process model. For dynamic processes, the process

292

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

model is built during the runtime based on attributes of a
process instance (case).

Analyzing hidden processes could be easily topic for
whole new paper, thus we will describe only situations
related to our manufactory company. But our experience
should be applicable for many other companies with the
similar problem.

We give theory only for dynamic processes because there
is one problem with static ones – if every process instance is
the same, we cannot compute what is inside the process,
because it is the changes what allow us to find something
valuable. On the other hand, static processes are more
predictable and they could be treated as atomic task.

A. Sequential Dynamic Processes

Sequential dynamic processes are processes with
sequential flow but every process instance contains different
tasks. One process instance could contain tasks A, B, F, H,
another one could contain C, E, I. We know duration of the
whole process instance and names of executed tasks (and
their order, if it is important). So our information can look as
follows:

A, B, F, H = 213s,

C, E, I = 170s,

etc.

Our objective is to assign average time duration to every

task in order to best fit the execution time of the whole
process. It is obvious that total execution time is the sum of
lengths of all tasks in the case. If A = 100s, B = 60s, F = 20s
and H = 17s, the case with tasks A, B, F, H is supposed to be
executed after (A+B+F+H) 197 seconds. How much close
we will be to real time (213s) depends on quantity (and
quality) of measured data, total number of possible different
tasks (size of problem space) and nature of process. If a
process is predictable (for example machine) then result will
be close to real values. If a process is not predictable (mainly
manual labor) then the result will be far from real values, but
it can be still usable. If a process is exact, it is possible to
solve the problem with linear equations but this is not
common for most situations. Even if there is a machine with
quite predictable speed, its swiftness could be dependent on
some case attributes (which are or are not available) and
even if not, there will be still some little variance – for
example machine must be supplied by material, however, the
material flow can differ from machine speed. Analyzing
unmeasured dynamic processes, which is also highly
dependent on attributes, is not an easy issue to solve. First,
we will describe how to analyze process, which is not
dependent on attributes.

We have created quite simple algorithm, which was able
to compute satisfactory result quite fast. Our algorithm is an
iterative computation based on heuristics. Initially, we
generate candidate solution to heavily speed up iteration. We
make the following computation:

Input: Dataset, which contains all process instances

Output: List of predicted times for all tasks

1. For each record (process instance I, which contains of

N tasks)

2. Compute execution time for every task in case as:

3. t = Execution time (I) / N

4. Add the value of t to time collection of the task.

5. Compute average from these times for every task.
Algorithm 2: Initial Candidates

Example:

A, B, D => 210s

A, C, D => 240s

210 / 3 = 70. A = {70}, B = {70}, D = {70}

240 / 3 = 80, A = {70, 80}, C = {80}, D = {70, 80}

Averages: A = 75, B = 70, C = 80, D = 75

Second step is the Iterative Algorithm is following:

Input: Dataset, which contains all process instances

Output: Improved list of predicted times for all tasks

1. Randomly select one task T.

2. For every record ri (process instance):

3. If ri contains T then continue

 else go to next record (2).

4. Count difference between real time and predicted

time as: diffi = real – predicted.

5. diff = diff / number of records containing T

6. task time = task time + diff * learning coefficient

7. Compute error E as:

E = diffi (sum of all differences)

8. Repeat algorithm until error decreases.
Algorithm 3: Iterative Algorithm

We have used the value 0.2 as a learning coefficient.

Learning coefficient is a common method for iterative
computing, because we do not want to converge to
suboptimal solution. Good example is the perceptron
learning algorithm, which was inspiration for our method.

We have tested our method in manufacturing company at
a manual workplace. This workplace always makes several
different tasks on doors based on customer demands. Tasks
are known, however, only time of whole process instance (all
tasks on one door) is available. We had about 44 thousands
of process instances and about 5 thousands of different tasks.
This is a big number but most of them occurred only once or
twice. Only about two hundreds of tasks appeared
frequently.

Management previously used simple average time for
every process instance regardless what tasks were included
in the subprocess. Similar method was used as reference
solution in previous sections, thus we have used it again. Its
error was computed in the same way as it was mentioned in
in step 2 of previous algorithm. The reference error is
obtained as a sum of all absolute values of difference (|real –
average|) of times for all records.

