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Abstract—Retargetable machine-code decompilation is used for
a platform-independent transformation of executable files into a
high level language (HLL) representation (e.g., C language). It is
a complex task that must deal with a lot of different platform-
specific features and missing information. Accurate preprocessing
of input executable files is one of the necessary prerequisites
in order to achieve the best results. Furthermore, we can use
gathered information to achieve higher quality of decompila-
tion. This paper presents an extended version of our previous
system for an accurate code preprocessing. It is implemented
as a generic preprocessing system that consists of a precise
compiler and packer detector, plugin-based unpacker, converter
into an internal platform-independent file format, and debugging
information gathering library. We also describe an utilization of
the collected information in a problem of automatic data-type
reconstruction. This system has been adopted and tested in an
existing retargetable decompiler. According to our experimental
results, the proposed retargetable solution is fully competitive
with existing platform-dependent tools.

Keywords–reverse engineering, decompilation, packer detection,
unpacking, executable file, Lissom.

I. INTRODUCTION

This article is closely related to the paper [1]. We extend
this previous paper by presenting several new methods of
packer and compiler detection (e.g., heuristics-based detection,
signatures for ELF file format) and by describing our novel
approach of preprocessing in type-recovery phase of decom-
pilation (e.g. exploitation of debugging information, known
library function calls). We also present re-evaluation of all
experimental tests.

Reverse engineering is used often as an initial phase of
a reengineering process. As an example we can mention
reengineering of legacy software to operate on new computing
platforms. One of the typical reverse-engineering tools is a
machine-code decompiler, which reversely translates binary
executable files back into an HLL representation, see [2],
[3] for more details. This tool can be used for binary code
migration, malware analysis, source code reconstruction, etc.

More attention is paid to retargetable decompilation in
recent years. The goal is to create a tool capable to decom-
pile applications independent of their origin into a uniform
code representation. Therefore, it must handle different target
architectures, operating systems, programming languages, and
their compilers. Moreover, applications can be also packed or
protected by so-called packers or protectors. This is a typical
case of malware. Therefore, such input must be unpacked

before it is further analyzed; otherwise, its decompilation will
be inaccurate or impossible at all. Note: in the following text,
we use the term packing for all the techniques of executable
file creation, such as compilation, compression, protection, etc.

In order to achieve retargetable decompilation, its pre-
processing phase is crucial because it eliminates most of
the platform-specific differences. For example, this phase is
responsible for a precise analysis of an input application (e.g.,
detection of a target platform). Whenever a presence of a
packed code is detected, such application has to be unpacked.

Furthermore, the platform-dependent object file format
(OFF) is converted into an internal uniform code represen-
tation. The final task of preprocessing is an information
gathering, such as detection of originally used programming
language, compiler, its version, or detection and processing of
debugging information. This information is valuable during the
following phases of decompilation because different languages
and compilers use different features and generate unique
code constructions; therefore, such knowledge implies more
accurate decompilation.

In this paper, we present several platform-independent pre-
processing methods, such as language and compiler detection,
executable file unpacking, conversion, and format-independent
debugging information processing. We also demonstrate a
utilization of this information on example of the data-type
recovery analysis. These methods were successfully intercon-
nected, implemented, and tested in a preprocessing phase of an
existing retargetable decompiler developed within the Lissom
project [4].

The paper is organized as follows. Section II discusses the
related work of executable file preprocessing. Then, we briefly
describe the retargetable decompiler developed within the Lis-
som project in Section III. In Section IV, we give a motivation
for a compiler and packer detection within decompilation.
Afterwards, our own methods used in the preprocessing phase
are presented in Section V. Section VI shows how the data-
type recovery analysis uses previously gathered information.
Experimental results are given in Section VII. Section VIII
closes the paper by discussing future research.

II. RELATED WORK

There are several studies and tools focused on binary
executable file analysis and transformation. Most of them are
not focused directly on decompilation but some of these ideas
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can be applied in this field. Their major limitation for such
usage is their bounding to one particular target platform.

In this section, we briefly mention several existing tools
used for packer detection, unpacking, OFF conversion and
debugging information gathering.

A. Compiler and Packer Detection

The knowledge of the originally used tool (e.g., compiler,
linker, packer) for executable creation is useful in several
security-oriented areas, such as anti-virus or forensics soft-
ware [5]. Overwhelming majority of existing tools are limited
to the Windows Portable Executable (WinPE) format on the
Intel x86 architecture and they use signature-based detection.
Almost all of these tools are freeware but not open source.

Formats of signatures used by these tools for pattern
matching usually contain a hexadecimal representation of the
first few machine-code instructions on the application’s entry
point (EP). EP is an address of the first executed instruction
within the application. A sequence of these first few instruc-
tions creates a so-called start-up or runtime routine, which
is quite unique for each compiler or packer and it can be
used as its footprint. Accuracy of detection depends on the
signature format, their quality, and used scanning algorithm.
Identification of sophisticated packers may need more than one
signature.

Databases with signatures are either internal (i.e., pre-
compiled in code of a detector), or stored in external files
as a plain text. The second ones are more readable and users
can easily add new signatures. However, detection based on
external signatures is slower because they must be parsed at
first. Some detection tools are distributed together with large,
third-party external databases.

B. Unpacking

Binary executable file packing is done for one of these
reasons—code compression, code protection, or their combi-
nation. The idea of code compression is to minimize the size of
distributed files. Roughly speaking, it is done by compressing
the file’s content (i.e., code, data, symbol tables) and its
decompression into memory or into a temporal file during
execution.

