
A Framework for Autonomic Software Deployment of Multiscale Systems

Raja BOUJBEL
Université de Toulouse

UPS - IRIT
118 Route de Narbonne
F-31062 Toulouse, France

Raja.Boujbel@irit.fr

Sébastien LERICHE
Université de Toulouse

ENAC
7 Avenue Édouard Belin
F-31055 Toulouse, France
Sebastien.Leriche@enac.fr

Jean-Paul ARCANGELI
Université de Toulouse

UPS - IRIT
118 Route de Narbonne

F-31062 Toulouse, France
Jean-Paul.Arcangeli@irit.fr

Abstract—Automated deployment of software systems in
pervasive and open environments is an open issue. There, the
topology of target hosts is not always known at design time
due either to unforeseen hardware limitations or failures
(network links, hosts, etc.) or to device arrival and disap-
pearance. Rather than manually building and executing a
static deployment plan, as it is usually done, our approach
promotes the specification of deployment properties (require-
ments and constraints), then their handling by a middleware
for autonomic deployment. This paper presents MuScADeL,
a new domain-specific language designed to support the
expression of properties related to multiscale and autonomic
software deployment. It also presents a chain of software
tools that participate in the deployment process and are
part of the autonomic deployment middleware, including
a system of probes for the monitoring of the host machines
and a compiler of multiscale deployment properties.

Keywords—Software deployment, multiscale distributed
systems, domain-specific language, autonomic computing,
constraint satisfaction problem.

I. INTRODUCTION

Pervasive computing, on the one hand, and cloud
computing, on the other hand, are central topics in
several recent research studies. Contributions in both do-
mains have reached a good level of maturity. Nowadays,
new research works have identified the need to make
pervasive and cloud computing systems collaborate, so
as to build systems which are distributed over several
scales, called “multiscale” systems. In multiscale sys-
tems, decentralization, autonomy and adaptiveness are
essential features.

In this context, our work focuses on software deploy-
ment and our goal is to develop a framework for sup-
porting the deployment of multiscale applications. De-
ployment aims at making and keeping software systems
available for use, in a situation of mobility, openness and
variability of the quality of the resources. Deployment
strategies should take into account the multiscale aspects
like geography, network, device, and user, as well as non
functional properties such as efficiency and privacy.

In this paper, we describe a Domain-Specific Language
(DSL) dedicated to multiscale and autonomic software
deployment, named MuScADeL (MultiScale Autonomic
Deployment Language) [1], then we present how the de-
ployment plan can be computed from the MuScADeL

specification.
In the rest of this section, the novel concept of mul-

tiscale system and the basics of software deployment
are introduced, then the problem of multiscale software
deployment is analyzed, and the requirement of a DSL
is expressed. Finally, Section I-E presents the plan of the
article.

A. Multiscale distributed systems

The term “multiscale system” is present in several re-
cent research papers [2], [3], [4]: in these works, authors
consider to make collaborate very small systems (objects
from the Internet of Things paradigm as, for example,
swarms of tiny sensors with very low computing ca-
pabilities) with very big systems (such as those found
in cloud computing). They agree that new issues arise,
mainly those related to huge heterogeneity.

The INCOME project [5] aims at designing software
solutions for context management in multiscale systems,
that is to say not only in ambient networks, but also in
the Internet of Things and the Cloud, able to operate
at different scales and to deal with the passage from a
scale to another one. Context management is a complex
service in charge of the gathering, the management
(processing and filtering), and the presentation of context
data to applications, which realization is distributed on
the different devices which compose the system. So,
context managers are open multiscale applications, and
we are interested in their deployment.

In [6], Rottenberg et al. argue that the multiscale nature
of a distributed system should be analyzed indepen-
dently in several specific viewpoints such as geography,
network, device, data, user, etc. Thus, a distributed
system can be described as multiscale when, given a
viewpoint, for at least one dimension of this viewpoint,
the elements of its projection onto this dimension are
associated with different scales. Fig. 1, extracted from [7],
shows an example of scales in the “Processing power”
dimension in the “Device” viewpoint. The dimension
“Processing power” is composed by several scales: kilo
scale, giga scale, and peta scale. A family of device can
be contained in one scale, as personal devices in the kilo

353

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 1: Scales in the “Device Processing power” dimension.

scale, or in more than one scale, as supercomputers in
giga and peta scales.

However, the concept of “multiscale system” is not
actually mature. The construction of future multiscale
distributed systems will necessitate new kinds of lan-
guages, middleware and patterns, allowing to take in
consideration the multiscale aspects of the systems.

B. Software deployment
Software deployment is a post-production process

which consists in making software available for use
and then keeping it operational. It is a complex process
that includes a number of inter-related activities such as
installation of the software into its environment (transfer
and configuration), activation, update, reconfiguration,
deactivation and deinstallation [8]. Fig. 2 represents the
sequence of the activities. Software release and software
retire are carried out on the “producer site”, while the
other activities are carried out on the “deployment site”,
some of them at application runtime.

Fig. 2: Software deployment life cycle.

Deployment design is handled by an engineer called
“deployment designer”. He has to gather information
not only about the software system to deploy and the
properties of each of its components but also about

the distributed organization of the software at runtime.
Designing deployment may consist in expressing re-
quirements and constraints. For instance, the deploy-
ment designer may express that a particular software
component should be installed on some specific devices
or on any device, even on incoming ones in case of
dynamic systems, while satisfying a set of properties.
As a concrete example, consider a software component
C which should be deployed on each smartphone which
runs Android, has the GPS function active, and is con-
nected by WiFi.

A deployment plan is a mapping between a software
system and the deployment domain, increased by data
for configuration (and about dependencies). The deploy-
ment domain is the set of networked machines or devices
which hosts the components of the deployed software
system. The ultimate purpose of deployment design is
to produce a deployment plan which complies with the
expressed properties. Usually, this task is undertaken by
a human actor.

At runtime, software must be deployed on the do-
main according to the deployment plan, this task being
possibly undertaken or controlled by an operator called
“deployment operator”. Automatization of deployment
aims at avoiding (or limiting) human handling in the
management of deployment.

Fig. 3 shows the timeline of deployment.

Fig. 3: Software deployment timeline.

C. Multiscale software deployment
In this work, we focus on deployment design, and

particularly on the ways for a deployment designer to
express multiscale deployment properties.

Software deployment in large-scale and open dis-
tributed systems (such as ubiquitous, mobile or peer-to-

354

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

peer systems) is still an open issue [9]. There, existing
tools for software deployment are reaching their limits:
they use techniques that do not suit the complexity of the
issues encountered in such infrastructures. Indeed, they
are only valid within fixed network topology and do not
take into account neither host and network variations of
quality of service nor failures of machines or links which
are typical of these environments.

Moreover, users of the deployment tools are required
to manage manually the deployment activities, which
needs a significant human involvement, possibly out of
reach of concerned end-users (for example, in case of
personal devices like smartphones): for large distributed
component-based applications with many constraints
and requirements, it is too hard and complicated to
accomplish the deployment process manually. Conse-
quently, there is a need for new infrastructures and
techniques that automate the deployment process and
allow a dynamic reconfiguration of software systems
with few or without human intervention.

Additionally, in our opinion, decentralization, open-
ness and dynamics (mobility, variations of resources
availability and quality, disconnections, failures) are
in favor of autonomy: the autonomic computing ap-
proach [10], where the system self-manages some prop-
erties (self-configuration, self-healing), may support so-
lutions which satisfy the requirements of distributed
multiscale software systems deployment. This idea lead
us to “autonomic software deployment” [9].

Instead of directly expressing a statically defined de-
ployment plan, we propose to express properties: deploy-
ment requirements and component constraints from which
the deployment plan can be computed. In this paper,
we focus on the expression of the properties, and on the
construction of the plan.

So, in order to build the plan, and moreover to allow
management of deployment at runtime, data about the
domain must be collected. Thus, a system of probes
should run and collect data ranging from the domain
properties such as free RAM to more abstract ones re-
lated to multiscale (viewpoints, dimensions, and scales).
Relations between probes and properties can be made
explicit at the same level as the deployment properties
in order to allow the specification of the system of probes
at the deployment design time.

D. Towards a DSL for autonomic software deployment of
multiscale systems

In this ongoing work, our aim is to provide a solution
for the expression of the deployment design, concerning
in particular the scales and other significant properties
of multiscale software systems (see below an example in
Section III).

