
The Data Checking Engine: Complex Rules for Data
Quality Monitoring

Felix Heine, Carsten Kleiner, Arne Koschel
University of Applied Sciences & Arts Hannover

Faculty IV, Department of Computer Science, Hannover, Germany
Email: firstname.lastname@hs-hannover.de

Jörg Westermayer
SHS Viveon

Germany
Email: joerg.westermayer@shs-viveon.de

Abstract—In the context of data warehousing and business
intelligence, data quality is of utmost importance. However, many
mid-size data warehouse (DWH) projects do not implement a
proper data quality process due to huge up-front investments.
Nevertheless, assessing and monitoring data quality is necessary
to establish confidence in the DWH data. In this paper, we
describe a data quality monitoring system: The “Data Checking
Engine” (DCE). The goal of the system is to provide DWH
projects with an easy and quickly deployable solution to as-
sess data quality while still providing highest flexibility in the
definition of the assessment rules. It allows to express complex
quality rules and implements a two-staged template mechanism to
facilitate the deployment of large numbers of similar rules. While
the rules themselves are SQL statements the tool guides the data
quality manager through the process of creating rule templates
and rules so that it is rather easy for him to create large sets of
quality rules. The rule definition language is illustrated in this
paper and we also demonstrate the very flexible capabilities of
the DCE by presenting examples of advanced data quality rules
and how they can be implemented in the DCE. The usefulness
of the DCE has been proven in practical implementations at
different clients of SHS Viveon. An impression of the actual
implementations of the system is given in terms of the system
architecture and GUI screenshots in this paper.

Keywords—Data Quality, Quality Rules, Data Analysis, Data
Quality Monitoring, Data Warehouses

I. INTRODUCTION

Data quality (DQ) is of utmost importance for a successful
data warehouse project. In this context, continuous monitoring
is an integral part of any DQ initiative. In this paper, we de-
scribe a data quality monitoring system called Data Checking
Engine (DCE) developed collaboratively at the University of
Applied Sciences & Arts Hannover and SHS Viveon. The main
goal is to provide a flexible, yet simple tool to monitor data
quality in DWH projects, which can also be used during the
DWH development to test its Extract Transform Load (ETL)
process. Implementations of the system have already been used
at some key pilot customers of SHS Viveon and continuous
improvements of the technical as well as the conceptual parts
of the system are based on feedback from those customers
gathered during daily usage of the system.

Data rules are used in order to constantly monitor the
quality of data of a database. For the definition of these rules, a
flexible language is necessary. Quality rules are either derived
from business rules or found via profiling or data mining. They
are executed either in regular intervals or based on specific
events like the completion of an ETL job. The results of

checking the rules are recorded in a result repository, which
also keeps historical data so that users can evaluate the quality
of data over time. As rules will evolve over time, it is necessary
to keep a history of rule definitions so that historic results can
be related to the correct version of the rule’s definition.

We believe that the ability to express complex rules is
crucial. A set of hard-coded rule types found in some data
quality tools is typically only suitable to detect rather simple
quality problems on the attribute or single tuple level. However,
there are more complex data quality problems, which cannot
be detected using such rules. As an example, consider an error
located in the logic of an ETL process. Due to this error, the
process fails to reference the correct product group for some of
the records of a sales fact cube. The bug is subtle and does not
show up very often. At the attribute level all sales records are
correct. However, the trend of the time series showing the sales
sum with respect to individual product groups will indicate a
quality problem. Other advanced data quality problems and
according check rules will be explained in sec. IV, which is
also one of the major extensions of this article in comparison
to [1].

It requires skilled users to write such rules, but larger sets
of rules will look similar in structure. They differ only in the
tables and attributes they are applied to. Therefore, a template
mechanism is useful to help users define such rules. The idea
is that only the template creator has to cope with the full
complexity; template users can then apply these templates to
their tables and attributes.

To avoid discontinuity of the reporting environment for
DWH users, re-using existing Business Intelligence (BI) tools
is superior over building a specialized quality reporting GUI.
Still, it is sufficient to export rule results to a quality data
mart, which can then be accessed by any standard BI tool.
However, the plain rule results have to be aggregated to more
comprehensive quality metrics in a flexible and user defined
way.

Furthermore, the rules themselves have to be tested in
the development environment before deployment. Thus, an
automated transfer and synchronization with the production
system is necessary.

In a nutshell, we target the following requirements:

• Express complex rules
• Reduce complexity of rules for end users (by utilizing

a template mechanism)

171

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Execute the rules regularly or upon specific events
• Keep a history of rule definitions and execution results
• Store this history in a quality data mart persistently
• Aggregate the rule results to quality metrics
• Provide export/import mechanism for rule meta data

This paper is an extended version of the paper [1]. The
example section has been included to describe new quality
rule types and to underline the flexibility of our approach,
and the related work section has been revised and extended
significantly as well.

The remainder of this paper is organized as follows:
In the following section, we give an overview of related
work. Section III focuses on the definition of quality rules
and explains our template mechanism in general, whereas
Section IV illustrates the rule definition language in detail
by discussing how to implement frequently occurring sample
rules. This section is the major extension of this article in
comparison to the earlier version [1]. Section V describes the
DCE architecture and in the subsequent section we briefly
elaborate on quality metrics. Finally, Section VII (which is
also an addition in comparison to [1]) illustrates the DCE
concept and GUI in more detail, before we summarize our
achievements and give an outlook to our future plans in the
final section.