Code protection can be done by a wide range of tech-
niques (e.g., anti-debugging, anti-dumping, insertion of self-
modifying code, interpretation of code in internal virtual
machine). It is primarily used on MS Windows but support
of other platforms is on arise in the last years (e.g., gzexe and
Elfcrypt for Linux, VMProtect for Mac OS X, multi-platform
UPX and HASP).

Packers are proclaimed to be used for securing commercial
code from cracking; however, they are massively abused by
malware authors to avoid anti-virus detection. Decompilation
of compressed or protected code is practically impossible,
mainly because it is “just” a static code analysis and unpacking
is done during the runtime. Therefore, it is crucial to solve this
issue in order to support decompilation of this kind of code.

UPX is a rare case of packers because it also supports
unpacking itself. Unpacking is a very popular discipline of

reverse engineering and we can find tools for unpacking many
versions of all popular packers (e.g., ASPackDie, tEunlock,
UnArmadillo). We can also find unpacking scripts for popular
debuggers, like OllyDbg, which do the same job.

Currently, about 80% to 90% of malware is packed [6] and
about 10 to 15 new packers are created from existing ones
every month [7], more and more often by using polymorhic
code generators [8]. In past, there were several attempts to
create generic unpackers (e.g., ProcDump, GUW32), but their
results were less accurate than packer-specific tools. However,
creation of single-purpose unpackers from scratch is a time
consuming task. Once again, these unpacking techniques are
developed primarily for MS Windows and other platforms are
not covered.

C. Object-File-Format Conversion

This part is responsible for converting platform-dependent
file formats into an internal representation. We can find several
existing projects focused on this task. They are used mostly for
OFF migration between two particular platforms and they were
hand-coded by their authors just for this purpose. Therefore,
they cannot be used for retargetable computing.

A typical example is the MAE project [9], which supports
execution of Apple Macintosh applications on UNIX. Sun
Microsystems Wabi [10] allows conversion of executables from
Windows 3.x to Solaris. AT&T’s FreePort Express is another
binary translator of SunOS executables into the Digital UNIX
format. More examples can be found in [11].

D. Debugging Information Gathering

Debugging information is generated by compilers and tra-
ditionally used by debuggers to find and fix software bugs [12].
Since it represents relationship between the machine code
and the original source code, it may as well be exploited
in decompilation, or any other executable file analysis. The
typical use in reverse engineering is to evaluate accuracy of
the analysis by comparing inferred results with those from the
debugging information.

This approach was used in [13] where the readelf utility
was used to extract the debugging data, or in [14] and [15] by
using the libdwarf library. It is however not clear whether
any of these tools is capable to incorporate such information to
its algorithm and produce more accurate output because of it.
Since most of the executable-analysis applications are linked
to a particular architecture and platform it is also unlikely that
they are able to process different debugging formats.

Despite the fact malware rarely contains such additional
data, it would be foolish not to capitalize on them if they
are actually present. This also opens new areas of decompiler
applications. For example in binary verification of critical
programs, which may be intentionally compiled with the
debugging information to make analysis easier.

For this reasons, we have already created the debugging
information preprocessing libraries for the two most widely
used formats (DWARF, Microsoft PDB), and used them for
recovery of variables, functions, and arguments [16]. In the
original paper [1], we used an untyped Python-like language
and we did not exploit the full potential. In this paper we
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show how to incorporate precise data types obtained from
the debugging information to our type recovery algorithm and
propagate them throughout the whole program.

III. LISSOM PROJECT’S RETARGETABLE DECOMPILER

The Lissom project’s [4] retargetable decompiler aims to
be independent on any particular target architecture, operating
system, or OFF. It consists of two main parts—the preprocess-
ing part and the decompilation core, see Figure 1. Its detailed
description can be found in [17], [18].

target
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Figure 1. The concept of the Lissom project’s retargetable decompiler.

The preprocessing part is described in the following sec-
tion. Basically, it unpacks and unifies examined platform-
dependent applications into an internal Common-Object-File-
Format (COFF)-based representation.

Afterwards, such COFF-files are processed in the decom-
pilation core, which is partially automatically generated based
on the description of target architecture. This decompilation
phase is responsible for decoding of machine-code instructions,
their static analysis, recovery of HLL constructions (e.g., loops,
functions), and generation of the target HLL code. Currently,
the C language and a Python-like language are used for this
purpose and the decompiler supports decompilation of MIPS,
ARM, and x86 executables.

IV. MOTIVATION

The information about the originally used compiler is
valuable during the decompilation process because each com-
piler generates different code in some cases; therefore, such
knowledge may increase a quality of the decompilation results.
One of such cases is a usage of so-called instruction idioms.
Instruction idiom represents an easy-to-read statement of the
HLL code that is transformed by a compiler into one or more
machine-code instructions, which behavior is not obvious at
the first sight. See [19] for an exhausting list of the existing
idioms.

We illustrate this situation on an example depicted as a
C language code in Figure 2. This program uses an arithmetical
expression “-(a >= 0)”, which is evaluated as 0 whenever
the variable a is smaller than zero; otherwise, the result is
evaluated as -1. Note: the following examples are independent

on the used optimization level within the presented compilers.
All compilers generate 32-bit Linux ELF executable files for
Intel x86 architecture [20] and the assembly code listings were
retrieved via objdump utility.