Deployment is a specific operation on software. Its
design requires particular skills. Thus, we think that the

deployment designer could benefit from a dedicated lan-
guage when stating the properties. So, we propose a DSL
dedicated to the description of deployment constraints
and requirements. DSLs present several advantages: they
use idioms and abstractions of the targeted domain, so
they can be used by domain experts; they are light,
so easy to maintain, portable, and reusable; they are
most often well documented, coherent and reliable, and
optimized for the targeted domain [11], [12], [13].

E. Plan of the article

The rest of the paper is structured as follows. Section
II discusses related work on DSL-based software deploy-
ment. Section III provides an example of deployment
of a multiscale software system. The DSL MuScADeL is
presented in Section IV using the example presented in
Section III. Section V introduces the software elements
that complement MuScADeL in order to compute a
deployment plan. Section VI presents the bootstrap of
the deployment management system, its architecture,
and the interface used by the deployment operator.
Section VII explains how deployment properties are
transformed and formalized. Section VIII presents our
constraint solving library and its use through the Mu-
ScADeL specification presented in Section IV. Section IX
concludes and discusses some future works.

II. RELATED WORK ON DSL-BASED SOFTWARE
DEPLOYMENT

The need for automation in software deployment has
given to this activity a special attention both in academia
and in industry. There are a large number of tools,
procedures, techniques, and papers addressing different
aspects of the software deployment process from differ-
ent perspectives.

Existing deployment platforms propose several for-
malisms to express deployment constraints, software
dependencies, and hardware preferences of software to
deploy. Usually, the formalisms include architecture de-
scription languages (ADL), deployment descriptors (like
XML descriptor deployment), and dedicated languages
(DSL). In this section, we overview some works on
software deployment that propose the use of a DSL.

Fractal Deployment Framework (FDF) [14] is a compo-
nent based software framework to facilitate the deploy-
ment of distributed applications on networked systems.
FDF is composed of a high-level deployment description
language, a library of deployment components, and
a set of end-user tools. The high level FDF deploy-
ment description language allows end-users to describe
their deployment configurations (the list of software
to deploy and the target hosts). Finally, FDF provides
a graphical user interface allowing end-users to load
their deployment configurations, execute and manage
them. The deployment unit is an archive that contains
the software binary and the deployment descriptor. The

355

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

main limitation of this tool is the static and manual
attributes of the deployment. Although the static de-
ployment plan is eligible in a stable environment like
Grid, this deployment is not usable in an environment
characterized by a dynamic network topology such as
ubiquitous environments. Another limitation is that in
runtime this tool does not provide mechanisms for dy-
namic reconfiguration which allows the treatment of the
hosts and the network failures.

Dearle et al. [15], [16] present a framework for au-
tonomic management of deployment and configuration
of distributed applications. To facilitate the work of the
deployment designer, they define a DSL, Deladas. Using
it, a set of available resources and a set constraints are
specified. These definitions permit to generate an appli-
cable deployment plan. The constraint-based approach
avoids the deployment designer specifying precisely the
location of each component, and then rewriting all the
plan in case of problems with a resource. Deladas does
not allow to express multiscale properties and con-
straints. Openness is neither taken into account, the set
of hosts is statically defined in a file by the deployment
designer. Deployment is still autonomic: at runtime,
when the deployment middleware detects a constraint
violation (dependencies between components), it tries to
solve it by a local adaptation. The new deployment plan
is computed by a centralized management component
called MADME.

Matougui et al. [9] present a middleware framework
designed to reduce the human cost for setting up soft-
ware deployment and to deal with failure-prone and
change-prone environments. This is achieved by the use
of a high-level constraint-based language and an auto-
nomic agent-based system for establishing and maintain-
ing software deployment. In the DSL called j-ASD, some
expressions dedicated to deal with autonomic issues
are proposed. But they target large-scale or dynamic
environments such as grids or P2P systems, only within
the same network scale.

Sledviewsky et al. [17] present an approach that incor-
porates DSL for software development and deployment
on the cloud. Firstly, the developer defines a DSL in
order to describe a model of the application with it.
Secondly, the application is described using the DSL,
then it is translated into specific code and automatically
deployed on the Cloud. This approach is specific to the
deployment of a Web application on the cloud. It high-
lights the need to facilitate the work of the deployment
designer, and that using DSL is a solution for that.

Recent works around software deployment start tak-
ing into account constraints of quality of service. For
example, Malek et al. [18] present a framework (tools and
formalism) aiming at determining a ”best” deployment
plan regarding several constraints of quality of service
which can be contradictory.

Thus, existing solutions for DSL-based autonomic soft-

ware deployment does not allow deployment designers
to express properties related to multiscale concerns, or
only in a limited way concerning some scales from
the network or device viewpoints. Additionally, dynam-
ics and openness are not or little considered. Even if
MADME deals with the dynamics of the deployment
domain, the adaptation of the deployment plan is cen-
tralized. Finally, the solutions do not define a complete
workflow from the design to the fulfilment of the de-
ployment plan while taking into account the current
operational context.

III. EXAMPLE OF THE DEPLOYMENT OF A MULTISCALE
SOFTWARE SYSTEM

In this section, we present an example of the de-
ployment of a multiscale software system, in order to
illustrate our aim. Let’s consider a software system made
of different components, each of them having specific
individual runtime constraints (memory, OS, etc.). The
deployment designer may want to express not only these
constraints, but also some requirements related to the
distribution of the components. For instance, the de-
ployment designer may want that (C1. . . C6 are software
components):
• a resource-consuming component C1 runs on a

cloud,
• C2 runs on several machines in a given geographical

area, e.g., a city,
• C3 runs on the same type of device than C1,
• C4 runs on any smartphone of the domain,
• C5 runs on the same network than C4,
• C5 number of deployed instance is relative to C4

instances, i.e., for three instance of C4 on intance of
C5 is deployed,

• C4 runs on any new smartphone entering in the
domain at runtime,

• C6 runs on one machine on each city.
Moreover, some components may have constraints to

run properly, such as:
• C1 requires that the component C0 is installed and

activated locally,
• C2 must run on a Linux OS and an Arduino (single-

board micro-controller) must be connected to the
hosting device,

• C3 requires 40M of free RAM at activation time
(Freespace),

• C5 requires a 100G hard drive (HDSize).
Fig. 4 illustrates such an example.

IV. MUSCADEL: A DSL FOR MULTISCALE
AUTONOMIC DEPLOYMENT

In this section, we describe by means of an exam-
ple MuScADeL, our proposition of a DSL dedicated
to the autonomic deployment of multiscale distributed
systems. Tokens and keywords are presented further

356

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 4: Example of multiscale deployment.

and the grammar is defined in EBNF syntax (cf. Ap-
pendix A). The last version of the grammar is available
at http://anr-income.fr/T5/ebnf-muscadel.html.

A. Elements of the language

We present and explain the main elements of
MuScADeL language using as example the code for
the deployment of the multiscale distributed software
system presented in Section III.

1) Component: The keyword Component defines a
component (cf. Listing 1). The Version field is useful for
the update activity. The URL field specifies the address
where the component is reachable for download. The
DeploymentInterface field specifies the interface of
the component, necessary for the interactions with the
deployment system: the latter must interact with the
component, for configuring and starting it, for managing
it at runtime, and for stopping it. The Dependency field
lists required components: when installing the compo-
nent, the deployment system checks that whether the
required components are installed, or if not, installs
them. The Constraint field lists hardware and soft-
ware criteria (defined using the keyword BCriterion,
see Listing 3) that the component must satisfy. By de-
fault, these constraints are permanent —i.e., they must
be satisfied both when generating the deployment plan
and at runtime — so, the deployment system must check
that there is no constraint violation at runtime. For the
keyword InitOnly, see 6).

1 Component C0 {
2 Version 1
3 URL "http://test.fr/plopC0.jar"
4 }

6 Component C1 {
7 Version 1
8 URL "http://test.fr/plopC1.jar"
9 Dependency C0

10 DeploymentInterface fr.enac.plop.DIimpl
11 }

13 Component C2 {
14 Version 1
15 URL "http://test.fr/plopC2.jar"
16 DeploymentInterface fr.enac.plop.DIimpl
17 Constraint Freespace LinuxCrit ActiveArduino
18 }

20 Component C3 {
21 Version 1
22 URL "http://test.fr/plopC3.jar"
23 DeploymentInterface fr.enac.plop.DIimpl
24 InitOnly Constraint Freespace
25 }

27 Component C4 {
28 Version 1
29 URL "http://test.fr/plopC4.jar"
30 DeploymentInterface fr.enac.plop.DIimpl
31 }

33 Component C5 {
34 Version 5
35 URL "http://test.fr/plopC5.jar"
36 Constraint HDSize
37 InitOnly Constraint CpuNet
38 }

40 Component C6 {
41 Version 1
42 URL "http://test.fr/plopC6.jar"
43 }

Listing 1: Component definition in MuScADeL.