II. RELATED WORK

Over the last decade, much research in the data quality
domain has been conducted, see for example [2], [3], [4], or
[5]. Research areas related to data quality are outlier detection,
data deduplication, data quality monitoring, data cleansing,
and data mining to detect quality rules. We are specifically
interested in monitoring and reporting data quality, and in
algorithms to detect quality rules automatically from existing
data. In general, we follow the approach of Kimball [6] who
outlines an approach to DQ assessment in DWH systems.

For our work, ideas and formalisms to describe quality
rules are highly relevant. Many types of quality rules stem
from the field of database constraints, as described by Bertossi
and Bravo in their survey [7]. As classical constraints are
not very flexible, numerous new kinds of constraints have
been proposed in the literature. In [3], Fan describes multiple
formalisms that target specific quality problems. Conditional
functional dependencies are used to express more complex
rules spanning multiple tuples of a relation (see also [8], [9]),
while conditional inclusion dependencies are generalizations
of referential integrity checks. The classical edit rules of
Fellegi and Holt are concerned with the integrity of individual
records [10]. In [11], Fan defines editing rules to match
records with master data. Further rule types include differen-
tial dependencies [12], multidimensional conditional function
dependencies [13], and probabilistic, approximate constraints
[14]. From our point of view, these are examples of specific
types of rules. We aim to provide a framework that is able
to express any of these rules. As all these approaches can be
reformulated to SQL, the DCE is able to execute these rules.
However, this leads to rather complicated rule definitions. To
make life easier for the end users, we further provide a template
approach. With this approach, we can define a template for
each of the rule types, so that rules can be instantiated in an
easy way.

In the domain of data deduplication (also called record
linkage), rules are important to describe matching criteria.
As an example, the IntelliClean [15] system uses rules like
<if> condition <then> action with probability p to match
duplicates. Fan et al. [16] introduce matching dependencies to
describe criteria that are used to identify duplicate records. For
a survey of duplicate record detection, see [17].

Another approach is to extend SQL to incorporate data
quality features. An example is the FraQL [18] language that
specifies pivoting features and allows to integrate user defined
grouping and aggregate functions that allow to analyze data
more comfortably. The drawback is that a special execution
engine is required. Thus, the features of existing relational
optimizers are not available or have to be reproduced.

Furthermore, many prototypic research systems and com-
mercial tools are present. For an overview, see [19]. Most
existing tools focus on dimension data only and thus stress
single record problems and deduplication. The profiling com-
ponent of existing data quality tools currently provides only
basic algorithms to detect quality rules, see [20]. We think that
more advanced profiling techniques are necessary to detect
quality rules automatically. Basic approaches are found in
the domains of data mining and outlier detection, also called
anomaly detection. An overview can be found in [21] as well
as in the recent book of Aggarwal [22]. We plan to integrate
these concepts in a later version of the DCE. For this, we
are especially interested in finding outliers in time series (see,
e.g., [23], [24]) and algorithms to analyze multidimensional
data (see, e.g., [25], [26], or [27]). However, to the best of our
knowledge, no tool provides a similar mechanism that allows
to build complex rule templates, which can, for example, be
used to test indicator values against time series models.

III. RULE DEFINITION LANGUAGE

A central issue is the language to define the quality rules.
On the one hand, it has to be expressive to allow complex rules
like time series tests. On the other hand, fast definitions of
simple rules like NULL value checks has to be possible. Also,
the rule execution is typically critical with respect to execution
time and resource consumption. As large datasets have to be
checked, an efficient rule execution engine is needed.

Thus, we decided to rely on the native SQL executor of the
DBMS. This means, the core of each rule is an SQL statement,
which collects the required information from the underlying
tables. This statement is written by the DCE user, allowing
even vendor-specific optimizations like optimizer hints.

DCE defines a standard attribute set for the result tuples.
The rule statements have to adhere to this standard. Each
statement computes a result value, which is the basis for the
rule check. For a NULL rule, the result value might be the
percentage of NULL values of the checked values. There might
either be a single result value or multiple values, broken down
by dimensional hierarchies. The latter case might for example
yield a percentage of NULL values for each product group in
each region. Furthermore, two base values can be returned.
They can provide additional information for the rule outcome.
This might be helpful when interpreting the rule results.

For each rule, multiple bounds can be defined, specifying
valid ranges for the observed values. The bounds can be

172

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1. Instantiating a template

activated or deactivated with respect to all values contained in
the result tuple, including both base values and the dimension
values. In this way, the bound for NULL values can be
normally defined to be 5 percent, however, for specific product
groups it might be higher. A specific application for this feature
is to change bounds for business metrics, e.g., according to
the week day. Typically, the revenue sum for traditional stores
might be zero on Sundays.

A severity can be assigned to each rule bound, and multiple
bounds with different severity can be defined for a rule. The
severity information of failed rules is returned to the scheduler.
Based on this information, the scheduler might, e.g., decide to
interrupt an ETL process or to alert the DWH team.

Each rule’s SQL statement can have multiple parameters,
which are set at execution time. These parameters can for
example be used to determine the range of data to be checked.
In this way, a quality rule running after an ETL job might be
limited to check only the new records in a fact table.

A. Sample rule

In the following, we show how a rule that checks NULL-
values does look like. The target is to check the number of
NULL value in the middle name in the customer records. As
the typical percentage of people that have a middle name varies
from country to country, we calculate the values per country.
Thus, the country code is used as a dimension value and one
result record per country is generated. The two base value

fields are used to count the overall number of customers in each
country and the number of customers without middle name,
respectively. The result value is the percentage of customers
in each country without middle name.