#include <stdio.h>

int main(int argc, char **argv)
{

int a;

scanf("%d", &a);
// Prints - "0" if the input is smaller than 0
// - "-1" otherwise
printf("%d\n", -(a >= 0));

return 0;
}

Figure 2. Source code in C.

Several compilers substitute code described in Figure 2 by
instruction idioms. Moreover, different compilers generate dif-
ferent idioms. Therefore, it is necessary to distinguish between
them. For example, code generated by the GNU compiler GCC
version 4.0.4 [21] is depicted in Figure 3. As we can see, the
used idiom is non-trivial and its readability is far from the
original expression.

; Address Hex dump Intel x86 instruction
;--------------------------------------------
; scanf
; Variable ’a’ is stored in %eax

80483e2: f7 d0 not %eax
80483e4: c1 e8 1f shr $31,%eax
80483e7: f7 d8 neg %eax

; Print result stored in %eax
; printf

Figure 3. Assembly code generated by gcc 4.0.4.

The Clang compiler is developed within the LLVM
project [22], [23]. Output of this compiler is illustrated in
Figure 4. As we can see, Clang uses idiom, which is twice as
long as the previous one and it is assembled by the different
set of instructions. Therefore, it is not possible to implement
one generic decompilation analysis. Such solution will be
inaccurate and slow (i.e., detection of all existing idioms no
matter on the originally used compiler).

; Address Hex dump Intel x86 instruction
;------------------------------------------------
; scanf
; Variable ’a’ is stored on stack at -16(%ebp)

8013bf: 83 7d f0 00 cmpl $0,-16(%ebp)
8013c3: 0f 9d c2 setge %dl
8013c6: 80 e2 01 and $1,%dl
8013c9: 0f b6 f2 movzbl %dl,%esi
8013cc: bf 00 00 00 00 mov $0,%edi
8013d1: 29 f7 sub %esi,%edi
8013d3: ;...
8013d6: 89 7c 24 04 mov %edi,4(%esp)

; Print result stored on stack at 4(%esp)
; printf

Figure 4. Assembly code generated by clang 3.1.

114

International Journal on Advances in Software, vol 7 no 1 & 2, year 2014, http://www.iariajournals.org/software/

2014, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Decompilation of instruction idioms (or other similar con-
structions) produces a correct code; however, without any
compiler-specific analysis, this code is hard to read by a human
because it is more similar to a machine-code representation
than to the original HLL code. Compiler-specific analyses are
focused on these issues (e.g., they detect and transform idioms
back to a well-readable representation), but the knowledge of
the originally used compiler and its version is mandatory.

Figure 5 depicts decompilation results for the gcc compiled
code listed in Figure 3 (i.e., code generated by gcc 4.0.4). The
Lissom retargetable decompiler was used for this task. As we
can see, the expression contains bitwise shift and xor operators
instead of the originally used comparison operator. This makes
the decompiled code hard to read.

#include <stdint.h>
#include <stdio.h>

int main(int argc, char **argv)
{

int apple;
apple = 0;
scanf("%d", &apple);
printf("%d\n", -(apple >> 31 ^ 1));
return 0;

}

Figure 5. Decompiled source code from program listed in Figure 3. In this
case, the decompiler lacks any compiler-specific analysis and the result is hard
to read.

Furthermore, it is important to detect compiler version too.
In Figure 6, we illustrate that the different versions of the same
compiler generate different code for the same expression. We
use gcc version 3.4.6 and the C code from the Figure 2.

; Address Hex dump Intel x86 instruction
;---------------------------------------------------
; scanf
; Variable ’a’ is stored on stack at -4(%ebp)
80483f3: 83 7d fc 00 cmpl $0,-4(%ebp)
80483f7: 78 09 js 8048402
80483f9: c7 45 f8 ff ff... movl $-1,-8(%ebp)
8048400: eb 07 jmp 8048409
8048402: c7 45 f8 00 00... movl $0,-8(%ebp)
8048409:

; Print result stored on stack at -8(%ebp)
; printf

Figure 6. Assembly code generated by gcc 3.4.6.

In this assembly code snippet, we can see that no instruc-
tion idiom was used. The code simply compares the value of
a variable with zero and sets the result in a human-readable
form. It is clear that the difference between the code generated
by the older (Figure 6) and the newer version (Figure 3) of
this compiler is significant. Therefore, we can close this section
stating that information about the used compiler and its version
is important for decompilation.

V. PREPROCESSING PHASE OF THE RETARGETABLE
DECOMPILER

In this section, we present a design of the preprocessing
phase within the Lissom project retargetable decompiler. The

complete overview is depicted in Figure 7. The concept
consists of the following parts.

Figure 7. The concept of the preprocessing phase.

At first, the input executable file is analyzed and the used
OFF is detected. All common formats are supported (e.g.,
WinPE, UNIX ELF, Mach-O). Information about the target
processor architecture is extracted from the OFF header (e.g.,
e_machine entry in ELF OFF) and it is used together with
other essential information in further steps.

The next part of this step is a detection of a tool used
for executable creation. This is done by using a signature-
based detection of start-up code as described in Section II.
Example of such a start-up code can be seen in Fig-
ure 8. Signature for this code snippet is “5589E583EC18C
7042401000000FF15--------E8”, where each charac-
ter represents a nibble of instruction’s encoding. All variable
parts must be skipped during matching by a wild-card character
“-”, e.g., a target address in the call instruction. This
signature format is quite similar to formats used by other
detectors listed in Section VII.