2) Probe: The keyword Probe defines a probe (cf. List-
ing 2). A probe has two fields. The first one, the Probe-
Interface, specifies the interface of the probe. This
interface is needed for interactions with the deployment
system for information retrieval. The second one, the
URL, specifies the address where the probe is reachable
for download.
1 Probe Arduino {
2 ProbeInterface fr.irit.arduino.DIimpl
3 URL "http://irit.fr/INCOME/arduinoProbe.jar"
4 }

Listing 2: Probe definition in MuScADeL.

3) BCriterion: The keyword BCriterion defines a
criterion (cf. Listing 3). A criterion is a conjunction of
conditions concerning probed values, like in CpuNet
(Listing 3, line 14). There are two kinds of conditions
concerning either the existence or liveliness of a probe,
or a specific value given by a probe. In the first case,
the condition is composed by the probe name and the
keywords Exists or Active, which are defined for any
probe interface. For example, in Listing 3, at line 2 and 3,

357

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the used probe is Arduino, and conditions use default
methods Exists and Active. In the second case, the
condition is composed by the probe name, the method to
call, a comparator, and a value. In this case, the method
is probe-specific, and defined in the probe interface. For
example, in Listing 3 at line 11, the used probe is RAM, the
information method used is freeSpace, and its value is
compared to the number 40, for 40Mb. A criterion can be
used to define both a component constraint (cf. Listing 3,
line 37) or a deployment requirement (cf. Listing 5,
line 4).

1 BCriterion ActiveArduino {
2 Arduino Exists;
3 Arduino Active;
4 }

6 BCriterion LinuxCrit {
7 OS.name = "Linux"; //OS probe
8 }

10 BCriterion Freespace {
11 RAM.freeSpace >= 40; //RAM probe
12 }

14 BCriterion CpuNet {
15 CPU.load < 80; //CPU probe
16 Network.bandWith > 1024; //Network probe
17 }

19 BCriterion HDSize {
20 HD.size > 100; //HD probe
21 }

Listing 3: BCriterion definition in MuScADeL.

4) Multiscale Probe: The keyword MultiScaleProbe
defines a multiscale probe, useful for deployment re-
quirements (cf. Listing 4). Like Probe, it has only two
fields: MultiScaleProbeInterface and URL. A spe-
cific keyword is necessary because basic and multiscale
probes are considered in a different way when generat-
ing the deployment plan. At runtime, a multiscale probe
allows to identify the scale or the scale instance of their
host device in a given viewpoint/dimension/measure.

1 MultiScaleProbe Geography {
2 MultiScaleProbeInterface
3 eu.telecom-sudparis.GeographyProbeImpl
4 URL "http://it-sudparis.eu/INCOME/GeoProbe.jar"
5 }

Listing 4: MultiScaleProbe definition in MuScADeL.

5) Deployment: The keyword Deployment defines the
deployment requirements (cf. Listing 5). The keyword
AllHosts allows to specify and delimit the deployment
domain: line 2 expresses that the deployment covers all
hosts which satisfy the basic criterion LinuxCrit. The
operator @ allows to specify deployment requirement
specific to a component. These requirements can take
several forms:
• The device hosting the component C1

must satisfy CpuNet and be on the scale
Device.StorageCapacity.Giga (line 4);

• the component C2 must be deployed on 2 to 4
devices, in the city Toulouse (line 5);

• the component C3 (line 6) must be deployed on one
device (implicit) which has the same value in the
dimension Device.Type as the device hosting C1;

• the component C4 must be deployed on all devices
of the scale Device.Type.Smartphone, i.e., on all
smartphones of the domain (line 7);

• the component C5 must be deployed on a device
which is situated in the same medium area network
(MAN) as the device hosting C4, the ratio expression
1/3 specifying that there should be one instance of
the component C5 deployed for three instances of
the component C4 (line 8);

• one instance of the component C6 must be
deployed on each scale instance of the scale
Geography.location.City (line 9).

1 Deployment {
2 AllHosts LinuxCrit;

4 C1 @ CpuNet, Device.StorageCapacity.Giga;
5 C2 @ 2..4, Geography.Location.City("Toulouse");
6 C3 @ SameValue Device.Type(C1);
7 C4 @ All, Device.Type.SmartPhone;
8 C5 @ 1/3 C4, SameValue Network.Type.MAN(C4);
9 C6 @ Each Geography.Location.City;

10 }

Listing 5: Deployment definition in MuScADeL.

The keyword DifferentValue allows to specify
the contrary of SameValue. Using these keywords, it is
possible to define a requirement related to a scale or a
scale instance.

6) Dynamics and openness: Some constructions of the
DSL are particularly well-adapted for the expression of
properties related to dynamics and openness. By default,
the properties should be satisfied during the entire appli-
cation runtime, and so must be checked dynamically. The
keyword InitOnly is used to specify that a constraint
should be satisfied initially by the generated deploy-
ment plan, but maybe not satisfied at runtime. When
specifying deployment requirements, the keyword All
allows to specify that a component should be deployed
on a subdomain which satisfies (even dynamically) a
requirement. In the example, the component C4 should
be deployed on every smartphone of the domain, in-
cluding those which enter in the domain at runtime; so,
the deployment plan evolves dynamically depending on
entering and leaving devices.

As the code can be split in several files, the keyword
Include permits to include other files. One of these file
must contain the expression of the deployment.

B. Implementation
Using Xtext and Xtend frameworks (for lexical and

syntactic analysis, translation, and generation of Java
source code) [19], we have realized an Eclipse plugin for

358

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 5: MuScADeL editor.

the edition of MuScADeL. Using Java and Eclipse makes
MuScADeL editor multi-platform compliant and easy-
to-use for the deployment designer. Moreover, it runs
alongside MuScA (Multiscale distributed systems Scale
Awareness framework), a multiscale characterization pro-
cess, allowing the deployment designer to be able within
the same engineering tool to define new multiscale
viewpoints, dimensions or scales, before using them
in MuScADeL. This binding allows MuScADeL editor
to propose an autocompletion of multiscale dimensions
and scales and a check of their use. A screenshot of the
MuScADeL plugin on Eclipse is shown in Figure 5.

V. FROM DEPLOYMENT DESIGN TO A DEPLOYMENT
PLAN

The deployment designer describes the deployment
properties using MuScADeL, and then the deployment
operator runs the generation of the deployment plan.
This generation is a complex process, done in several
steps. It is described with a SPEM-like process diagram
in Figure 6.

Firstly, the MuScADeL code is compiled, giving in
result a file containing the set of components properties,
and a file containing a list of probes. The probes are
pieces of software that can gather information about
a device, such as those described with the Bcriterion
idiom in the DSL (available memory, OS. . .). They must
be deployed on each host before the deployment, this

step being one of the pre-activation activity described in
Figure 3.

To achieve the deployment of these probes, we use
a light program called bootstrap, already installed on
each host of the deployment domain. It contains a set
of common probes (called later basic probes), and can
dynamically acquire and run any other probe specified
during this step. Then, the probes are invoked on each
device and the results are sent back to the deployment
management system.

The set of information gathered on each device is
called the domain state, representing at that time a view
of the status of each device in the deployment domain.

Finally, the constraint solver takes this domain state
and the set of properties, and compute a deployment
plan as output. Note that we are looking for the first
available solution, not to optimize in any way the de-
ployment plan. In case of the constraint solver can not
find a solution, the deployment operator is notified and
the deployment designer has to change his code.

This process, from MuScADeL edition to a gen-
erated deployment plan, is illustrated in a demon-
stration movie available at http://anr-income.fr/T5/
MuScADeL IDE Deployment Plan Generation.mkv.

The following sections will describe some of the soft-
ware elements needed to complete the deployment plan,
such as the bootstrap architecture and solving step.

359

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 6: Generation of the deployment plan.

VI. BOOTSTRAP ARCHITECTURE

In this section, we present the bootstrap, its architec-
ture, and the deployment management system interface
(GUI).