SELECT
trunc(sysdate, ’dd’) Result_date,
countrycode dimValues,
sum(1) baseValue1,
sum(case when middlename is null

then 1
else 0 end) baseValue2,

round(sum(case when middlename is null
then 1 else 0 end) /

sum(1) * 100) resultValue
FROM customer
WHERE created >

to_date($date$, ’YYYY-MM-DD’)
GROUP BY countrycode

Fig. 2. Sample rule code

The SQL for this check is shown in Fig. 2. The result value
is then checked against different bounds that are defined on a
per-country basis. The rule uses a parameter $date$ that is
used to narrow the check to customers which have been created
after the specified date.

173

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

SELECT
trunc(sysdate, ’dd’) Result_date,
§reftable1_refdimension1§ dimValues,
sum(1) baseValue1,
sum(case when §reftable1_refattribute1§

is null then 1
else 0 end) baseValue2,

round(
sum(case when §reftable1_refattribute1§

is null then 1
else 0 end) /

sum(1) * 100) resultValue
FROM §reftable1§
WHERE §reftable1_refattribute2§ >

to_date($date$, ’YYYY-MM-DD’)
GROUP BY §reftable1_refdimension1§

Fig. 3. Sample template code

B. Templating

In typical environments, there is often a need to define
a number of equivalent rules over a large number of tables
and attributes. To accommodate for this requirement, we
implemented a template concept.

A template looks quite similar to a normal rule. It con-
tains an SQL statement producing the same set of standard
columns, and it might also contain bound definitions. However,
instead of the target table and attribute names, the template’s
SQL statement contains special markers. For attributes, these
markers declare the purpose of the attribute within the rule.
Once the user has defined a template, she can instantiate it for
multiple sets of tables and attributes. During this process, she
either defines new bounds or uses the predefined bounds from
the template for the generated rules. The engine forwards rule
parameters defined within the template to the generated rules.

C. Example continued

The sample statement is a good candidate for a template.
In the template, there is another type of parameters called tem-
plate parameters that are replaced at template instantiation (i.e.,
rule creation time). These are used to define placeholders for
the table and attribute names, like §reftable1§ (cf. Fig. 3).

A GUI assists unexperienced users with defining the tem-
plate parameters, as shown in Fig. 1. In this dialog, the GUI
reads the database catalog and lets the user map the template
parameters to catalog objects. E.g., §reftable1§ is replaced
with sales_fact. Note though that in the current version
of the system data type integrity between catalog objects
and template parameters is not automatically enforced by the
system. I. e. the expert assigning catalog objects to template
parameters has to take care that the data types are compatible.
If they are not, the execution of the rule will fail with a
corresponding SQL error message that will be recorded as a
rule execution result in the result repository (cf. Section V).
This issue never caused problems in the actual implementations
of the system so far, but is a candidate for a future extension,
e. g. by providing the opportunity for the template developer
to place hints on the expected data type in the template that

can assist the person actually creating the rules in the selection
process.

IV. RULE EXAMPLES

In this section, we illustrate how the rule definition lan-
guage introduced in the previous section can be used for
advanced quality checks. In order to do so, we give examples
for quality rules and show how they can be defined within
the Data Checking Engine. The section has two purposes:
On the one hand, we want to demonstrate that the DCE
supports well-known rule types from the data quality literature.
On the other hand, we want to introduce new rule types
whose capabilities to detect possible quality problems are more
sophisticated compared with the well-known rules. We use
the AdventureWorks2008DW (in short AWDW) database from
Microsoft [28] for our examples.

Data rules are found either by profiling and mining existing
data, or by looking at business rules. The mining approach
assumes that you either have a data set that is a-priori known
to be correct, or you have to do outlier detection and data
cleansing on the way. Currently, mining is out of scope for
the DCE. This means that we performed the rule mining using
external tools (in our case the GNU R tool). However, we plan
to integrate this step further with the DCE system in the future,
cf. Section VIII.

In general, we distinguish two kinds of rules. Hard rules
are those that can clearly identify wrong data. As an example,
the violation of a pattern for product codes confirms that the
given product code is apparently incorrect. In the same sense,
testing a foreign key relationship is a hard constraint. However,
there are many quality problems that cannot be detected using
hard rules. For this, we need another kind of rule, which we
call value rules, according to Jack Olsen [5]:

There are additional tests you can construct that point to
the presence of inaccurate data that are not as precise in
establishing a clear boundary between right and wrong. These
are called value rules.

We are going to present some examples of this kind of
rules in the last subsections. However, we start with examples
for simpler rules that are hard constraints.

A. Pattern for customer alternate key

SELECT
trunc(sysdate, ’dd’) Result_date,
§reftable1_refdimension1§ dimValues,
0 baseValue1,
0 baseValue2,
CASE WHEN
regexp_like(§reftable1_refattribute1§,

’$regexp$’)
THEN 1 ELSE 0 END resultValue

FROM §reftable1§

Fig. 4. Template for regular expression checking

In AWDW, each customer has an attribute
CUSTOMERALTERNATEKEY that contains the business

174

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

key consisting of the letters ‘A’ and ‘W’ followed by 8 digits.
Such a pattern can be validated using a regular expression.

The template shown in Fig. 4 is used for all rules that check
regular expressions. To check the alternate key, we instantiate
this template using the dim_customer table and set the
$regexp$-parameter to ˆAW[0-9]{8}$.