; Address Hex dump Intel x86 instruction
; ------------------------------------------------
0040126c: 55 push %ebp
0040126d: 89e5 mov %esp, %ebp
0040126f: 83ec18 sub $0x18, %esp
00401272: c7042401000000 movl $0x1, (%esp)
00401279: ff1500000000 call *0x0
0040127f: e8 ...

Figure 8. Start-up code for MinGW gcc v4.6 on x86 (crt2.o) generated
by objdump -d.
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Our signature format also supports two new features—
description of nibble sequences with zero or more occurrences
and description of unconditional short jumps. Example of
the former one is “(90)”, denoting an optional sequence of
nop instructions for x86 architecture. Example for the second
one is “#EB”, denoting an unconditional short jump for the
same architecture, which size is specified in the next byte;
everything between the jump and its destination is skipped.
In Figure 9, we can find a code snippet covered by signature
“#EB(90)40”.

; Address Hex dump Intel x86 instruction
;--------------------------------------------------
00401000: eb 02 jmp short <00401004>
00401002: xx xx ; don’t care
00401004: 90 nop
00401005: 90 nop
00401006: 40 inc %eax

Figure 9. Example of advanced signature format.

These features come handy especially for polymorphic
packers [8] producing a large number of different start-up
codes (e.g., Obsidium packer). Describing one version of such
packer usually needs dozens of classical signatures. However,
this number can be significantly reduced by using the above-
mentioned features.

Signatures within our internal database were created with
focus on the detection of the packer’s version. This information
is valuable for decompilation because two different versions of
the same packer may produce diverse code constructions. The
database also contains signatures for non-WinPE platforms;
therefore, it is not limited like most of other tools. Finally,
new signatures can be automatically created whenever the user
can provide at least two files generated by the same version
of packer. Presence of multiple files is mandatory in order to
find all variable nibbles in the start-up code.

Unfortunately, some polymorphic packers (e.g., Morphine
encryptor) cannot be described via extended format of signa-
tures. These packers generate entirely different start-up routine
for each packed file. For instance, there is an example of
three different start-up routines generated by the Morphine
encryptor:
1C1C26083EB00F6DFF6DF535BFC7C03C1EC005
7408525566C1C4105D5A51510AC95959F9FC60
510FB6C9770525FFFFFFFFF8E2F35983FA2D8B

If we use these samples to create signature, we get the
following result:
--------------------------------------

As we can see, resulting signature contains only wild-card
characters, which is useless for detection. Therefore, in order
to support a precise detection, we support concept of additional
heuristics that are focused on polymorphic packers. These
heuristics are analysing several properties of the executable
file (e.g., attributes of sections, information stored within file
header, offset of EP in executable file) and they perform
the detection based on a packer-specific behavior. Example
of such heuristic is illustrated in Figure 10—it takes into
account file format, target architecture, offset of EP in file, and

information about file sections. Heuristic is written in C++-like
pseudocode.

if(file_format == WIN_PE &&
target_architecture == INTEL_X86 &&
EP_file_offset >= 0x400 &&
EP_file_offset <= 0x1400 &&
sections[0].name == ".text" &&
sections[1].name == ".data" &&
sections[2].name == ".idata" &&
sections[2].size == 0x200)

{
return "Morphine 1.2";

}

Figure 10. Heuristic for Morphine encryptor v1.2.

Except of heuristics for precise detection of polymorphic
packers, we also support simpler heuristics, which are focused
only on a name, number, and order of sections. Such heuristics
cannot detect exact version of used packer, but they are useful
if signature database does not contain entry for related tool.
Their overview is depicted in Table I.

Whenever a usage of packer is detected in the first phase,
the unpacking part is invoked. Unpacking is done by our own
generic unpacker, which consists of a common unpacking li-
brary and several plugins implementing unpacking of particular
packers. The common library contains the necessary functions
for rapid unpacker creation, such as detection of the original
entry point (OEP), dump of memory, fixing import tables, etc.
Therefore, a plugin itself is very tiny and contains only code
specific to a particular packer.

A plugin can be created in two different ways: either it can
reverse all the techniques used by the packer and produce the
original file, or the plugin can execute the packed file, wait
for its decompression, and dump its unprotected version from
memory to file. The first one is hard to create because it takes
a lot of time to analyze all the used protection techniques.
Its advantage is that unpacking can be done on any platform
because the file is not being executed. That is the main
disadvantage of the second approach. Such a plugin can be
created quickly; however, it must be executed on the same
target platform. In present, we support unpacking of several
popular packers like Armadillo, UPX (Linux and Windows),
NoodleCrypt and others in the second way. See Section VIII
for its future research.

After unpacking, the re-generated executable file is once
more analyzed. In rare cases, second packer was used and we
need to unpack this file once more. Otherwise, the analysis will
try to detect the used compiler and its version, and generate
a configuration file, which is used by other decompilation
tools. This configuration file also contains information about
the target architecture, endianness, bitwidth, address of OEP,
etc.