A. Bootstrap

The bootstrap of the Deployment Management Sys-
tem (DMS) is a small program available on all devices
belonging to the deployment domain. The bootstrap
is an OSGi framework containing four bundles: Main,
RabbitMQ Client, Basic Probes, and WebService DMS
(cf. Figure 7). The Main bundle is the entry point of the
bootstrap, and contains the core features of the bootstrap.
The RabbitMQ Client bundle insures the link between
a device and the deployment monitor. The deployment
monitor is a centralized component, in charge of the

initial deployment, e.g., probe sending, solving steps,
etc., and allows the deployment operator to interact
with the DMS. The RabbitMQ Client is useful for the
detection of devices appearance and disappearance. The
Basic Probes bundle is a set of basic probes, the most
common ones. The WebService DMS bundle allows the
bootstrap to communicate directly with the deployment
monitor. For specific needs, bundles are added to the
bootstrap. This extension turns the bootstrap into the
device local entity of the DMS.

Fig. 7: Bootstrap architecture.

B. Main
The main bundle is the entry point of the bootstrap. It

uses the RabbitMQ Client to offer a presence indicator
system, and it permits an asynchronous communication
system with devices over the network (through firewalls,
router, etc.). In this way, it is possible to remotely install,
activate, or stop a bundle, or ask for devices state by
activating the basic probes service.

C. Basic probes
The Basic Probes bundle contains seven probes, the

most useful ones:
• CPU: processor frequency, etc.;
• RAM: free RAM available, full capacity of the RAM,

etc.;
• hard disk: full capacity, space available, etc.;
• OS: the operating system, the version of the operat-

ing system, etc.;
• network: IP, type of the connection (e.g., Ethernet,

WiFi, 3G), etc.;
• and the locale.

Once the deployment monitor sends a request for in-
formation, this bundle sends back a packet, on JSON
format, containing the result of the probing. An example
of returned packet is shown in Listing 6.

D. Android and J2SE
There is two versions of the bootstrap, on in standard

Java (J2SE), and another for Android. They are dis-
tributed on their native format: jar for the J2SE version,
and apk for the Android version. They contain a start of
the OSGi implementation, and the control of the execu-
tion. It is the only part of the deployment framework
which is not heterogeneous.

360

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 {
2 "basicStatus": {
3 "IP_GATEWAY": "81.252.230.88",
4 "JAVA_VENDOR": "Oracle Corporation",
5 "INTERFACE_LIST": [
6 {"name": "wlan0",
7 "isUp": true,
8 "isLoop": false,
9 "ipList": [

10 "fe80:0:0:0:e206:e6ff:fecd:4b52%3",
11 "10.0.1.146"
12]},
13 {"name": "eth0",
14 "isUp": true,
15 "isLoop": false,
16 "ipList": [
17 "fe80:0:0:0:3e97:eff:fe5e:c0db%2",
18 "10.0.0.119"
19]}
20],
21 "CPU_AVAILABLE_PROC": 4,
22 "MEM_TOTAL": 115,
23 "OS_NAME": "Linux",
24 "HD_TOTALSPACE": 179949,
25 "MEM_FREE": 92,
26 "LOCALE_LANG": "francais",
27 "JAVA_NAME": "Java Platform API Specification",
28 "HD_FREESPACE": 91082,
29 "OS_ARCH": "amd64",
30 "OS_VERSION": "3.8.0-34-generic",
31 "CPU_NAME": "Intel(R) Core(TM)
32 i5-3210M CPU@2.50GHz",
33 "JAVA_VERSION": "1.7",
34 "JVM_NAME": "Java HotSpot(TM)
35 64-Bit Server VM",
36 "CPU_SPEED": 1200,
37 "LOCALE_COUNTRY": "France",
38 "CPU_LOAD": 0.08
39 }
40 }

Listing 6: Example of packet returned by Basic Probes bundle on
JSON format.

In both cases, the bootstrap uses the system to indicate
to the user that the framework is on. An icon is shown on
the bar task, or the notification bar for Android, which
allows the user to check the state of the deployment
system, stop it, etc. Figure 8 and Figure 9 show pictures
of the Android bootstrap. In Figure 8, the notification bar
shows the bootstrap icon, and in Figure 9, the bootstrap
application interface shows information about installed
bundles (full bundles and their status, 32 is for active
bundle).

E. DMSMaster

The DMSMaster is a Java software which shows the
list of reachable devices in real time, and can ask them to
send information about their state (resulting from basic
probes). It is a preliminary draft of the final deployment
software GUI.

Figure 10 shows two devices running a bootstrap: a
3G connected smartphone and a WiFi connected tablet.
The DMSMaster (red circled) lists these two devices and
retrieved information.

Fig. 8: Android bootstrap - Notification bar.

Fig. 9: Android bootstrap interface.

361

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Fig. 10: Picture of the DMSMaster.

VII. CONSTRAINTS FORMALIZATION

In this section, we present the formalization of deploy-
ment properties.

A. Data and data structure

1) Input data: Analysis of the MuScADeL code allows
to identify some properties that the system have to hold.
This analysis produces a Component × Property matrix
named Comp, defined by

• Comp(i, j) = 1 if the deployment of the compo-
nent Componenti is constrained by the property
Propertyj,

• Comp(i, j) = 0 otherwise.

Note that components that are specified to be required
for the deployment of another component are taken into
account and integrated to the matrix Comp. Only simple
properties are taken into account for the calculation of
Comp. Simple properties are basic criteria and multiscale
criteria that concern only one component.

On the other hand, independently from the MuScA-
DeL code, analysis of the deployment domain produces
a Device× Property matrix named Dom, defined by

• Dom(i, j) = 1 if the device Devicei has property
Propertyj,

• Dom(i, j) = 0 otherwise.

Basic and multiscale probes are used to produce the
matrix Dom. By and large, measures of devices that are
taken by the probes are part of the domain state. They are
supplied as an array associating devices and measures.

2) Output data: The deployment plan produced by the
solver is a Component×Device obligation matrix named
Oblig, defining the placement of each component. It is
defined by
• Oblig(i, j) = 1 if component Componenti must be

deployed on device Devicej,
• Oblig(i, j) = 0 otherwise.

B. Deployment properties
1) Constraints and requirements: A Component×Device

type possibility matrix named SatVar, is build. Each
coefficient of SatVar is a variable which can take its value
in {0, 1}.

Constraints are added on some coefficients from matri-
ces Comp and Dom. Those constraints are the assignment
of the coefficient to the value 0. This assignment corre-
spond to the impossibility for the device to host the com-
ponent. It is expressed using the following constraint1

(nb dev and nb comp respectively correspond to the
number of devices and to the number of components
involved in the deployment):

∀i ∈ {1, .., nb comp}, ∀j ∈ {1, .., nb dev}
Comp(i) · Dom(j) =~0 =⇒ SatVar(i, j) = 0 (1)

In this formula, Comp(i) and Dom(j) respectively
represent rows i and j of matrices Comp and Dom, the
operator · constructs a vector composed by the two
by two element product of the two given lines, and ~0
represents the null vector.

1By convention, indexes of row and column matrices and of arrays
begin at 1.

362

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

2) Number of component instances:
a) Cardinality: For each component (a row of matrix

SatVar), the number of component instances is the sum
of the row’s elements. A constraint is then built for each
component depending the number of instances.

Thus, if component Ck must be deployed on nk de-
vices, it would be translated using constraint:

nb dev

∑
j=1

SatVar(k, j) = nk (2)

If component Ck must be deployed on nk to mk de-
vices, it would be translated using constraint:

nk ≤
nb dev

∑
j=1

SatVar(k, j) ≤ mk (3)

b) All: The All cardinality specifies that a compo-
nent must be deployed on all devices that can host
it. The number of these devices should be maximized.
The expression Ck @ All would be translated using
following formula:

max
j∈{1,..,nb dev}

SatVar(k,j)

(
nb dev

∑
i=1

SatVar(k, i)

)
(4)

c) Ratio: A ratio between instances of different com-
ponents can be translated using the same principle than
simple cardinality, associating several rows of SatVar.
The expression Ck @ n/m Cl would be translated using
constraint:

nb comp

∑
i=1

SatVar(k, i) = n×


nb comp

∑
i=1

SatVar(l, i)

m

 (5)

where b·c refers to floor function.
d) Dependency: When the deployment designer de-

fines a component, he can specify if a component re-
quires another one, by means of keyword Dependency.
In this case, these two components must be on the same
device. Suppose component Ck requires component Cl ,
this would be translated using following formula:

∀i ∈ {1, .., nb comp}
SatVar(k, i) = 1 =⇒ SatVar(l, i) = 1 (6)