B. Consistency of translated attributes

SELECT
trunc(sysdate, ’dd’) Result_date,
t1.§reftable1_refdimension1§ dimValues,
0 baseValue1,
0 baseValue2,
count(t2.§reftable1_refdimension1§)

resultValue
FROM §reftable1§ t1
LEFT JOIN §reftable1§ t2

ON t1.§reftable1_refattribute1§ =
t2.§reftable1_refattribute1§

AND t1.§reftable1_refattribute2§ !=
t2.§reftable1_refattribute2§

GROUP BY t1.§reftable1_refdimension1§

Fig. 5. Template for functional dependency checking

In the AWDW dimension tables, some descriptions are
present in multiple languages. As the same English text is
expected to have always the same translation, a functional
dependency (FD) is present. To check FDs, we have written
a template (see Fig. 5). The template searches for tuple
combinations that agree upon the first attribute’s value and
disagree upon the second attribute. For each tuple, the number
of tuples that have a different value in the second attribute is
counted.

We instantiated the template, e.g., for the attributes
ENGLISHEDUCATION and SPANISHEDUCATION in the
dim_customer-table. For each tuple in the table, the
rule counts the number of tuples that match the current
tuple with respect to ENGLISHEDUCATION but disagree
in SPANISHEDUCATION. We have modified the text for
SPANISHEDUCATION in a single tuple. As there are 5099
tuples that share the same text in ENGLISHEDUCATION, each
of these tuples gets a resultValue of 1, while the modified tuple
gets a value of 5098. Although the probability is high that the
translation is correct for 5099 tuples and it is wrong for only
a single tuple, the rule cannot make this distinction. Thus,
the bound for the rule is zero, meaning each of the tuples is
regarded to be a potential quality error.

C. Sales count of clothing and accessories

Now we start with examples for value rules. First, we are
going to check whether the sales count (items per day) of the
two product categories clothing and accessories is reasonable.
A scatter plot of the counts per day in Fig. 6 indicates that
there is a correlation between the two variables. Indeed, the
correlation coefficient is 0.7469.

We are going to exploit this to build a quality rule. The
idea is to estimate a bivariate normal distribution from the data

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

50
10

0
15

0

Clothing (count)

A
cc

es
so

rie
s

(c
ou

nt
)

Fig. 6. Item sales per day in two categories

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●● ●
●

●

●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

0 10 20 30 40 50

50
10

0
15

0

Clothing (count)

A
cc

es
so

rie
s

(c
ou

nt
)

 1e−04

 2e−04

 3e−04

 4e−04

 5e−04

 6e−04

 7e−04

 8e−04

 9
e−

04

m=16
m=8
m=0

Fig. 7. Estimated distribution and distance

and to use the squared Mahalanobis distance from the center
of the distribution as an outlier score for each data point. The
estimation uses the variance-covariance matrix S of the data
as an estimate for the covariance and the sample mean of the
data x̄ as the mean of the distribution. The contour lines of the
density of the resulting distribution are displayed in Fig. 7.

The squared Mahalanobis distance is calculated using the
following equation (see [29, p. 662]). Note that we assume

175

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

that x is a column vector.

m2 = (x− x̄)TS−1(x− x̄) (1)

The distance values are shown in the figure using a grey scale.
An important property of the Mahalanobis distance is that it
takes the correlation between the attributes into account. As an
example, the point (40, 153) is not an outlier, while the point
(12, 118) is an outlier although it is more close to the center in
terms of a Euclidean distance. This is because (40, 153) better
fits with the distribution of the data.

SELECT trunc(sysdate, ’dd’) Result_date,
key dimValues,
x1 baseValue1,
x2 baseValue2,
msq resultValue

FROM
(SELECT (xn1*(xn1*$si11$ + xn2*$si21$) +

xn2*(xn1*$si12$ + xn2*$si22$))
msq,
x1, x2, key

FROM
(SELECT x1-$xm1$ as xn1,

x2-$xm2$ as xn2, x1, x2, key
FROM
(SELECT §reftable1_refattribute1§ x1,

§reftable1_refattribute2§ x2,
§reftable1_refdimension1§ key

FROM §reftable1§
)
)

)

Fig. 8. Template to calculate Mahalanobis distances

The rule template in Fig. 8 calculates the squared Maha-
lanobis distance. It is based on a view c34 that aggregates
the sales count in both categories on a daily basis. The entries
of S−1 are provided as parameters $si11$, etc. and x̄ is
provided using the parameters $xm1$ and $xm2$.

We instantiated the template and used a bound of 9 on the
distance. So each data point with a distance greater than 9
is declared to be suspicious. The corresponding points which
are detected as errors by the rule are marked with a plus in
Fig. 7. Please note that these errors have to be interpreted
differently compared to the previous errors. Errors reported
by value rules are unusual values that have to be investigated
further by domain experts but do not immediately mean that
a data quality issue has been detected.