293

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Error for average time was 131 seconds (average time
was 354 seconds). After application of the first algorithm
(computation of initial candidate), we lowered error to 84
seconds. After few seconds run of the algorithm (iteration),
error was decreased to 71 seconds. Thus, initial error was
354 ± 131 and we reduced it to 354 ± 71 seconds. This is a
satisfactory result and we do not suppose it could be much
more improved because of natural unpredictability of manual
processes.

1) Setup Time
Every process may have a setup time. That hidden task

must be done for every process instance, for example the
administration or reading the line information from product
and etc. It may be better to use the normative information
(measured by standardizer). The problem is that the
algorithm itself will provide the same error results regardless
what the set up time is (because the setup time affects all the
process instances in the same way, this is the problem for
static processes as we have described it at the beginning of
this section). But if you want to use task times not only for
prediction then it is better to measure setup time by
standardizer and add it to every process instance and then
compute more realistic task times.

2) Average Time for Task
An intuitive way is assigning all tasks an average value.

This can be done by dividing all process instances by
number of tasks in it (if there is setup time, we must subtract
it). Then, we will count average value from these numbers.
The prediction is now counted as: Total time = setup time +
number of tasks * average time for task. However, result of
this method was 145 seconds, which is even worse than our
base error (131). This is the reason why we did not include
this method in overview. But it could work for problems
with similar task times, which was not our case.

3) Genetic Algorithm
We have also tested a genetic algorithm with one point

crossover, tournament selection, mutation and 50 individuals
in generation. Every individual had a vector that represents
times of particular tasks. Result of the genetic algorithm was
not better than the previous method (also not worse), but we
were testing it repeatedly for several hours. Previous
algorithm was able to compute it in about half minute. Thus,
our method is good enough and very fast, with results
comparable to genetic algorithms.

We have tried the same genetic algorithm with starting
individuals close to solution that was found by previous
iterative algorithm, but result was only slightly better (error
value was 69 seconds).

4) K-Nearest Neighbor
K-nearest neighbor is the good classifier as we used it

previously with satisfactory results. Our result was also
satisfying. It reduced error to 73 seconds (from 131s), which
is very close to our previous results. However, it has a high
computational demand, which can cause problem while
using it in real time monitoring.

Because of different lengths of vectors (process may
contain any number of tasks), there are multiple ways how to
implement similarity. We have chosen this one:

At first, all close vectors are found. Those vectors must
have the same length and must not differ less than in one
task. But if the vector length is smaller than 3, the vectors
have to be completely similar. We have got a result -
collection of pair – time (that belong to vector) and weight.
The similar vectors have weight equal to 1; slightly different
vectors have weight equal to 0.7.

If the result collection has too few items (e.g., less than
10), it is used average time of all records instead. This last
rule highly depends on nature of the process. In highly
predictable process, variance is too low, thus it is possible to
compute result from a small number of examples. But
processes with relatively high variance will need more than
few items.

We have tried several different settings of this method,
but all settings led to similar results. It seems that error about
70 seconds is close to global optimal solution of the problem.

5) Process with Attributes
To gain better result, we need more information. Process

attributes are suitable candidates. Process attributes can be
some descriptive attributes of the process or resources
involved in the process. Attributes can affect execution time
of the process in the same way as affected it in previous
sections. The only difference is that we also have different
set of tasks in different process instances, thus ordinary
classification methods are going to fail, but not while
combining them with some previously mentioned methods
(classification or association rules). Let us suppose, we have
computed average time of every task (with some error, of
course). Predicted time of process instance is a sum of
average time of its tasks, as we described earlier. So we have
two times – real time and predicted time. We need to
compute their ratio.

 ratio = real time / predicted timed

The ratio is now the target attribute to predict. Now, we
can use any classifier (or association rules), as we described
them in Sections V and VI. In the testing phase, we can
obtain ratio of the process instance based on attributes. Then,
we will compute predicted time based on sum of average
times of its tasks. Finally, we will multiply ratio with
obtained time.