3) Multiscale properties:
a) Dependant components: Multiscale properties ex-

pressed by means of the keywords SameValue and
DifferentValue are defined on several component.
Those properties express required conditions for the de-
ployment of components, and are directed by the values
provided by the referred multiscale probe. For example,
the expression Ck @ SameValue Some.MS.Scale(Cl)

expresses that instances of components Ck and Cl must
be on the same scale instance of Some.MS.Scale. Let
MSProbe be an array which associates for each device
the measure of the multiscale probe. It expresses that Ck
and Cl are respectively deployed on Di and Dj only if
Di and Dj have the same value on MSProbe, which is:

∀i, j ∈ {1, .., nb dev}
(SatVar(k, i) ∧ SatVar(l, j))

=⇒ (MSProbe(i) = MSProbe(j)) (7)

b) Placement by scale instance: Finally, a component
instance presence on a given scale (expressed by means
of the keyword Each) is defined by a constraint similar
to the previous. The set of available devices is limited
and identified from measured values by the referred
multiscale probe. For example, the expression Ck @
Each Some.MS.Scale expresses that one instance of
the component Ck must be deployed on each scale
instance of Some.MS.Scale. In order to do that, two
array are required: MSprobe, which associates to each
device the measure of the required multiscale probe, and
MSProbeId, which lists unique identifiers of each scale
instance. Previous expression would be translated using
the constraint (nb inst refers to the number of scale
instance):

∀i ∈ {1, .., nb inst} ∑
j∈{1,..,nb dev}

MSProbeId(i)=MSProbe(j)

SatVar(k, j)

 = 1 (8)

VIII. MUSCADEL SOLVING

In this section, we present the application of our
formalization through the MuScADeL code given in
Section IV. Thereafter we present our choice of the con-
straint solver. Finally we present our library of constraint
formalization and its use.

A. Matrices definition
Table Ia gives an exemple of the matrix Comp

built from the MuScADeL code presented in Sec-
tion IV. Table Ib gives an example of a matrix
Dom extracted from the domain state. In these ma-
trices, properties P1, P2, P3, P4, P5 et P6 respec-
tively refer to criteria CpuNet, HDSize, Freespace,
LinuxCrit, ActiveArduino, Device.Type.Smart-
phone, Device.StorageCapacity.Giga, and Geo-
graphy.Location.City("Toulouse").

Note that basic and multiscale probes are used to build
Dom matrix. Generally, probed measures from devices
are part of the domain state. They are provided as an

363

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I: Data on components and devices.

(a) Component matrix Comp.

P1 P2 P3 P4 P5 P6 P7 P8

C0 1 0 0 1 0 0 1 0

C1 1 0 0 1 0 0 1 0

C2 0 0 1 1 1 0 0 1

C3 0 0 1 1 0 0 0 0

C4 0 0 0 1 0 1 0 0

C5 1 1 0 1 0 0 0 0

C6 0 0 0 1 0 0 0 0

(b) Device matrix Dom.

P1 P2 P3 P4 P5 P6 P7 P8

D1 1 1 1 1 0 1 0 0

D2 1 1 1 1 0 1 0 0

D3 1 1 1 1 0 1 0 0

D4 1 1 1 1 0 1 0 1

D5 1 1 1 1 0 0 1 0

D6 0 1 0 1 0 0 1 0

D7 0 1 1 1 0 0 1 0

D8 1 1 1 1 1 0 0 1

D9 1 1 1 1 1 0 0 1

D10 1 1 1 1 1 0 0 1

D11 1 1 1 0 1 0 0 1

D12 1 1 1 1 0 1 0 1

TABLE II: Probed data from multiscale probes.

(a) Probed data from Device.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

Device.Type Scale Smartphone Smartphone Smartphone Smartphone Server Server Server PC PC PC PC Smartphone

(b) Probed data from MSNetwork.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

MAN betelgeuse betelgeuse betelgeuse persee orion orion orion persee persee persee persee persee

(c) Probed data from Geography.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

City Tournefeuille Tournefeuille Tournefeuille Toulouse Paris Paris Paris Toulouse Toulouse Toulouse Toulouse Toulouse

TABLE III: Obligation matrix Oblig.

D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12

C0 0 0 0 0 1 0 0 0 0 0 0 0

C1 0 0 0 0 1 0 0 0 0 0 0 0

C2 0 0 0 0 0 0 0 1 1 1 0 0

C3 0 0 0 0 0 0 1 0 0 0 0 0

C4 1 1 1 0 0 0 0 0 0 0 0 0

C5 0 0 1 0 0 0 0 0 0 0 0 0

C6 0 0 1 0 0 0 1 0 0 0 0 1

array associating the device to the measure. For this
example, the solving needs information on device type,
network identification, and geolocation. The probing is
performed respectively by probes Device, MSNetwork,
and Geography: probe Device identifies the type of
the device using the Type dimension, probe MSNetwork
determinate in which medium area network the de-
vice belongs to using the scale Type.MAN, and probe
Geography locate in which city is the device using
the scale Location.City. They produce respectively
Tables IIa, IIb, and IIc.

Table III presents a possible obligation matrix, i.e.,
a deployment plan for the MuScADeL code given
in Section IV, probed data from multiscale probes
Device (cf. Table IIa), MSNetwork (cf. Table IIb), and
Geography (cf. Table IIc).

B. Constraint solver

For the generation of the deployment plan, a con-
straint solver is used. We had to make a choice on which
one to use. Table IV depicts a comparison of constraint
solvers. We choose for this comparison: Cream [20],
Copris [21], JaCoP [22], or-tools [23], jOpt [24], and
Choco [25]. All of them are Java compatible, either writ-
ten in Java, either can be interfaced with Java. There are
different kinds of problem that are handled by constraint
programming. Constraint solvers are specialized on sev-
eral kinds of problems, because their solving is treated
differently. In Table IV, acronyms CSP, COP, CP, and
JS are respectively constraint satisfaction problem, con-
straint optimization problem, constraint problem, and
job scheduling. We are not specialized on constraint
solving problem, and look for a constraint solver easy
to use. We compare constraint solvers according the

364

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

kinds of problem handled, if they are maintained or
deprecated, and if the documentation is up-to-date, and
helpful. We do not compare their resolution time because
the generation of deployment plan is not crucial on time.

TABLE IV: Constraint solvers comparison.

Problem Maintenance Documentation

Cream CSP deprecated
(2008) light

Copris COP,CSP,CP maintained almost
nonexistent

JaCoP CSP maintained existent

or-tools CSP maintained almost
nonexistent

jOpt CSP,JS maintained missing
Choco CSP maintained complete

As our problem is a constraint satisfaction problem,
the kind of problem is not discriminating. The most
pertinent for us is Choco. The library is simple to use,
with the most complete documentation.

C. MuScADeLSolving library
We present here the library MuScADeLSolving. It is

composed by the class MuscadelSolving (listing 8),
its interface MuscadelSolvingInter (listing 7), and
an exception class MuscadelSolvingExc.

The interface MuscadelSolvingInter contains
methods for constraint addition: simpleCardinality,
intervalCardinality, allCardinality, ratio,
sameDevice, sameValue, differentValue, and
each2. Method solving launches the solving of the
problem.
1 public interface MuscadelSolvingInter {
2 public void simpleCardinality (int cmp,
3 int card);
4 public void intervalCardinality(int cmp,
5 int min, int max);
6 public void allCardinality (int cmp);
7 public void ratio(int cmpP, int cmpS,
8 int ratioP, int ratioS);
9 public void sameDevice(int cmp, int dependsOn);

10 public void sameValue(int cmp1, int cmp2,
11 String[] probedData);
12 public void differentValue(int cmp1, int cmp2,
13 String[] probedData);
14 public void each (int cmp, String[] probedData);
15 public int[][] solving()
16 throws MuscadelSolvingExc;
17 }

Listing 7: Interface MuscadelSolvingInter.

The class MuscadelSolving contains matrices Comp
and Dom, the Choco model and the possibility ma-
trix SatVar. SatVar is built at the creation of an ob-
ject MuscadelSolving (the constructor calls method
preprocessing).
1 public class MuscadelSolving
2 implements MuscadelSolvingInter{
3 private Model model;

2In the Java code, indexes of row and column matrices and of arrays
begin at 0.