D. Age distribution of customers

As another example for a value rule, we want to check
whether the ages of our customers are reasonable. We assume
that the current age distribution is correct and use it as
a reference distribution. Our goal is to develop a quality
rule that generates a warning when the distribution changes
significantly. To achieve this, we start by creating a view
that displays the current age distribution. The view is called
customer_age. The distribution initially looks as shown
in Fig. 9 (light gray bars labeled “original”). Note that in
fact the distribution shows that AdventureWork’s customers

98−

88−97

78−87

68−77

58−67

48−57

38−47

28−37

original
1st test
2nd test

0 1000 2000 3000 4000 5000 6000

Fig. 9. Original age distribution and test modifications

SELECT trunc(sysdate, ’dd’) result_date,
1 dimValues,
0 baseValue1,
0 baseValue2,
sum((N1-E1)*(N1-E1)/E1 +

(N2-E2)*(N2-E2)/E2) resultValue
FROM (
SELECT nvl(N1, 0) N1, nvl(N2, 0) N2,

N1SUM * (nvl(N1, 0) + nvl(N2, 0))
/ (N1SUM+N2SUM) E1,

N2SUM * (nvl(N1, 0) + nvl(N2, 0))
/ (N1SUM+N2SUM) E2

FROM
(SELECT §reftable1_refattribute1§ key,

§reftable1_refattribute2§ N1
FROM §reftable1§) D1
FULL OUTER JOIN
(SELECT §reftable2_refattribute1§ key,

§reftable2_refattribute2§ N2
FROM §reftable2§) D2
ON (D1.key = D2.key),
(SELECT sum(§reftable1_refattribute2§)

N1SUM FROM §reftable1§) N1,
(SELECT sum(§reftable2_refattribute2§)

N2SUM FROM §reftable2§) N2
)

Fig. 10. Template for χ2 homogeneity test

are quite old, which might already indicate a data quality
problem. However, we ignore this for the sake of the example
and assume that the initial distribution is correct.

We now store a snapshot of the view in the table
customer_age_ref. This table will serve as a reference for
the current age distribution. Now we can use a χ2 homogeneity
test to see whether the current customer’s ages are similarly

176

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

distributed. The test statistic is defined as follows:

χ2 =

k∑
j=1

m∑
i=1

(nij − Eij)
2

Eij
(2)

In this formula, k is the number of samples to be compared.
As we have two samples (the reference age distribution vs. the
current distribution), we have k = 2. Furthermore, m is the
number of groups, in our case m = 8 as we have eight age
groups. nij is the number of customers in sample j belonging
to age group i. Eij is the expected number of customers in
sample j in age group i. It is calculated using the margins:

Eij =
ni·n·j
n

(3)

Here, ni· is the overall number of items in group i in both
samples and n·j is the size of sample j.

Again, we define a rule template to calculate the statistic.
It is shown in Fig. 10.

The result of this statement is the test statistic for the χ2

test. Its value has to be compared with an appropriate quantile
of the χ2 distribution: χ2

(k−1)(m−1);0.95 = χ2
7;0.95 = 14.067.

We use this value as an upper bound. All values above this
one will generate a quality error.

When we initially run the rule, the output is (as expected) 0.
This is due to the fact that we compare two identical samples.
To test the rule, we first insert 20 customers of age 59. They are
in age group 58-67, which already has nearly 2600 customers.
The rule now yields a value of 0.066, which is way below
our bound, as expected. Now we start to insert more unusual
customers of age 99. As we insert 5 of them, the value already
becomes 2.33. With 15 more customers of this age, we reach
15.418, which generates a quality error.

2006 2007 2008

0
20

60
10

0

whole time series

re
ve

nu
e

(T
$)

2006 2007

0
20

60
10

0

subseries used for modeling

re
ve

nu
e

(T
$)

Fig. 11. Daily internet revenue

E. Check the revenue time series

In our final example, we check the overall daily Internet
revenue of the AdventureWorks company. It can be calculated
by aggregating the facts in fact_internet_sales. Again,
the underlying idea of the rule is to define a model for the data
and to check that the new data does not contradict the model
significantly. For this example, we use the data up to the end
of 2006 to define the model and then check the data from 2007
on against the model. Fig. 11 shows the complete time series
and an enlarged plot of the part used for modelling.

In this case, a time series model is appropriate and we
use the ARIMA family of models [30]. These are stochastic
models that are composed of an auto-regessive part (AR), an
integration part (I), and a moving average part (MA). When the
integration part is present, the differenced time series is used
instead of the original one. The basis for the series is a series
of random components. They are assumed to be independent
and normally distributed. The AR part captures dependencies
between the current value and the preceding values, while the
MA part is used to model a moving average of the past random
components.

A first look at the plots indicates that the series is non-
stationary, as there seems to be a trend, at least from mid-
2007 on. The variance looks fairly large and there is no sign
of seasonality.

We use the auto.arima function of R to select an
appropriate ARIMA model and to estimate the parameters. The
result is an ARIMA(0,1,2) model. This means that no AR part
is present, the original series is differentiated once, and the
MA part averages over the past two random components. The
following coefficients are estimated:

yt − yt−1 = et +−1.0012et−1 + 0.0626et−2 (4)

The random components are denoted by et. We can see
that the negative last random value has a huge influence on
the current observation (coefficient -1.0012). The estimated
standard deviation is ŝ = 7951.597. The AIC value is rather
large (11407).

The basic idea of the rule is to use the model to calculate
each day a one step forecast and to check whether the newly
observed value is within the forecast interval. If it is outside,
then we generate an error, as the value is rather unlikely. For
the forecast, we use equation (4) and set et = 0, as we know
nothing about the current random component. The past two
values et−1 and et−2 are estimated using the past residuals
(i.e., the differences between the past forecasts and observed
values). We denote the residuals with êt−1 and êt−2. This
yields the following equation for the point forecast ŷt:

ŷt = yt−1 +−1.0012êt−1 + 0.0626êt−2 (5)

The 95% forecast interval can be computed as ŷt ± ŝ ∗ 1.96.