We have tried the decision tree forest and difference error
of 66 seconds (result of prediction without attributes is 71
seconds) was obtained. That is not an excellent result but it is
usable. Problem consists in the fact that the process of
computing average times of task is itself inaccurate, thus the
result of classification cannot be so accurate as well. But the
total result – error of 66 seconds from initial 131 seconds is
still a useful result.

6) Multiple resources in process
If there is only one resource, it is possible to use resource

as ordinary attribute. But what if there were multiple
resources working on different tasks? Or, what if it is known
how effective the resource is? We can use similar approach
that was described in Sections V and VI, only with one
difference. We cannot multiply classifier result with the total

294

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

process time, but we must first multiply resource efficiency
with its task time. For example, John did Task A and B and
Jane did task D. Times are A = 2 min, B = 3 min, D = 1 min
and worker efficiency is John = 0.7 Jane = 1.1. Then total
time = Classifier ratio * (2 * 0.7 + 3 * 0.7 + 1 * 1.1).

It could be quite hard to compute workers efficiency
from that kind of data, thus it could be better solution to gain
it differently (from some data with more precise information
or from a standardizer). Of course, worker could be more
skilled in one process and less skilled in another, but
manager’s experience tells (for manual jobs without high
qualification), that if worker is slow in process A, it will be
probably slow in process B as well.

7) Computing Variance
As it was said previously, variance is very important for

planning– mainly for material flow and overall planning.
High variance causes high inventory and there is a problem
with synchronization, which can cause deviation from
desired plan. Variance could by computed using this
approach. The main idea behind it is that we have set of
process instances (records) that contain that information – set
of tasks, and real time of process execution and finally
predicted time (previously computed by some of our
methods). Variance for a task is computed as follows. At
first, all records containing these tasks are selected.

Then, we need an average value and a current value,
which is a need for variance computation. We do not know
what the average value is, but we can suppose that predicted
value of that record is close to average value of the process
instance because this is what our methods needed to
compute. Then, current value is the real value and (real time
– predicted time)2 is a base assumption.

Input: Dataset containing all process instances.

Output: Values of difference for each task.

1. For each task T

2. For each record r containing T

3. diffT = diffT + (real – predicted)
2

4. diffT = diffT / number of records containing T

Algorithm 4: Counting the values of difference

Note that variance computation is only an estimation, not

an exact mathematical calculation. If a task causes high
deviation, then the records of the task will also cause high
deviation (difference between real and predicted time).
However, if a task with high deviation is present many times
with task with low deviation, their deviations will be
average, so this is only the estimation, which is possible to
be wrong and it highly depends on tasks, which are in the
process instances.

8) Summary of Methods
Figure 5 is an overview of used methods. We can see that

precision of all methods are nearly similar, except that
genetic algorithm and K-Nearest-Neighbor takes much
computing time – genetic algorithm has very long learning
time and KNN very long testing time. We can also see that
classification using attributes slightly improved error rate.

9) Validation on test data
We did also validation on test data (Data Set was divided

by 99% for train data, 1% for test validation data). This
unbalanced distribution was caused by fact that every day
some new operation that was not in previous data occurred.
So if we divided our data for example by 80% and 20%,
results were very bad. There is a high need to learn system
continuously in real production to better estimate time of
brand new tasks. This is possible, because our algorithm
needs about one minute to run.

We tested 99% of train data with fifty rounds of cross
validation. Result was slightly worse than error in training
data (about 1-3 minute to error of every method) so we did
not include it here.

But we also include one little thing – in real prediction,
every day a new operation with unknown time occurred. We
have assigned it average time of all known tasks times.

B. General Dynamic Processes

General dynamic processes could include parallelism and
every process instance could be a different process with
different tasks. Resolving task performance times for general
processes is more complicated than for sequential processes.

Example of some process instance with parallelism
(symbol || means parallelism, symbol + serial execution): A
+ B + ((C + D) || (E + F)) + J.

This means that A and B are executed serially, then two
parallel branches are executed – first C and then D, second E
and then F and after waiting for both branches task J follows.
Another example of process instance could look like that: A
+ (C || (E + F + B)) + D + D.