Afterwards, the platform-specific unpacked executable file
is converted into an internal COFF-based representation. The
converter is also implemented in a plugin-based way and each
plugin converts one particular OFF. Currently, we support ELF,
WinPE, Mach-O, and several others OFF. See [11] for more
details about this tool.
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TABLE I. OVERVIEW OF HEURISTICS FOCUSED ON THE NAME AND
ORDER OF SECTIONS.

packer heuristic
Upack sections[0].name == ".Upack"
PE-PACK sections[last].name == ".PEPACK!!"
WWPack32 sections[last].name == ".WWP32"
yoda’s Crypter sections[last].name == "yC"
LameCrypt sections[last].name == "lamecryp"

ASPack
sections[last - 1].name == ".aspack"
&&
sections[last].name == ".adata"

PEBundle
sections[last - 1].name == "pebundle"
&&
sections[last].name == "pebundle"

UPX

numberOfSections == 3
&&
sections[0].name == "UPX0"
&&
sections[1].name == "UPX1"
&&
(sections[2].name == "UPX2" ||

sections[2].name == ".rsrc")

Petite
numberOfSectionsWithName(".petite")

== 1

PKLite
numberOfSectionsWithName(".pklstb")

== 1

Krypton

numberOfSectionsWithName(".krypton")
== 1

&&
numberOfSectionsWithName("YADO") >= 1

NFO
numberOfSectionsWithName("NFO")

== numberOfSections

PELock NT

numberOfSectionsWithName("PELOCKnt")
> 0

&&
(numberOfSectionsWithName("PELOCKnt")

>= numberOfSections - 2 ||
numberOfSections == 1)

PELock v1.x

numberOfSectionsWithName(".pelock")
> 0

&&
numberOfSectionsWithName(".pelock")

>= numberOfSections - 1

MEW v10

numberOfSections == 2
&&
section[0].name == ".data"
&&
section[1].name == ".decode"

MEW v11 SE 1.x
numberOfSections == 2
&&
section[0].name.containString("MEW")

NsPack v2.x
for(i = 0; i < numberOfSections; ++i)

sections[i].name ==
string("nsp" + numToStr(i))

NsPack v3.x
for(i = 0; i < numberOfSections; ++i)

sections[i].name ==
string(".nsp" + numToStr(i))

Using the information about the target architecture in the
configuration file, the instruction decoder is automatically
created by the generator tool [18]. Instruction decoder is
the first part of the decompiler’s front-end, which translates
machine code instructions into a semantics description of their
behavior.

The last step before the actual decompilation is processing
of debugging information (if present). Currently we sup-
port two major debugging formats, architecture independent
DWARF and Microsoft PDB. Each of them is handled by a
separate specialized library that loads their contents to the in-
ternal representation and provides convenient access methods.

Thanks to the previous steps, it is possible to determine input’s
platform and check for the presence of the DWARF sections
in the COFF file.

Since the PDB debugging information is distributed in
a separate file, checking object file would be pointless and
it is necessary to provide such file whenever an additional
information has to be used. DWARF format is preprocessed by
the mid-layer library called dwarfapi. It uses another library
named libdwarf to parse low-level debugging information,
upon which it builds high-level, object-oriented data structures.

Because there is no available PDB toolkit that would
suit our needs, we created our own parser library called
pdbparser. Basic principles behind both of these tools were
described in [16]. Since then, we further extended them to
support all data types present in the C programming language.
Adding object-oriented features used in the C++ and other
similar languages is planned in the near future.

Finally, the COFF executable file is processed in the gener-
ated decompiler according to the configuration file. Using the
provided information about used compiler, the decompiler can
selectively enable compiler-specific analyses (e.g., detection
of instruction idioms, recovery of functions). One of the first
steps is to check for the debugging information presence and
load it to the internal canonical representation using already
described libraries. This way, any further analysis can access
this information in an unified manner no matter the format of
an underlying source.

VI. PREPROCESSING IN THE TYPE RECOVERY ANALYSIS

The goal of a type recovery analysis is to associate each
piece of data with a high-level data type as close to the original
source code type as possible. We presented the design of a
data-flow based type recovery algorithm used by our retar-
getable decompiler in [24]. Simplified overview is depicted in
Figure 11.

Reconstruction can be divided into the three main phases:
(1) Object (registers, global/local variables, function argu-
ments, etc.) initialization, where each occurrence gets an initial
type, and these types are interconnected by the propagation
equations. (2) Simple and composite analysis run over the set
of objects and equations. Objects’ types are inferred based
on their initial types and the semantics of the operations
they occurred in. Analysis ends once the system’s fixpoint
is reached. (3) Reconstructed types are used in the output
intermediate representation (IR). The original paper focused
solely on the core of the analysis – simple data-type inference
based on the semantics of the individual instructions.

This approach can be applied to any input without ad-
ditional conditions. The disadvantage is its lower accuracy
compared to the other potential type information sources. This
section presents utilization of two highly accurate data-type
sources use of which is enabled by the extensive preprocessing.

A. Data-Type Debugging Information

Debugging information contains exact types of all objects
existing in the original source code. By the time of the type
recovery analysis run, they have already been preprocessed
and are easily accessible. All that needs to be done is to apply
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Figure 11. Data-type recovery analysis scheme. Taken from [24].

them in an initialization phase instead of inferring initial types
from the nature of object’s occurrence. This may look simple
enough, but we have to make sure that the type will be assigned
to the correct object. If the debugging information is present,
functions and their arguments are reconstructed precisely and
it is trivial to link them with their true types.

#include <stdlib.h>
#include <stdio.h>

struct s { int i; char c; float f; };
struct s global;

int main()
{

FILE *pFile;
pFile = fopen("some.file", "w+");

float local = rand();
fprintf(pFile, "%f", local);

fscanf(pFile, "%d %c %f",
global.i, global.c, global.f);

printf("%d %c %f",
global.i, global.c, global.f);

return 0;
}

Figure 12. Example of the original source code used for demonstration of
the type recovery.