In order to build a DCE rule using this model we have
to store the past residuals so that we can access them during
the current rule execution. We use the DCE repository’s rule
outcome table for this task. In this way, each day’s run stores
the current residual in the repository. We have to bootstrap the
rule by feeding at least two residuals in the results table so
that the rule can start to calculate the next forecasts. These

177

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

past residuals are included in the R object generated by the
auto.arima function. Currently, we have to store them in
the repository by hand. Later, we plan to automate this task in
a profiling phase.

SELECT
trunc(sysdate, ’dd’) Result_date,
datekey dimValues,
extendedamount baseValue1,
0 baseValue2,
get_residual(’$checkdate$’) resultValue

FROM daily_revenue
WHERE fulldatealternatekey =

to_date(’$checkdate$’, ’YYYY-MM-DD’)

Fig. 12. Rule to check a time series

We implemented the forecast equation (5) as a stored
function get_residual within the database. The function
only returns the residual, as this is all we need to check
the rule bounds and to prepare for the next run of the rule.
Using this stored function, the rule’s SQL is quite simple, as
shown in Fig. 12. The view daily_revenue calculates daily
aggregates of the internet sales revenue.

The rule uses a parameter $checkdate$ that specifies
the target date. Each rule run checks a single day. As the rule
depends on the past two runs we have to ensure that the rule
runs every day without omissions.

2007 2008

20
40

60
80

10
0

date

re
ve

nu
e

(T
$)

●
●●

●

●●●

●●

●
●●

●

●
●

●

●

●

●

●
●●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●
● ●

●
●●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

Fig. 13. Prediction intervals and warned values

Fig. 13 shows the second part of the time series and the
forecast intervals calculated from the above formula for 95%
(dashed) and 99% (dotted). Circles indicate data points that
are outside the 95%; filled circles indicate those that are also
outside the 99% interval. Depending on the bounds specified
in the rule, the DCE reports these values.

V. ARCHITECTURE

In this section, we will illustrate the system architecture of
the current DCE implementation, which is capable of checking
the previously explained data quality rules. We also show how
the DCE fits into a typical enterprise DWH implementation.
Fig. 14 shows an overview of the DCE overall architecture. The
DCE itself is organized as a classical three-tier application. It
interacts with the enterprise data warehouse system in order
to compute quality indicators. Also, results of the data quality
checks may be propagated into another external database
system, the data quality data mart. This database in itself is
also organized as a data mart and provides long term storage
of computed data quality indicators in order to be used for
long term analysis of enterprise wide data quality. In a sense
it is a meta-data warehouse for data quality. There is also
an external scheduling component (typically standard system
scheduling capabilities), which triggers computation of data
quality indicators at previously defined points in time.

Fig. 14. Data checking engine architecture overview

Within the DCE itself the main entry point for data quality
managers is the GUI of the DCE web application (shown at
the bottom of Fig. 14). The GUI is used to manage users of the
DCE application, to manage data quality rules, and to manage
data rule executions. As typically the execution of data quality
checks is not triggered manually, there is also a command-line
client library for the rule execution engine that is triggered by
an external scheduler. The schedule to be used is managed in
the web application as well.

The main data checking business logic can be found in
the middle tier. This logic is used by the web application

178

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

as described above. Note that there is a strict separation
between user management, rule management and rule exe-
cution management in the middle tier as well. Whereas the
user administration component provides standard functionality,
note that the rule management component contains advanced
features. For instance the template mechanism described in the
previous section is implemented here.

The execution engine is also managed by the web appli-
cation: on the one hand, rules can be manually executed from
the web application, on the other hand, scheduled execution
can be defined here.

During rule execution, the engine replaces the parameters
in the rule’s SQL statement with their current values and then
runs the statement using the target database. Thus, moving
large amounts of data into the DCE engine is avoided. The
result of the SQL statement is then further processed. This
includes checking the currently applicable bounds and testing
their severity.

In the execution engine, it is also defined, which rules
are executed on what data warehouse database under whose
privileges. Note that multiple different data warehouses (or
database systems) may be used as source, because the connec-
tion information is also managed by the web application.

Note that the performance of the engine itself is not
critical. All rules are finally translated to SQL and executed
on the target database. Compared to the execution time of the
SQL statement (which perhaps runs on large data sets), the
preparation phase and the interpretation of the results, which
includes bound checking, is negligible. Thus, the scalability
of the DCE depends heavily on the scalability of the target
database. In case of performance problems, typical database
tuning options like indexing or materialization of views are
used.

Finally, the database layer consists of three separate areas:

• Rule repository, which holds the data quality rules as
well as base templates

• Result repository holding results of rule execution
• User database which is used for access management

to only the DCE itself

Once results of the executed data quality rules have been
stored in the result repository they may be propagated to the
data quality data mart that aggregates the results into quality
indicators.

This data mart is not part of the DCE but located within
the standard DWH infrastructure of the company. Thus, stan-
dard interfaces such as reporting and BI tools can be used
to further present and analyze the data quality status. This
way the additional effort for data quality monitoring can be
kept minimal as access to data quality indicators follows
well established processes and uses well-known tools, which
are used for regular monitoring of enterprise performance
indicators as well. In addition, the concept of viewing data
quality indicators similar to regular performance indicators is
very fitting, as these have to be tracked accordingly in order
to ensure reliability of data in the data warehouse. Ultimately,
this is necessary to make the right entrepreneurial decisions
based on reliable information.