4 private IntegerVariable[][] satVar;
5 private int nb_comp, nb_app nb_prop;
6 private int[][] comp, dom;
7 private ArrayList<Integer> toMaximize;

9 public MuscadelSolving (int[][] comp, int[][] dom) {
10 assert(comp.length > 0) :
11 "MuscadelSolving: empty comp";

13 this.model = new CPModel();
14 this.nb_comp = comp.length;
15 this.nb_app = dom.length;
16 this.nb_prop = comp[0].length;
17 this.satVar = new IntegerVariable[nb_comp][nb_app];
18 this.comp = comp;
19 this.dom = dom;
20 toMaximize = new ArrayList<Integer>();

22 preprocessing();
23 }

Listing 8: Class MuscadelSolving.

Method preprocessing builds the possibility matrix
satVar and adds to it constraints related to the impossi-
bility for the device to host the component, as described
by formula (1).
1 private void preprocessing () {
2 int [] buffer = new int[nb_prop];
3 // For each variable the domain is defined
4 int[] values = {0,1};
5 for (int i = 0; i < nb_comp; i++) {
6 for (int j = 0; j < nb_app; j++) {
7 satVar[i][j] =
8 Choco.makeIntVar("var_" + i + "_" + j, values);
9 model.addVariable(satVar[i][j]);

10 }
11 }
12 for (int i = 0; i < nb_comp; i++) {
13 for (int j = 0; j < nb_app; j++) {
14 boolean cont = true;
15 for (int k = 0; k < nb_prop; k++) {
16 if (!cont) break;
17 buffer[k] = comp[i][k] * dom[j][k];
18 cont = cont & (buffer[k] == comp[i][k]);
19 }
20 if (!cont)
21 model.addConstraint(Choco.eq(0, satVar[i][j]));
22 }
23 }
24 }

Listing 9: Method MuscadelSolving.preprocessing.

Method simpleCardinality adds simple cardinal-
ity constraint, e.g., as described by the formula (2).
1 public void simpleCardinality (int cmp, int card) {
2 model.addConstraint(Choco.eq(card,
3 Choco.sum(satVar[cmp])));
4 }

Listing 10: Method MuscadelSolving.simpleCardinality.

Method intervalCardinality adds interval car-
dinality constraints –e.g., in listing 5 at line 5– as de-
scribed by the formula (3). In addition to constraints,
this method adds the row of the given component to
the list of satVar rows to maximize.
1 public void intervalCardinality(int cmp, int min, int max) {
2 model.addConstraint(Choco.leq(min,
3 Choco.sum(satVar[cmp])));
4 model.addConstraint(Choco.geq(max,
5 Choco.sum(satVar[cmp])));
6 toMaximize.add(cmp);
7 }

Listing 11: Method MuscadelSolving.intervalCardinality.

365

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Method allCardinality adds All cardinality con-
straint, as described by the formula (4). A constraint is
added to specify that at least one instance of a com-
ponent must be deployed on the deployment domain,
and the row corresponding to the component in matrix
satVar is added to the list of rows to maximize.
1 public void allCardinality (int cmp) {
2 model.addConstraint(Choco.leq(1,
3 Choco.sum(satVar[cmp])));
4 toMaximize.add(cmp);
5 }

Listing 12: Method MuscadelSolving.allCardinality.

Method ratio adds a ratio constraint between com-
ponents, as described by the formula (5). It has as
parameters the components concerned by the ratio, the
numerator and the denominator.
1 public void ratio (int cnum, int cdenom,
2 int rnum, int rdenom) {
3 Constraint ratio =
4 Choco.eq(Choco.sum(satVar[cnum]),
5 Choco.mult(rnum,
6 Choco.div(Choco.sum(satVar[cdenom]), rdenom)));
7 model.addConstraint(ratio);
8 }

Listing 13: Method MuscadelSolving.ratio.

Method sameValue and differentValue add mul-
tiscale dependant component constraints, as described
by the formula (7). They have as parameters referred
components and an array of probed data, e.g., the array
in Table IIc.
1 public void sameValue (int cmp1, int cmp2,
2 String[] probedData) {
3 checkValue(cmp1, cmp2, probedData, true);
4 }
5 public void differentValue(int cmp1, int cmp2,
6 String[] probedData) {
7 checkValue(cmp1, cmp2, probedData, false);
8 }
9 private void checkValue (int cmp1, int cmp2,

10 String[] probedData, boolean diff) {
11 assert probedData.length == nb_app :
12 "checkValue tab size problem !";

14 for (int m1 = 0; m1 < nb_app; m1++) {
15 for (int m2 = 0; m2 < nb_app; m2++) {
16 if (! (diff ˆ probedData[m1].
17 equals(probedData[m2])))
18 continue;
19 model.addConstraint(Choco.geq(1,
20 Choco.plus(satVar[cmp1][m1],
21 satVar[cmp2][m2])));
22 }
23 }
24 }

Listing 14: Methods MuscadelSolving.sameValue and
MuscadelSolving.differentValue.

Method each adds constraint related to the placement
of a component instance by scale instance, as described
by the formula (8). It has as parameter the referred
component and an array of probed data.
1 public void each (int cmp, String[] probedData) {
2 assert probedData.length == nb_app :
3 "Each tab size problem !";

5 HashMap<String, ArrayList<Integer>> id =
6 new HashMap<String,ArrayList<Integer>>();

7 // Construction of id/index map
8 for (int i = 0; i < probedData.length; i++) {
9 if (id.containsKey(probedData[i]))

10 id.get(probedData[i]).add(i);
11 else {
12 ArrayList<Integer> ids = new ArrayList<Integer>();
13 ids.add(i);
14 id.put(probedData[i], ids);
15 }
16 }
17 // Constraint addition
18 for (String str : id.keySet()) {
19 IntegerExpressionVariable add=Choco.ZERO;
20 for (Integer index : id.get(str)) {
21 add = Choco.plus(satVar[cmp][index], add);
22 }
23 Constraint check = Choco.eq(1, add);
24 model.addConstraint(check);
25 }
26 }

Listing 15: Method MuscadelSolving.each.

Method sameDevice adds constraint related to com-
ponent dependency, as described by the formula (6). This
dependency is specified at the component definition, as
shown in the listing 1 at line 9.
1 public void sameDevice (int cmp, int dependsOn) {
2 Constraint[] ors = new Constraint[nb_app];
3 for (int i = 0; i < nb_app; i++) {
4 ors[i] = Choco.eq(2,
5 Choco.plus(satVar[cmp][i], satVar[dependsOn][i]));
6 }
7 model.addConstraint(Choco.or(ors));
8 }

Listing 16: Method MuscadelSolving.sameDevice.

Method solving launches the constraint solver’s
solving. If there is no row on the matrix satVar to max-
imize, the solving is launched directly. Otherwise, max-
imization instructions are added to the Choco model,
then the solving is launched. Thereafter, the feasibility of
the problem is checked: if the problem has no solution an
exception MuscadelSolvingExc is thrown, otherwise,
the first solution is returned.
1 public int[][] solving() throws MuscadelSolvingExc {
2 Solver solver = new CPSolver();

4 if (toMaximize.size() == 0) {
5 solver.read(model);
6 solver.solve();
7 } else {
8 int up = nb_app*toMaximize.size();
9 IntegerVariable maxx = Choco.makeIntVar("max", 1, up);

10 IntegerExpressionVariable add = Choco.ZERO;
11 for (Integer all : toMaximize) {
12 add = Choco.plus(add, Choco.sum(satVar[all]));
13 }
14 model.addConstraint(Choco.eq(maxx, add));
15 solver.read(model);
16 solver.maximize(solver.getVar(maxx),true);
17 }

19 try{
20 if (solver.isFeasible()) {
21 int [][] result = new int[nb_comp][nb_app];
22 for (int i = 0; i < nb_comp; i++) {
23 for (int j = 0; j < nb_app; j++) {
24 result[i][j] =
25 solver.getVar(satVar[i][j]).getVal();
26 }
27 }
28 return result;
29 } else {
30 throw (new MuscadelSolvingExc("No solution")); }

366

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

31 } catch (NullPointerException e) {
32 throw (new MuscadelSolvingExc("No solution"));}
33 }

Listing 17: Method MuscadelSolving.solving.