For global variables, things gets slightly complicated. Vari-
able analysis detected all the global memory accesses, whose
addresses can be statically determined. Then it created simple
global variables for these addresses and used their names
in the access instructions. For example, variable global in
Figure 12 was recognized from three different accesses to its
elements as three separate variables. The first one at address
X , the second at X + 4 and the third at X + 8.

As is displayed in Figure 13 (showing relevant fragment
of the DWARF data), debugging information contains entry
only for the entire composite object. Fortunately, it is not
complicated to link the computed address X with the address
from the debug data (0x0891daa4 in this case) and assign

the true type to the first simple variable.

DW_TAG_subprogram
DW_AT_name "main"
DW_AT_frame_base <loclist with 3 entries follows>

[0]<lowpc=0x0000><highpc=0x0004> DW_OP_reg29
[1]<lowpc=0x0004><highpc=0x0010> DW_OP_breg29+24
[2]<lowpc=0x0010><highpc=0x0104> DW_OP_breg30+24

DW_TAG_variable
DW_AT_name "local"
DW_AT_location DW_OP_fbreg -24

DW_TAG_variable
DW_AT_name "global"
DW_AT_location DW_OP_addr 0x0891daa4

Figure 13. Relevant fragment of the DWARF debugging information
generated for the code in Figure 12.

Based on the known type size, the algorithm can merge
all subsequent simple variables into one composite object.
To achieve the code quality similar to the original source,
all instructions accessing simple globals must be changed to
operations reading or writing the corresponding composite
elements. Using this method, we are able to assign the true
types even to the objects accessed by addresses, whose values
cannot be statically computed (e.g., accessing global array in
a cycle using an iterator). However, creating correct access
instructions with iterators demands usage of the composite type
recovery analysis, which is beyond the scope of this article.

The same principles used for the globals can be applied to
the stack (local) objects as well. However, linking types to the
related objects gets much more complicated in this case.

Looking at the same examples as before, we can see that
stack object local is located at DW_OP_fbreg -24. This
means that it is at offset of -24 from the current frame base.
The frame base is determined by the actual program counter
and the corresponding expression in the function’s location
list. For example, if program counter is between 0x0010 and
0x0104, then frame base is equal to DW_OP_breg30 +
24, where DW_OP_breg30 represents current value of the
register labeled by DWARF with the number 30.
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To successfully use this information, we need to make sure
our stack analysis computes the same stack variable offsets
as would be calculated by the debugger using the debugging
data. Furthermore, we need to be able to repeat computation
of the DW_AT_location. To do so, mapping between the
DWARF register numbers and real architecture registers must
be known. If stack offsets were computed correctly, it is
possible to link them with the DW_AT_location results
and find corresponding DWARF entries for the detected stack
variables. Finally, it is trivial to apply true types and perform
the same kind of aggregation and instruction replacement as
for the global variables.

Note: Exploitation of the PDB debugging information is
similar or sometimes even easier to the presented DWARF
usage.

B. Known Library Function Calls

Calls of the known library functions are another highly
accurate data-type source whose optimal usage is enabled by
the extensive input preprocessing. It is providing types of the
same quality as the debugging data without the need of any
additional information in the executable. However, decompiler
must be able to detect linked function calls and have the
database of functions’ prototypes containing information about
the types they use. Generic signature based function code
detection and library type information (LTI) file creation is
described in [25]. In this paper, we deal with its application in
the type recovery algorithm and the advantages gained from
the preprocessing.

%struct.struct_drand48_data =
type { [3 x i16], [3 x i16], i16, i16, i64 }

# FILE * fopen (const char *name, const char *mode)
fopen %struct.struct__IO_FILE* 2 i8*, i8*

# int fscanf (FILE *stream, const char *form, ...)
fscanf i32 3 %struct.struct__IO_FILE*, i8*, ...

# void * malloc (size_t size)
malloc void* 1 i32

# double strtod (const char *str, char **ptr)
strtod double 2 i8*, OUT REF i8**

Figure 14. Examples of the library type information entries from stdlib.lti
and stdio.lti files.

Separate LTI file containing the function prototypes and
the definitions of used composite types is generated for each
known standard library. Figure 14 depicts few real examples
from the stdio.h and stdlib.h. Lines starting with the symbol
# are comments, other lines are actual entries written in the
LLVM IR syntax. The first record is an example of a structure
definition containing two arrays and three simple members.
Other lines show prototypes of some well-known functions.

Function name is always the first, followed by the func-
tion’s return type, number of arguments and finally arguments’
types. If the function is variadic, its parameter list ends with the
... token. Arguments may be also flagged to express some
additional information about their typical use. For example,
OUT signals that something is returned through the parameter,

REF means that argument is typically passed by the reference.
This makes it possible to decide, which of the different call
variants of strtod() depicted in Figure 15 is more likely to
be used.

Thanks to the input preprocessing, it is possible to pick
the optimal set of LTI files matching program’s architecture,
operating system, and compiler. These LTI files are used to
assign the true data-types to argument and return objects
each time known function call is detected. Subsequent type
propagation will spread the information between other object
occurrences and to all objects in its equivalence class (defined
by the relation: to have the same data type).

char in[] = "365.24 29.53";

// Variant #1:
char* pEnd;
double d = strtod (in, &pEnd);

// Variant #2:
char** pEnd;
double d = strtod (in, pEnd);

Figure 15. Several possible variants how to call strtod().