We did not deal with that kind of problem in our
manufacturing company; however, we would like to propose
some ideas for future research in this area. Because general
dynamic process could be any process, every process
instance has to contain process definition (or log with
parallelism – see below), not only tasks. If only tasks are
available, we may use Process Discovery first [6]. This could
work in some cases, but we will first focus on processes with
known model.

Let us suppose we know average times of all tasks. Then,
the question is, how to compute final process instance time?
Two examples above show a task execution log enhanced
with parallel execution. What is the difference between
normal log and log with parallelism? Normal log for both
examples should look like: A, B, C, E, D, F, J and A, C, E, F,
B, D, D.

This log contains information about executed tasks in
order to their completion time (or start time). Using this, we
do not know exactly, which tasks were executed in parallel
and which of them sequentially, thus we cannot solve
anything. If there is only a sequential log, process model
must be available (either for every process instance or
globally for all process instances). What is difference
between process model and log with parallelism? Look at the
second example: A + (C || (E + F + B)) + D + D.

This process instance should be executed by many
different process models – for example, two final tasks D
could be in process instance log, where the task D could be

295

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in a loop that allows repetitive execution or it could be
always two serial tasks D (for whatever reason).

Figure 5. Results of different methods for dynamic sequential processes.

Base error is computed as an error if we use average mean value from

whole data set for all predictions.

How can we compute total estimated process instance
time if we know average times for all tasks? If we have a log
with parallelism, it is not so difficult. We must simulate this
dynamic process as it is – if there is a sequential execution,
we will be adding performance times. If there is a parallel
execution, we will be able to continue after slower branch is
completed. For example, first process (A = 2 min, B = 3 min,
C = 4 min, D = 1 min, E = 1 min, F = 2 min, J = 5 min): A +
B + ((C + D) || (E + F)) + J.Total = 2 + 3 + Max(4 + 1, 1 + 2)
+ 5 = 15 min.

Function Max returns maximum from two input
numbers. If there is a more complicated process, we must
use recursion. But what if we know a process model and a
sequential log? We can use log replay as it is described in [6]
in the section about Conformance Checking.

1) How to find solution?
How to find average times for huge set of process

instances? It is important that every process instance is at
least a bit different as we discussed it earlier. Static processes
are always the same and there are low chances to analyze
what is inside the process.

Because of the complexity of the problem, we suggest to
use Genetic Algorithm. Solution can be coded as a vector of
real numbers. For example, process instances could contain
four tasks – A, B, C, D. Thus, we will have vector with four
real numbers. Fitness of the solution is an evaluation of all
process instances and computing error. Error should be
computed in the same way as in Sequential Dynamic
Processes – error = | real time – predicted time|. After that,
genetic algorithm setting continues (selection, mutation,
crossover. number of individuals in generation, static / steady
state, etc.). We cannot say what setting will be the best
because it highly depends on current process instances.

We believe that the genetic algorithm should be able to
find average times of tasks to find suboptimal solution. But
closer experiments are beyond the scope of this paper.

2) Problem with Process Discovery
Process Discovery is able to find process model from

logs [6][7]. Problem of this solution is that it does not
distinguish between serial execution with arbitrary order and
parallel execution. For example, let us have two logs: A, B
and B, A.

Most Process Discovery algorithms (as Alpha Algorithm
[7]) see it as a parallel execution, because it does not depend
on the order. This should be acceptable when we are
analysing log to discover some usable process model that
represents some probably possible executions of process, but
it is not suitable for our time prediction. Sequential and
parallel executions are evaluated differently. If A is 2
minutes and B is 3 minutes, than sequential execution takes 5
minutes and parallel 3 minutes. Administrative processes
usually also allow this parallel execution really in parallel (if
electronic documents are used). In manufactory, products
cannot be produced on both in task A and task B in the same
time, If parallelism is discovered then it only means that it
does not depend on order of task. But there is another
problem – what if there is some material in process that will
be mounted on product later during processing? Now, it is
possible that there is a parallel work, which indicates a
problem.