D. MuScADeLSolving library use

The class IJAS (listing 18) presents the constraint
addition phase of the exemple presented in Section IV,
listing 5. It contains the main method that builds matri-
ces Comp and Dom (for the example they are given and
not generated by the MuScADeL code analysis), calls
MuScADeLSolving methods to add specific constraints,
launches the solving, and prints the resulting matrix
Oblig. The console output is shown in listing 19. This
program represents the calculation of the deployment
plan of the MuScADeL code presented in Section IV,
listing 5.
1 public class IJAS {
2 static void printOblig(int[][]oblig) { ... }
3 public static void main(String[] args) {
4 int [][] comp = {
5 { 1, 0, 0, 1, 0, 0, 1, 0 },
6 { 1, 0, 0, 1, 0, 0, 1, 0 },
7 { 0, 0, 1, 1, 1, 0, 0, 1 },
8 { 0, 0, 1, 1, 0, 0, 0, 0 },
9 { 0, 0, 0, 1, 0, 1, 0, 0 },

10 { 1, 1, 0, 1, 0, 0, 0, 0 },
11 { 0, 0, 0, 1, 0, 0, 0, 0 },
12 };
13 int[][] dom = {
14 { 1, 1, 1, 1, 0, 1, 0, 0 },
15 { 1, 1, 1, 1, 0, 1, 0, 0 },
16 { 1, 1, 1, 1, 0, 1, 0, 0 },
17 { 1, 1, 1, 1, 0, 1, 0, 1 },
18 { 1, 1, 1, 1, 0, 0, 1, 0 },
19 { 0, 1, 0, 1, 0, 0, 1, 0 },
20 { 0, 1, 1, 1, 0, 0, 1, 0 },
21 { 1, 1, 1, 1, 1, 0, 0, 1 },
22 { 1, 1, 1, 1, 1, 0, 0, 1 },
23 { 1, 1, 1, 1, 1, 0, 0, 1 },
24 { 1, 1, 1, 0, 1, 0, 0, 1 },
25 { 1, 1, 1, 1, 0, 1, 0, 1 }
26 };

28 System.out.println(
29 "\tGeneration of the deployment plan");
30 MuscadelSolving solv =
31 new MuscadelSolving(comp, dom);

33 //C1 @ CpuNet, Device.StorageCapacity.Giga;
34 solv.simpleCardinality(1, 1);

36 // CO requirements are the same than C1;
37 solv.sameDevice(1,0);
38 solv.simpleCardinality(0, 1);

40 // C2 @ 2..4, Geography.Location.City("Toulouse");
41 solv.intervalCardinality(2, 2, 4);

43 // C3 @ SameValue Device.Type(C1);
44 solv.simpleCardinality(3, 1);
45 String[] deviceType =
46 { "Smartphone", "Smartphone", "Smartphone",
47 "Smartphone", "Server", "Server", "Server",
48 "PC", "PC", "PC", "PC", "Smartphone" };
49 solv.sameValue(3, 1, deviceType);

51 // C4 @ All, Device.Type.Smartphone;
52 solv.allCardinality(4);

54 // C5 @ 1/3 C4, SameValue MSNetwork.Type.MAN(C4);
55 solv.ratio(5, 4, 1, 3);
56 String[] man =
57 { "betelgeuse", "betelgeuse", "betelgeuse",

58 "persee", "orion", "orion", "orion", "persee",
59 "persee", "persee", "persee", "persee" };
60 solv.sameValue(5, 4, man);

62 // C6 @ Each Geography.Location.City;
63 String[] cities =
64 { "Tournefeuille", "Tournefeuille", "Tournefeuille",
65 "Toulouse", "Paris", "Paris", "Paris", "Toulouse",
66 "Toulouse", "Toulouse", "Toulouse", "Toulouse" };
67 solv.each(6, cities);

69 try {
70 int[][] oblig = solv.solving();
71 printOblig(oblig);
72 } catch (MuscadelSolvingExc e) {
73 System.err.println("Problem during the solving.");
74 }
75 }
76 }

Listing 18: Main class IJAS.

1 Generation of the deployment plan
2 Oblig :
3 C0 : 0 0 0 0 1 0 0 0 0 0 0 0
4 C1 : 0 0 0 0 1 0 0 0 0 0 0 0
5 C2 : 0 0 0 0 0 0 0 1 1 1 0 0
6 C3 : 0 0 0 0 0 0 1 0 0 0 0 0
7 C4 : 1 1 1 0 0 0 0 0 0 0 0 0
8 C5 : 0 0 1 0 0 0 0 0 0 0 0 0
9 C6 : 0 0 1 0 0 0 1 0 0 0 0 1

Listing 19: Console output.

IX. CONCLUSION AND FUTURE WORK

In this paper, we firstly present MuScADeL, a DSL
for multiscale and autonomic deployment, and explain
the various elements of the language by means of an
example. Then, we present how the deployment plan
is computed, using a compiler, and a constraint solver.
MuScADeL allows to express the deployment properties
of a multiscale software system and its components.
These properties drive the computation of the deploy-
ment plan, and are used by the autonomic deployment
system do detect (and possibly repair) any property
violation at the application runtime.

Another part of our work concerns the realization
of this autonomic deployment system. We are design-
ing it as a middleware, on the same basis than first
experiments described in our previous work [9]. This
middleware will enable deployment in multiscale en-
vironments. It provides the probes needed to gather
information about the hosts.

We believe that a DSL is the best way for a deploy-
ment designer to describe deployment requirements and
constraints. A DSL has much more expressiveness than
any Markup Language (such as XML), and is more
efficient since the deployment designer expresses (and
read) directly concepts of its field of expertise. Moreover,
modern tools for making DSL allows their designers to
integrate several level of validation (not only syntactic
but also semantic).

Presently, MuScADeL targets the installation and acti-
vation activities. Other activities and features, as prop-
erty infringement at application runtime, are hard coded

367

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in the deployment management system. We plan to
move some of them at the DSL level, to increase ex-
pressiveness and flexibility when designing deployment.
For example, we can add in the grammar the keyword
on-deinstall or on-update to define actions to per-
form when deinstalling or updating a component.

Focusing on multiscale systems, we do need a sound
and extensible vocabulary to describe the dimensions
and their scales. In the INCOME project, another on-
going work aims at defining an ontology for multiscale
distributed systems. We continuously integrate these
concepts in MuScADeL.

Besides, we are currently working on a toolchain for
our DSL. Using Xtext and Xtend frameworks [19], we
have realized an Eclipse plugin for the edition of the
DSL that makes it multi-platform compliant and easy-
to-use for a deployment designer. We have also realized
a compiler and a solving algorithm to generate the
deployment plan. Using this IDE and the compiler, the
deployment designer expresses deployment properties,
and launches the generation of the deployment plan. The
DSL, the Eclipse plugin, the compiler, and the solving
algorithm are part of the deliverables of the INCOME
project.

ACKNOWLEDGMENTS

This work is part of the French National Research
Agency (ANR) project INCOME [5] (ANR-11-INFR-009,
2012-2015). The authors thank all the members of the
project that contributed directly or indirectly to this
paper.

APPENDIX

This appendix presents the EBNF syntax of MuScA-
DeL.
〈root〉 ::= 〈muscadel-element〉+

〈muscadel-element〉 ::= 〈include〉
| 〈probe〉
| 〈bcriterion〉
| 〈component〉
| 〈msprobe〉
| 〈deployment〉

〈include〉 ::= ’Include’ ’"’ 〈file-id〉 ’"’

〈probe〉 ::= ’Probe’ 〈probe-id〉 ’{’
’ProbeInterface’ 〈interface〉
(’URL’ 〈string〉)?
’}’

〈probe-id〉 ::= 〈id〉

〈interface〉 ::= 〈interface-id〉 (’.’ 〈interface-id〉)*

〈interface-id〉 ::= 〈id〉

〈bcriterion〉 ::= ’BCriterion’ 〈bcriterion-id〉 ’{’
(〈condition〉 ’;’)+
’}’

〈bcriterion-id〉 ::= 〈id〉

〈condition〉 ::= 〈probe-id〉 ’.’ 〈method-id〉 〈comp〉
〈probe-value〉

| 〈probe-id〉 ’Exists’
| 〈probe-id〉 ’Active’

〈method-id〉 ::= 〈id〉

〈probe-value〉 = 〈int〉
| 〈string〉

〈comp〉 ::= ’<’ | ’>’ | ’<=’ | ’>=’ | ’=’

〈component〉 ::= ’Component’ 〈component-id〉 ’{’
’Version’ 〈int〉
’URL’ 〈string〉
(’DeploymentInterface’ 〈interface〉)?
(’Dependency’ (〈component-id〉)+)?
(’InitOnly’? ’Constraint’ 〈bcriterion-id〉)*
’}’

〈component-id〉 ::= 〈id〉

〈msprobe〉 ::= ’MultiScaleProbe’ 〈msprobe-id〉 ’{’
’MultiScaleProbeInterface’ 〈interface〉
’URL’ 〈string〉
’}’