C. Analysis Modification

Beside the original source code objects, decompiler’s out-
put usually contains other variables arising from the use of
registers or auxiliary local/global variables. Types of such
objects are not present in a potential debugging information;
therefore, they cannot be set directly. Data types recovered
from the function calls are initially set only to the immediate
objects used by the call. For this reasons, no matter the type
sources quality, decompiler always performs full data-flow type
propagation. The only difference is, that some initial object
types set in the analysis initialization are more precise than
others.

The analysis core presented in [24] infers types by repeated
application of the propagation rules and the join function. For
each object, the greatest lower bound of all its occurrences
is found. Algorithm described in the article takes all initial
type estimates as equal and may refine them in order to
unify all object’s occurrences. Since types obtained from the
sources shown in this paper are already precise, this behavior
is undesired for their propagation.

The solution is to tag each type with the identification of
its origin. More precise the origin, greater the priority during
propagation between object’s occurrences and other objects in
the equivalence class. Types with high enough tags are also
saved from any modifications, so that already correct types
are not broken in the process.

Origin tags in an ascending order of precision are: (1) De-
fault type, 32-bit signed integer. (2) Type inferred from the
instruction semantics. (3) Non-default type that was set by
some previous analysis. (4) Type from the dynamic analysis.
(5) Type from the known function call. (6) Type from the
debugging information. Only the last two are saved from any
modifications. It is however possible, in some special cases, to
further enhance the final outcome. Allocation related functions
are the typical example. As we can see in Figure 14, return type
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of the malloc() function is pointer to void. However, this
cannot be the type of the variable where the result is stored.
In this case, analysis puts together types from two sources of
different precision to get one final data type.

VII. EXPERIMENTAL RESULTS

This section contains an evaluation of the previously de-
scribed methods of packer detection. The accuracy of our tool
(labeled as “Lissom”) is compared with the latest versions
of existing detectors. Their short overview is depicted in
Table II. Detectors are compared in three test sets, see below:
(A) WinPE packers, (B) WinPE polymorphic packers, (C) ELF
packers and compilers. This section also contains discussion
about accuracy of type recovery analysis (D).

TABLE II. OVERVIEW OF EXISTING COMPILER/PACKER DETECTION
TOOLS.

tool signatures
name version internal external total

Lissom 1.5 2282 0 2282
RDG Packer Detector [26] 0.7.2 ? 10 ?
ProtectionID (PID) [27] 0.6.5.5 543 0 543
Exeinfo PE [28] 0.0.3.4 718 7076 7794
Detect It Easy (DiE) [29] 0.81 ? 2100 ?
NtCore PE Detective [30] 1.2.1.1 0 2806 2806
FastScanner [31] 3.0 1605 1832 3437
PEiD 0.95 672 1774 2446

All of these detection tools use the same approach as
our solution—detection using signature matching. As we can
see in Table II, most of them use a combination of pre-
compiled internal signatures and a large external database
created by the user community. The competitive solutions
(except of tool DiE) are limited to WinPE OFF and a number
of their signatures varies between hundreds and thousands. The
number of internal signatures is not always absolutely precise
because some authors do not specify this number, like RDG or
FastScanner. Therefore, we had to analyze such applications
and try to find their databases manually (e.g., using reverse
engineering). We were unable to find it in the RDG and DiE
detectors. Our solution consists of 2282 internal signatures for
all supported OFFs and we also support the concept of external
signatures.

By using reverse engineering, we also figured out that
several tools (e.g., PEiD, RDG) use additional heuristic tech-
nique for packer detection. These techniques are similar to our
solution descripted in Section V. Using this heuristic analysis,
PEiD and RDG detectors are able to detect polymorphic pack-
ers like Morphine encryptor. However, our solution achieved
more accurate results in tests focused on polymorphic packers.

A. WinPE Packers

In total, 40 WinPE packers (e.g., ASPack, FSG, UPX,
PECompact, EXEStealth, MEW) and several their versions
(107 different tools in total) were used for comparison of
previously mentioned detectors. We used these packers for
packing several compiler-generated executables—with differ-
ent size (50kB to 5MB), used compiler, compilation options,
and packer options. The purpose is that some packers create
different start-up code based on the file size and characteristics
(data-section size, PE header flags, etc.). The test set consists
of 5317 executable files in total. We prepared three test cases
for the evaluation of the proposed solution.

At first, we evaluated the detection of packer’s name. This
type of detection is the most common and also the easiest to
implement because generic signatures can be applied (i.e., sig-
natures with only few fixed nibbles describing complete packer
family). On the other hand, this information is critical for
the complete decompilation process because if we are unable
to detect usage of executable-file protector, the decompilation
results will be highly inaccurate. The results of detection are
compared in Figure 16.
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Figure 16. Summary of packer detection (packer names).

According to the results, our tool has the best ratio of
packer’s name detection (over 99%), while the RDG [26]
detector was second with ratio 98%. All other solutions
achieved comparable results—between 80% and 91%. We
can also notice that larger signature databases do not imply
better results in this cathegory (e.g., Exeinfo PE). Such large
databases are hard to maintain and they can produce several
false-positive results because of too much generic signatures.