However, Process Discovery could still be usable if we
know which resource executed which task. If task A and B
are executed by one resource, we know that even if Process
Discovery says it is parallel execution, one resource must
execute it sequentially.

Note that Process Mining discovers global process model
for all process instances with OR routing branches, so log
replay must be used to merge process model and log as we
mentioned above, see Conformance Checking [6].

VIII. ANALYSING ERRORS

Primary analysis of execution time is the main focus of
this paper but we can also analyse errors. Errors can be also
dependent on attributes. Errors are an important part of
simulation. We cannot simulate errors with very low
probability but we must simulate operational errors like
defective products. Error situations must be sometimes
analysed separately from the time analysis (error in products
must not be involved in time computation), because errors
are mostly treated differently – for example defective
products will be sent to repair (another task, similarity with
Decision Analysis (Section III), or thrown away.

1) Classification methods
Classification methods can be easily transformed to

predict errors instead of time. Error will be used as a target
attribute of record for classification (0 – no error, 1 – error).
After that, classifier can predict error for given attributes –
for example it returns value 0.07, it means there is 7%
probability of error in that task.

A. Association methods

It is also possible to use association rule based
classification to predict errors. There are two classification
categories in this task – 0 (“no errors”) and 1 (“error”). It is
not difficult to obtain some association rules and classify the

296

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

cases but the main problem is the fact that the training data
for the “error” category is much smaller than the “no errors”
category because it is expected that most of products will be
made without errors and no cases will be classified to “error”
category.

Therefore, we will concentrate only on association rules
obtained for the “error” category. Deeper analysis of this set
of association rules can show us some interesting properties
of cases, which lead to some error.

To use association rules for classification, some complex
post-processing of association rules should be designed and
implemented. This is one of the issues to be solved in the
future research.

B. Unmeasured process

Error could happen in unmeasured processes. There
could be many settings of how error should be handled.
Process should stop immediately when error occurred, or it
could run to its end and then all errors are resolved. Other
information is related to error itself – if we know, which task
contained error and which one did not – in this situation we
know only that the process instance finished in error state.
First situation will result in more precise probabilities and it
is also quite simple to compute – if there are no attribute
dependencies, we could only compute successful and
unsuccessful (error) execution and compute ratio.

Second situation is more complicated. We know that
error occurred somewhere in process, but we do not know
where it is exactly located (in which tasks). However, it
could be easily solved by a genetic algorithm. Vector of
tasks error probabilities is a possible solution. Fitness of this
solution could be computed this way. We will resolve all
process instances using random generator – process instance
will be replayed and error will be randomly generated using
error probabilities for tasks. For example:

Assume Serial Process: ABC – A – 0.02, B – 0.01, C –
0.04. Thus, the random generator will generate error with
probability 0.02 (Task A). If an error occurs then process
instance will stop and it will end with error. If there was an
error in historic data then fitness will be increased by 1,
otherwise by zero. Vice versa, if result of random generator
is successful, run of process and historic data also ends
successfully, fitness will also be increased by 1. This must be
repeatedly executed (at least 10-40 times, the more times, the
more precise result, but more computational cost).

The result of the genetic algorithm is most probable task
error rates. We did not have data for this type of problem.
We included this method as another future research idea.

IX. COLLECTING DATA

We are also trying to start discussion with specialists on
measurement, because measuring devices are quite
expensive. There is need to join information from
measurement, data mining and manufacture planning,
because there is no need to measure everything. For example
Half Measurement (Section III) is good example of saving
money. We will now describe what is important in
measurement to build simulator:

- Measure every critical task (bottlenecks). Task that

are not in any critical path, don not have to be

measured.

- It is good to have information about error in data,

because it is problem to get it from them using only

time information (Section III).

- Use Half Measurement everywhere where it is

possible. Be careful, because only workplaces with

low variation of production rate and high utilization

are candidates for Half Measurement.

- Information about breaks is important, because we do

not want to include them in production time.

- Sometimes, removable measure devices should be

used to measure more tasks in different times – but be

assured that nothing important has change since last

measurement. Information must be valid, not

obsolete.

- Machine with constant production speed, which are

also independent on product attributes do not have to

be measured. But be careful, sometimes preparation

of product for the constant machine is dependent on

product attributes, in that case, measure preparation

instead of production.