〈ms-probe-id〉 ::= 〈id〉

〈deployment〉 ::= ’Deployment’ ’{’
(’AllHosts’ (〈bcriterion-id〉)+ ’;’)?
(〈deployment-requirement〉 ’;’)+
’}’

〈deployment-requirement〉 ::= 〈component-id〉 ’@’
〈requirement-rhs〉 (’,’ 〈requirement-rhs〉)+
’;’

〈requirement-rhs〉 ::= ’Each’ 〈mscriterion-scale〉
| ’SameValue’ 〈mscriterion-dependency〉
| ’DifferentValue’ 〈mscriterion-dependency〉
| 〈mscriterion〉
| 〈bcriterion-id〉
| 〈ratio〉
| 〈location〉
| 〈cardinality〉

〈mscriterion-dependency〉 ::= 〈msprobe-id〉 ’.’ 〈dim-id〉 ’(’
〈component-id〉 ’)’

| 〈msprobe-id〉 ’.’ 〈dim-id〉 ’.’ 〈scale-id〉 ’(’
〈component-id〉 ’)’

368

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

〈mscriterion-scale〉 ::= 〈msprobe-id〉 ’.’ 〈dim-id〉 ’.’ 〈scale-id〉

〈mscriterion〉 ::= 〈mscriterion-scale〉
| 〈msprobe-id〉 ’.’ 〈dim-id〉 ’.’ 〈scale-id〉 ’(’
〈string〉 ’)’

〈dim-id〉 ::= 〈id〉

〈sc-id〉 ::= 〈id〉

〈ratio〉 ::= 〈int〉 ’/’ 〈int〉 〈component-id〉

〈location〉 ::= 〈int〉 ’.’ 〈int〉 ’.’ 〈int〉 ’.’ 〈int〉

〈cardinality〉 ::= 〈int〉
| 〈interval〉
| ’All’

〈interval〉 ::= 〈int〉 ’..’ 〈int〉
REFERENCES

[1] R. Boujbel, S. Leriche, and J.-P. Arcangeli, “A DSL for multi-
scale and autonomic software deployment,” in International
Conference on Software Engineering Advances (ICSEA 2013),
L. Lavazza, R. Oberhauser, A. Martin, J. Hassine, M. Gebhart,
and M. Jäntti, Eds., 2013, pp. 291–296.

[2] G. Blair and P. Grace, “Emergent middleware: Tackling the inter-
operability problem,” IEEE Internet Computing, vol. 16, no. 1, pp.
78–82, jan.-feb. 2012.

[3] M. Kessis, C. Roncancio, and A. Lefebvre, “DASIMA: A flexible
management middleware in multi-scale contexts,” in 6th Int.
Conf. on Information Technology: New Generations (ITNG ’09),
april 2009, pp. 1390–1396.

[4] M. van Steen, G. Pierre, and S. Voulgaris, “Challenges in very
large distributed systems,” Journal of Internet Services and Ap-
plications, vol. 3, no. 1, pp. 59–66, 2012.

[5] J.-P. Arcangeli, A. Bouzeghoub, V. Camps, C. M.-F. Canut,
S. Chabridon, D. Conan, T. Desprats, R. Laborde, E. Lavinal,
S. Leriche, H. Maurel, A. Péninou, C. Taconet, and P. Zaraté,
“INCOME - Multi-scale context management for the Internet of
Things,” in Ambient Intelligence, 3rd Int. Joint Conf. AmI 2012,
ser. Lecture Notes in Computer Science, F. Paternò, B. E. R. d.
Ruyter, P. Markopoulos, C. Santoro, E. v. Loenen, and K. Luyten,
Eds., vol. 7683. Springer, 2012, pp. 338–347.

[6] S. Rottenberg, S. Leriche, C. Lecocq, and C. Taconet, “Vers une
définition d’un système réparti multi-échelle,” in Journées fran-
cophones Mobilité et Ubiquité (UBIMOB). Cépaduès Editions,
2012, In French.

[7] S. Rottenberg, S. Leriche, C. Taconet, C. Lecocq, and T. Desprats,
“From Smartdust to Cloud: The emergence of multiscale dis-
tributed systems,” 2013, Unpublished Paper.

[8] A. Carzaniga, A. Fuggetta, R. S. Hall, D. Heimbigner, A. van der
Hoek, and A. L. Wolf, “A characterization framework for software
deployment technologies,” Defense Technical Information Center
(DTIC) Document, Tech. Rep., april 1998.

[9] M. E. A. Matougui and S. Leriche, “A middleware architecture
for autonomic software deployment,” in The 7th Int. Conf. on
Systems and Networks Communications (ICSNC’12). Lisbon,
Portugal: XPS, 2012, pp. 13–20, 12619 12619. [Online]. Available:
http://hal.archives-ouvertes.fr/hal-00755352

[10] J. O. Kephart and D. M. Chess, “The vision of autonomic com-
puting,” Computer, vol. 36, no. 1, pp. 41–50, 2003.

[11] A. Van Deursen, P. Klint, and J. Visser, “Domain-specific lan-
guages: An annotated bibliography,” ACM Sigplan Notices,
vol. 35, no. 6, pp. 26–36, 2000.

[12] M. Strembeck and U. Zdun, “An approach for the systematic
development of domain-specific languages,” Software: Practice
and Experience, vol. 39, no. 15, pp. 1253–1292, 2009.

[13] J.-P. Tolvanen and S. Kelly, “Integrating models with domain-
specific modeling languages,” in Proceedings of the 10th
Workshop on Domain-Specific Modeling, ser. DSM ’10. New
York, NY, USA: ACM, 2010, pp. 10–1. [Online]. Available:
10.1145/2060329.2060354

[14] A. Flissi, J. Dubus, N. Dolet, and P. Merle, “Deploying on the grid
with deployware,” in CCGRID. IEEE Computer Society, 2008,
pp. 177–184.

[15] A. Dearle, G. N. C. Kirby, and A. J. McCarthy, “A framework
for constraint-based deployment and autonomic management of
distributed applications,” in International Conference on Auto-
nomic Computing (ICAC’04). IEEE Computer Society, 2004, pp.
300–301.

[16] A. Dearle, G. N. C. Kirby, and A. McCarthy, “A middleware
framework for constraint-based deployment and autonomic man-
agement of distributed applications,” CoRR, vol. abs/1006.4733,
2010.

[17] K. Sledziewski, B. Bordbar, and R. Anane, “A DSL-based ap-
proach to software development and deployment on cloud,” in
24th IEEE Int. Conf. on Advanced Information Networking and
Applications (AINA 2010). IEEE Computer Society, 2010, pp.
414–421.

[18] S. Malek, N. Medvidovic, and M. Mikic-Rakic, “An extensible
framework for improving a distributed software system’s deploy-
ment architecture,” IEEE Transactions on Software Engineering,
vol. 38, no. 1, pp. 73–100, 2012.

[19] M. Eysholdt and H. Behrens, “Xtext: implement your language
faster than the quick and dirty way,” in SPLASH/OOPSLA Com-
panion, ser. Companion to the 25th Annual ACM SIGPLAN Con-
ference on Object-Oriented Programming, Systems, Languages,
and Applications, SPLASH/OOPSLA 2010, October 17-21, 2010,
Reno/Tahoe, Nevada, USA, W. R. Cook, S. Clarke, and M. C.
Rinard, Eds. ACM, 2010, pp. 307–309.

[20] N. Tamura, “Cream: Class library for constraint programming
in Java,” last access: June 2014. [Online]. Available: http:
//bach.istc.kobe-u.ac.jp/cream

[21] ——, “Copris: Constraint Programming in Scala,” last access: June
2014. [Online]. Available: http://bach.istc.kobe-u.ac.jp/copris/

[22] K. Kuchcinski and R. Szymanek, “JaCoP - Java constraint
programming solver,” last access: June 2014. [Online]. Available:
http://jacop.osolpro.com/

[23] “or-tools, operations research tools developed at Google,” last
access: June 2014. [Online]. Available: https://code.google.com/
p/or-tools/

[24] “jOpt, Java OPL implementation,” last access: June 2014. [Online].
Available: http://jopt.sourceforge.net/opl.php

[25] C.H.O.C.O. Team, “CHOCO: an open source Java constraint
programming library,” Ecole des Mines de Nantes, Tech. Rep.
10-02-INFO, 2010, last access: June 2014. [Online]. Available:
http://www.emn.fr/z-info/choco-solver/

369

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