VI. DATA QUALITY METRICS

The result repository contains large amounts of specific
results that individually describe only a very small fraction
of the overall data quality of the DWH. In order to get a
quick overview of the quality level, a small set of metrics
that aggregate the rule results is required.

In the literature, there are various approaches to define
data quality indicators, for example [31]. Thus, we decided
to provide a flexible approach that enables the user to define
her own indicator hierarchies. The engine stores indicator
definition meta data and calculates the resulting indicator
values.

An important issue here is to take incremental checks into
account. As an example, consider a rule that checks the number
of dimension foreign keys in a fact table that reference a
dummy instead of a real dimension entry. As the fact table
is large, the daily rule just checks the new fact records loaded
in the previous ETL run. Thus, the indicator has to aggregate
over the current and past runs to provide an overall view of
the completeness of the dimension values.

VII. DCE ’LOOK AND FEEL’ IMPRESSIONS

Fig. 15. End user – Major use cases

Based on the above discussed concepts and architecture we
implemented the overall DCE system. To give an impression
how DCE actually looks like from a usage perspective, we will
illustrate in this section some selected use cases and screen
shots from the DCE GUI.

A. Use Cases

We can distinguish between two main types of users within
DCE, namely end users and administrators.

End users are the actual rule authors. Based on their domain
knowledge, they formulate DCE rules as described above.
Respectively, their main use cases (after their login to DCE) are
’show rule group’, ’input rules’ maybe based on an existing

179

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 16. User’s central menu

Fig. 17. User’s rule insert / edit screen

one, ’edit rule’, and ’show rule results’. As explained, rules
could be based on rule templates. The main use cases are
illustrated in Fig. 15.

Administrators have as their main responsibilities the man-
agement of user accounts, database connections, and general
settings.

Fig. 18. Execution results 1

Fig. 19. Execution results 2

B. Screen Shots

To give an impression of the ’look and feel’ of the DCE
GUI, we show a few screen shots here.

Fig. 16 shows the central menu options for a DCE end
user, namely rule and template management, rule execution,
execution results inspection, and edit user account.

A typical DCE end user task is the insertion of new rules.
Fig. 17 shows the corresponding screen, which allows a DCE
end user to edit new rules.

Two typical result screens from rule execution are shown in
Fig. 18 and Fig. 19. In Fig. 19 results from failed rule checks
(errors) are shown as well.

In addition, further options exist, e. g., to edit rule tem-
plates, to group rules, and options for administrators as well.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we have presented a motivation why complex
data quality rules are required in most practical enterprise
application scenarios. We have developed a rule definition
language with a two-stage templating mechanism in order to
be able to express most of these rules for SQL-based data
sources. The language along with the templating mechanism
is both powerful enough to express complex rules as well as
simple enough to be used by domain experts in practice. This
has been proven by a prototypical implementation based on the
described architecture. This tool has been validated by inter-
viewing teams of different DWH projects and building project
specific prototypical setups in a real world environment. Our
engine has been able to support their quality monitoring
requirements. Especially, the flexibility in rule definition was
appreciated. We have not only detected quality problems on
tuple level but also more complex issues, e.g., checking the
trend of indicators stored in a fact table. As expected, our
template mechanism has proven to be an important way to
simplify rule definition.

The engine keeps a comprehensive history of rule results
and rule meta data, which allows to monitor data quality over
time and to check whether quality improvement projects were
successful. This quality data is exposed to external BI tools for

180

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

reporting and further analysis. This integration of quality data
into tools for further analysis will be significantly improved
and simplified in the future. We aim to provide semi-automated
aggregation features that provide the data quality manager in
an enterprise with a set of traffic lights on a dashboard-like
portal in order to get an impression of the overall data quality
quickly and easily.

An important consequence of the flexibility of our approach
is that the DCE can also be used during DWH/ETL develop-
ment to test the result processes. The testing rules developed
during this project phase may also be used during normal
operation later on, reducing the overall cost of data quality.
Practical experiences with this kind of dual use of rules will
be gathered in the future. An advantage of this approach might
be an improved quality of the quality rules themselves as their
definition will be based on thoroughly developed concepts.

Our approach is currently working on any relational
database system. In the future, we plan to also integrate
data in other data sources such as Big Data systems like
Hadoop and other NoSQL database systems, as more and
more relevant data will be stored there. Thus, data quality
should be monitored there as well. As there is currently no
universal query language standard like SQL in the relational
sector, we will have to devise a flexible way to cope with
various rule definition languages and/or define a generic rule
definition language together with automated translations into
the languages of the source systems.

We will also work further on the process of determining
quality rules. For newly defined rules the data quality manager
faces the issue that it is difficult to determine whether there is
an actual data quality problem or an inaccuracy in the rule.
Consequently, we plan to further explore the possibility to
semi-automatically derive data quality rules by advanced data
profiling methods. These may even be enhanced by integrating
data mining processes.

Finally, there is still a need for even more advanced data
quality rules that are based on more sophisticated statistical
models (both static and dynamic) as well as multi-variate time
series data. While basic ideas for this have been presented in
Section IV, in the future we would like to extend this approach
and also reduce the manual effort by semi-automated steps.

REFERENCES

[1] F. Heine, C. Kleiner, A. Koschel, and J. Westermayer, “The data
checking engine: Monitoring data quality,” in DATA ANALYTICS 2013,
The Second International Conference on Data Analytics, 2013, pp. 7–
10.