Afterwards, we tested the accuracy of tool’s major version
detection. In other words, this test case was focused on tool’s
ability to distinguish between two generations of the same
tool (e.g., UPX v2 and UPX v3). This feature comes handy
in the front-end phase during compiler-specific analysis. For
example, the compiler may use in its newer versions more
aggressive optimizations that have a very specific meaning
and they need a special attention by the decompiler (e.g.,
instruction idioms, loops transformation, jump tables), see
Section IV for details. The results are depicted in Figure 17.
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Figure 17. Summary of packer detection (packer versions).

Within this test case, our solution and RDG once again
achieved the best results (Lissom scored 99%, RDG scored
93%). None of the programs has exceeded the limit of 80%.
Only ExeinfoPE and ProtectionID exceeded 60% success ratio
from the others.

Finally, we tested the ratio of precise packer’s version
detection. This task is the most challenging because it is
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necessary to create one signature for each particular version
of each particular packer. This information is crucial for the
unpacker because the unpacking algorithms are usually created
for one particular packer version and their incorrect usage may
lead to a decompilation failure.
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Figure 18. Summary of packer detection (detailed detection).

Based on the results depicted in Figure 18, our detector
achieved the best results in this category with 98% accuracy.
The results of other solutions were much lower (50% at most).
This is mainly because we focus primarily on detecting the
precise version and we also support search in the entire PE
file and its overlay and not just on its entry point.

B. WinPE Polymorphic Packers

Second test suite is focused on WinPE polymorphic packer
labelled as Morphine encryptor. We used two versions of this
tool (v1.2 and v2.7). The test set consist of 339 executable files
in total and we used the same testing methodology as in the
previous case. Only three detectors (Lissom, RDG, and PEiD)
are able to detect this packer. Therefore, other detectors were
excluded from the results. The results are depicted in Table III.

TABLE III. RESULTS FROM TESTING OF DETECTION OF MORPHINE
ENCRYPTOR.

tool type of detection test
name name major version detailed version

Lissom 100% 100% 100%
RDG 94.69% 27.73% 27.73%
PEiD 59.88% 59.88% 35.10%

As we can see, our heuristics detection is the most suc-
cessful (with ratio 100% in all cases). RDG detector exceeded
90% success ratio in detection of packer name, but in other
cases its results are poor. Not even PEiD has achieved good
results.

C. ELF Packers and Compilers

Last test suite for compiler/packer detectors is focused
on detection of ELF compilers (e.g., GCC) and packers
(ELFCrypt, UPX)—we used 18 tools and 197 files in total.
Only two detectors (Lissom and DiE) supports processing of
ELF OFF files. Thus, only these detectors were tested. The
results are compared in Table IV.

Even in this test suite, our tool had the most accurate results
in all cases. Poor performance of DiE detector in two from
three test categories is probably caused by a small number of
signatures for ELF OFF.

TABLE IV. RESULTS FROM TESTING OF DETECTION OF ELF
COMPILERS AND PACKERS.

tool type of detection test
name name major version detailed version

Lissom 98.98% 98.98% 87.31%
DiE 69.04% 4.57% 4.57%

D. Accuracy of type recovery analysis

Figure 19 shows the comparison of the data-type detection
accuracy with and without usage of library function call
prototypes. Graph does not contain column with the debugging
information precision since it is used as reference for other
two type sources and it would always be 100% accurate. The
set of 26 real world programs written in the C programming
language was compiled by the gcc compiler for four architec-
tures (MIPS, x86, ARM, Thumb) and four optimization levels
(O0 through O3). Debugging information generation was also
enabled.
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Figure 19. Summary of data-type detection.

All the resulting binaries were subsequently decompiled
three times. Data-type recovery was allowed to use different
type sources each time (dynamic analysis was not considered
or used): (1) Any type source including debugging information.
Results served as reference. (2) Enabled library function usage,
but no debugging information. First column for each architec-
ture. (3) Only type inference from the instruction semantics or
as a result of some previous analysis. Second column for each
architecture.

Conservative metric as described in [24] was used to
determine data-type accuracy. Average precision rate for each
architecture was computed from all combinations of input files
and optimizations. We can see that the exploitation of library
type information significantly improves type accuracy across
all platforms. The improvement is all the more important given
that it often provides exact reconstruction of complex well-
known structures, which would never be possible just by the
static type inference.

VIII. CONCLUSION

This paper was aimed on architecture-independent prepro-
cessing methods used within the existing retargetable decom-
piler. We introduced methods of packer detection, unpack-
ing, OFF conversion, and debugging information processing.
Moreover, we have shown their benefits on precise data-type
recovery. Up to now, this concept has been successfully tested
on the MIPS, ARM, and x86 architectures within the Lissom
project’s [4] retargetable decompiler.
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We made several tests focused on accuracy of our solution
and according to the experimental results, it can be seen that
our concept is fully competitive with other existing tools. Our
solution achieved more than 98% accuracy in all test cases
focused on packer and compiler detection, which was the best
result of all examined tools.

We close the paper by proposing three areas for future
research. (1) The unpacking phase can be enhanced by using
retargetable simulators [32]. Such tools can emulate the target
host system and, therefore, it will not be necessary to unpack
executables on the same system as its origin. (2) We can further
increase decompilation results by creation of new signatures,
heuristics, and compiler-specific analyses (e.g., better loop
statement recovery, detecting different types of function calls).
The process of heuristics creation can be also based on a
machine-learning approach. (3) The decompilation results can
be increased by extending support on C++ object-oriented
debugging information and creation of new function type
libraries.
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