X. CONCLUSION

In the paper, it has been shown that the quality of results
does not depend only on our methods, but mainly on
manufactory itself. For example, if execution time cannot be
predicted from case attributes in expected precision,
prediction will be useless. But this does not mean that the
whole task is not predictable. Some tasks has little variance
itself, so no advanced methods are needed.

In our company, predictions helped lower execution time
variance, which is very useful in internal logistics planning,
but there is a question what precision is needed to implement
some better planning techniques that will enable significant
saving especially in space and time needed for
manufacturing production by improving input data for
planning algorithms. We can also find a subset of case
parameters that have low time deviation and try to optimize
their production. Other cases could be produced in another
time or in other machines in parallel with another approach
(slower but more robust).

Resources working speed was also the big issue. In
addition, dynamic aspect of process (new machines, resource
improvement) is a problem to solve. We also tried other
approaches like Association Rules and use them with
success, but still, some problems are awaiting us, mainly
because of unmeasured or partly measured processes. We
introduced some solutions that worked and we hope that
other problems will be solved too. This could be topic of our
further research. We believe these methods could reach
maturity and will be used in some manufactories in future.

297

International Journal on Advances in Software, vol 6 no 3 & 4, year 2013, http://www.iariajournals.org/software/

2013, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

ACKNOWLEDGMENT

This research was supported by the grants of MPO Czech
Republic TIP FR-TI3 039, the grant FIT-S-10-2, the research
plan no. MSM0021630528 and the European Regional
Development Fund in the IT4Innovations Centre of
Excellence project (CZ.1.05/1.1.00/02.0070).

REFERENCES

 M. Pospíšil, V. Mates, and T. Hruška, “Process Mining in
Manufacturing Company,” in The Fifth International
Conference on Information, Process, and Knowledge
Management, Nice, France, IARIA, 2013, pp. 143-148, ISBN
978-1-61208-254-7

 W.M.P. van der Aalst, H.A. Reijers, A.J.M.M. Weijters, B.F.
van Dongen, A.K. Alves de Medeiros, M. Song, and H.M.W.
Verbeek, “Business process mining: An industrial
application,” Information Systems, Volume 32, Issue 5, July
2007, pp. 713-732, ISSN 0306-4379, DOI:
10.1016/j.is.2006.05.003.

 M Song and W.M.P. van der Aalst, “Towards comprehensive
support for organizational mining,” Decision Support
Systems, Volume 46, Issue 1, December 2008, pp. 300-317,
ISSN 0167-9236, DOI: 10.1016/j.dss.2008.07.002.

 W. M. P. van der Aalst, and A. J. M. M. Weijters, “Process
mining: a research agenda”, Computers in Industry, Volume
53, Issue 3, Process / Workflow Mining, April 2004, pp. 231-
244, ISSN 0166-3615, DOI: 10.1016/j.compind.2003.10.001.

 W. M. P. van der Aalst, B. F. van Dongen, J. Herbst, L.
Maruster, G. Schimm, and A. J. M. M. Weijters, “Workflow
mining: A survey of issues and approaches,” Data &
Knowledge Engineering, Volume 47, Issue 2, November
2003, pp. 237-267, ISSN 0169-023X, DOI: 10.1016/S0169-
023X(03)00066-1.

 W. M. P. van der Aalst, “Process Mining,” Berlin, Heidelberg
2011, ISBN 978-3-642-19344-6

 A. Rozinat, R.S. Mans, M. Song, and W.M.P. van der Aalst,
“Discovering simulation models,” Information Systems,
Volume 34, Issue 3, May 2009, pp. 305-327, ISSN 030

 A. Rozinat, M.T. Wynn, W.M.P. van der Aalst, A.H.M. ter
Hofstede, and C.J. Fidge, “Workflow simulation for
operational decision support”, Data & Knowledge
Engineering, Volume 68, Issue 9, Sixth International
Conference on Business Process Management (BPM 2008) -
Five selected and extended papers, September 2009, pp. 834-
850, ISSN 0169-023X, DOI: 10.1016/j.datak.2009.02.014.