[2] S. Sadiq, Ed., Handbook of Data Quality, 1st ed. Springer, 2013.
[3] W. Fan and F. Geerts, Foundations of Data Quality Management,

ser. Synthesis Lectures on Data Management. Morgan & Claypool
Publishers, 2012.

[4] C. Batini and M. Scannapieco, Data Quality: Concepts, Methodologies
and Techniques, 1st ed. Springer, 2006.

[5] J. Olson, Data Quality. The Accuracy Dimension. Morgan Kaufmann,
2002.

[6] R. Kimball and J. Caserta, The data warehouse ETL toolkit. Wiley,
2004.

[7] L. Bertossi and L. Bravo, Handbook of Data Quality, 1st ed. Springer,
2013, ch. Generic and Declarative Approaches to Data Quality Man-
agement, pp. 181–211.

[8] P. Z. Yeh and C. A. Puri, “An efficient and robust approach for
discovering data quality rules,” in 22nd International Conference on
Tools with Artificial Intelligence, 2010.

[9] F. Chiang and R. J. Miller, “Discovering data quality rules,” in Pro-
ceedings of the VLDB 08, 2008.

[10] I. P. Fellegi and D. Holt, “A systematic approach to automatic edit and
imputation,” Journal of the American Statistical Association, vol. 71,
no. 353, pp. 17–35, 1976.

[11] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain
fixes with editing rules and master data,” The VLDB Journal,
vol. 21, no. 2, pp. 213–238, Apr. 2012. [Online]. Available:
http://dx.doi.org/10.1007/s00778-011-0253-7

[12] S. Song and L. Chen, “Differential dependencies: Reasoning
and discovery,” ACM Transactions on Database Systems,
vol. 36, no. 3, pp. 16:1–16:41, Aug. 2011. [Online]. Available:
http://doi.acm.org/10.1145/2000824.2000826

[13] S. Brüggemann, “Addressing internal consistency with multidimen-
sional conditional functional dependencies,” in International Conference
on Management of Data COMAD 2010, Nagpur, India, 2010.

[14] F. Korn, S. Muthukrishnan, and Y. Zhu, “Checks and balances: Monitor-
ing data quality problems in network traffic databases,” in Proceedings
of the 29th VLDB Conference, Berlin, 2003.

[15] M. L. Lee, T. W. Ling, and W. L. Low, “Intelliclean: A knowledge-based
intelligent data cleaner,” in ACM SIGKDD, Boston, 2000, 2000.

[16] W. Fan, H. Gao, X. Jia, J. Li, and S. Ma, “Dynamic constraints for
record matching,” The VLDB Journal, vol. 20, pp. 495–520, 2011.

[17] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate
record detection: A survey,” IEEE Transactions on Knowledge and Data
Engineering, vol. 19, 2007.

[18] K. Sattler, S. Conrad, and G. Saake, “Adding conflict resolution
features to a query language for database federations,” in Proc. 3nd
Int. Workshop on Engineering Federated Information Systems, EFIS’00,
Dublin, Ireland, June, 2000, pp. 41–52.

[19] J. Barateiro and H. Galhardas, “A survey of data quality tools,”
Datenbank-Spektrum, vol. 14, 2005.

[20] F. Naumann, “Data profiling revisited,” SIGMOD Record, 2013.
[21] V. Chandola, A. Banerjee, and V. Kumar, “Anomaly detection: A

survey,” ACM Comput. Surv., vol. 41, no. 3, pp. 15:1–15:58, Jul. 2009.
[Online]. Available: http://doi.acm.org/10.1145/1541880.1541882

[22] C. C. Aggarwal, Outlier Analysis. Springer, 2013.
[23] K. Yamanishi and J. Takeuchi, “A unifying framework for detecting

outliers and change points from non-stationary time series data,” in
Proceedings of the Eighth ACM SIGKDD-02, 2002.

[24] C. S. Hilas, I. T. Rekanos, S. K. Goudos, P. A. Mastorocostas, and
J. N. Sahalos, “Level change detection in time series using higher
order statistics,” in 16th International Conference on Digital Signal
Processing, 2009.

[25] S. Sarawagi, R. Agrawal, and N. Megiddo, “Discovery-driven explo-
ration of olap data cubes,” in Advances in Database Technology —
EDBT’98, 1998.

[26] E. Müller, M. Schiffer, and T. Seidl, “Statistical selection of relevant
subspace projections for outlier ranking,” in 27th IEEE International
Conference on Data Engineering (ICDE), 2011.

[27] C. Ordonez and Z. Chen, “Evaluating statistical tests on olap cubes
to compare degree of disease,” IEEE Transactions on Information
Technology in Biomedicine, vol. 13, no. 5, 2009.

[28] Microsoft. (2014, Feb) Microsoft sql server database product samples.
[Online]. Available: http://msftdbprodsamples.codeplex.com

[29] P.-N. Tan, M. Steinbach, and V. Kumar, Introduction to Data Mining.
Pearson, 2006.

[30] A. C. Harvey, Time Series Models. Pearson Education, 1993.
[31] B. Heinrich, M. Kaiser, and M. Klier, “Metrics for measuring data

quality - foundations for an economic oriented management of data
quality,” in Proceedings of the 2nd International Conference on Soft-
ware and Data Technologies (ICSOFT). INSTICC/Polytechnic Institute
of Setúbal, J. Filipe, B. Shishkov, and M. Helfert, Eds., 2007.

181

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