 W.M.P. van der Aalst, M.H. Schonenberg, and M. Song,
“Time prediction based on process mining”, Information
Systems, Volume 36, Issue 2, Special Issue: Semantic
Integration of Data, Multimedia, and Services, April 2011,
pp. 450-475, ISSN 0306-4379, DOI:
10.1016/j.is.2010.09.001.

 M. Pospisil., T. Hruška, “Business Process Simulation for
Predictions,” in BUSTECH 2012: The Second International
Conference on Business Intelligence and Technology, Nice,
France, IARIA, 2012, pp. 14-18, ISBN 978-1-61208-223-3

 J. Nakatumba, A. Rozinat, and N. Russell, “Business Process
Simulation: How to get it right,” Springer-Verlag, 2010,
doi=10.1.1.151.834

 J. Nakatumba and W.M.P.V.D. Aalst, “Analyzing Resource
Behavior Using Process Mining”, in Proc. Business Process
Management Workshops, 2009, pp. 69-80.

 M. Pospíšil, V. Mates, T. Hruška, “Analysing Resource
Performance and its Application in Company,” in The Fifth
International Conference on Information, Process, and
Knowledge Management, Nice, France, IARIA, 2013, pp.
149-154, ISBN 978-1-61208-254-7

 W.M.P. Van der Aalst, “Business Process Simulation
Revisited,” 2010, ISSN: 1865-1348

 B. Wetzstein, P. Leitner, F. Rosenberg, I. Brandic, S. Dustdar,
and F. Leymann, “Monitoring and Analyzing Influential
Factors of Business Process Performance,” Enterprise
Distributed Object Computing Conference, 2009. EDOC '09.
IEEE International, pp. 141-150, 1-4 Sept. 2009, doi:
10.1109/EDOC.2009.18

 D. Grigori, F. Casati, M. Castellanos, U. Dayal, M. Sayal, and
M.C. Shan, “Business Process Intelligence, Computers,” in
Industry, Volume 53, Issue 3, Process / Workflow Mining,
April 2004, pp. 321-343, ISSN 0166-3615, DOI:
10.1016/j.compind.2003.10.007.

 D. Grigori, F. Casati, U. Dayal, and M.C. Shan, “Improving
Business Process Quality through Exception
Understanding,Prediction, and Prevention,” in Proceedings of
the 27th VLDB Conference,Roma, Italy, 2001, 1-55860-804-
4

 R. Agrawal, T. Imielinski., A. Swami, “Mining Association
Rules Between Sets of Items in Large Databases”,
Proceedings of the ACM SIGMOD Conference on
Management of Data, Washington, USA, 1993, pp. 207-216.

 R. Agrawal, R. Srikant, “Fast Algorithms for Mining
Association Rules in Large Databases,” in VLDB '94:
Proceedings of the 20th International Conference on Very
Large Data Bases, San Francisco, USA, 1994, pp. 487—499.

 J. Han, J, J. Pei, Y. Yin, “Mining Frequent Patterns without
Candidate,” Proceedings of the ACM-SIGMOD Conference
on Management of Data (SIGMOD'00), Dallas, TX, 2000, pp.
1-12.

 B. Liu, W. Hsu, and Y. Ma, “Integrating Classification and
Association Rule Mining,” in ACM Conference on
Knowledge Discovery and Data Mining (SIGKDD’98), New
York, August 1998, pp. 80–86.

 W. Li, J. Han, and J. Pei.: CMAR, “Accurate and efficient
classification based on multiple class-association rules,” in
IEEE International Conference on Data Mining (ICDM’01),
San Jose, California, 2001, pp. 369 – 376.

 M. L. Antonie, and O. Zaiane, “Text Document
Categorization by Term Association,” in Proceedings of the
2002 IEEE International Conference on Data Mining
(ICDM'02), Maebashi City, Japan, 2002, pp. 19-26.

 V. Bartík, “Association Based Classification for Relational
Data and Its Use in Web Mining,” in IEEE Symposium on
Computational Intelligence and Data Mining, Nashville,
USA, 2009, pp. 252-258.

