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Abstract—Online credit card fraud presents a significant 

challenge in the field of eCommerce. In 2012 alone, the total 
loss due to credit card fraud in the US amounted to $ 54 
billion. Especially online games merchants have difficulties 
applying standard fraud detection algorithms to achieve timely 
and accurate detection. This paper describes the special 
constrains of this domain and highlights the reasons why 
conventional algorithms are not quite effective to deal with this 
problem. Our suggested solution for the problem originates 
from the fields of feature construction joined with the field of 
temporal sequence data mining. We present feature 
construction techniques, which are able to create 
discriminative features based on a sequence of transaction and 
are able to incorporate the time into the classification process. 
In addition to that, a framework is presented that allows for an 
automated and adaptive change of features in case the 
underlying pattern is changing. 

Keywords-feature construction, temporal data mining, binary 
classification, credit card fraud 

I. INTRODUCTION 

This work is an extension of our work in the field of 
fraud detection [1]. The approximate global business volume 
of the computer gaming industry in total rose from $ 79 
billion in 2012 to $ 93 billion in 2013 [2]. It is estimated to 
reach $ 111 billion in 2015. New technology developments, 
such as browser games and Massive Multiplayer Online 
Games have created new business models (based on 
micropayments) for online games merchants. Both, 
technology and business model affect the customers payment 
behaviour. Their first choice for performing online payments 
is the credit card. The downside of this development is an 
increase in online credit card fraud, which continues to pose 
a big threat for online merchants. Over all branches, the total 
loss due to credit card fraud rose to $ 54 billion in 2013 in 
the US alone [3] and is supposed to increase further. 
Especially merchants in the online games industry are having 
difficulties applying standard techniques for fraud detection. 
The reason for this is the lack of personal information about 
their customers as well as the need for real time 
classification. Other online retailers (e.g., for fashion, books) 
are able to compare the shipment address with the billing 
address of an order to assess if a suspicious transaction is 
placed. In addition to that, online retailers have more time for 
extensive risk checks and can also have the manpower to 
verify customer´s identify by phone for high amount orders. 

Online game merchants dealing with low volumes micro 
transactions and need to deliver instantly in real time. 
Therefore, an automated data mining approach needs to be 
considered in order to deal with fraudulent credit card 
transactions. The advantage of games merchants is their data 
situation. Data about the in-game behaviour as well as the 
earlier transactions can be collected along the way. 
Therefore, it is obvious to use the so far collected data to 
determine genuine and fraudulent behaviour patterns.  

The collected transaction sequences have a more 
complex structure that other tuple based data. It is collected 
over time and incorporates timestamps of the particular items 
bought. We apply feature construction techniques to 
incorporate the temporal dimension of previous transactions 
into the classification process and therefore aid finding 
distinctive sequential patterns. A sequential pattern is only 
visible in the course of time [4].  

The rest of the paper is structured as follows: Section II 
gives a short introduction in to the field of temporal sequence 
data mining to set the frame for the given set of problems. 
This is followed by Section III, which explains feature 
construction and feature selection. These research fields are 
later used to retrieve information from data sequences. The 
consecutive Section IV will define the problem at hand, 
introduces problem-related terms and describes the 
contribution of this work. Section V will then give an 
overview of the related work, which describes different data 
mining algorithms that are normally suggested for the given 
problem set. The algorithms are also part of the experimental 
evaluation. Section V will detail our suggested method and 
describe the major components. The suggested method is 
applied to a real life data set in Section VII to show its 
classification abilities. Section VIII concludes the results and 
mentions a few points for future development. 

II. FROM DATA MINING TO TEMPORAL DATA MINING 

Data Mining is a multidisciplinary research field, which 
uses methods and knowledge from many areas, such as 
database technology, machine learning, information theory, 
statistics, data visualization, artificial intelligence, and 
computing [5]. This created a “solid science, with a firm 
mathematical base, and with very powerful tools” [6] p. 5. It 
is the natural result of the evolution of information 
technology. This development started in the 1980´s when 
data access techniques began to merge, the relational data 
model was applied, and suitable programming languages 
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were developed. The following decade included the next 
significant step in data management: the use of Data 
Warehouses and Decision Support Systems. They allowed 
manipulation of data originating from several different 
sources and supported a dynamic and summarizing data 
analysis. However, these systems are not able to find more 
hidden patterns in data-rich but information-poor situations. 
This requires advanced data analysis tools which are 
provided by the research field of data mining [7]. In contrary 
to Data Warehouses and Decision Support Systems, Data 
Mining is computer-driven. It solves the query formulation 
problem. This means discovering patterns, which a user is 
not able to put into a database query or is only able to 
formulate the problem [7].  

The term Temporal Data Mining refers to an emerging 
research issue [8], that is defined by Lin, Orgun, and 
Williams [9] p. 83 as “a single step in the process of 
Knowledge Discovery in Temporal Databases that 
enumerates structures (temporal patterns or models) over 
the temporal data, and any algorithm that enumerates 
temporal patterns from, or fits models to, temporal data 
[…]”. This step increased its importance, since recent 
advances in data storage enabled companies to keep vast 
amounts of data that is related to time [9]. Temporal Data 
Mining is concerned with inferring knowledge from such 
data. Thereby the following two inference techniques can be 
applied [9]: 

 Temporal deduction: inferring information that is a 
logical consequence of the information in the 
temporal database 

 Temporal induction: inferring temporal information 
generalized from the temporal database 

According to Kriegel et al. [10], Temporal Data Mining 
algorithms that are able to find correlations/patterns over 
time will play a key role in the process of understanding 
relationships and behaviour of complex objects. Complex 
objects in this case can be, for example, data sequences that 
contain several columns. A prime example therefore is 
transactions in an online shop. All transactions from one 
customer form a transaction sequence. Each transaction can 
contain information about the purchase date, the purchased 
items and the customers address etc. This work will show 
how behaviour over time can be captured in meaningful 
features and then be used for real time classification. 

III. FEATURE SELECTION AND FEATURE CONSTRUCTION 

Today´s data sets can have billions of tuples and 
thousands of (often useless) attributes [11]. This 
development is often referred in the literature as the curse of 
dimensionality. The performance of classification 
algorithms can deteriorate if the wrong input is given and 
also the computational costs can increase significantly. The 
reason for this is the tendency of classifiers to overfit, if 
provided with misleading information. So in terms of the 
online shop example from above, the length of the street 
name of the customers address does not have an effect on 
the purchase behaviour and needs to be ruled out. In order to 
do this, feature selection techniques are applied on the given 
data to decrease data dimensionality. This results in an 

increase of classification performance and also in a 
reduction of the execution time.  

Feature selection is defined as the process of selecting a 
subset of attributes from the original dataset, which allows a 
classifier to perform at least as good as with all attributes as 
input [11]. There are several different feature selection 
techniques that can be categorized as supervised, 
unsupervised and semi-supervised. Supervised techniques 
utilize the given label while unsupervised do not. In terms of 
feature selection strategies, there can be a categorization 
into filter, wrapper or hybrid models [12]. Filter models use 
certain criteria to assess features and select the features with 
the highest score. Wrapper models use clustering algorithms 
to find feature subsets and then evaluate these in terms of 
their clustering quality. The process is repeated until a 
suitable quality is reached. The heuristic search strategy is 
quite computationally expensive compared to the filter 
model. Hybrid models include a filtering step before the 
typical wrapper process in order to increase computational 
efficiency. Our presented work is using a filter model based 
on two measurements, which are further explained in 
Section V.B. 

Feature construction on the other hand is defined as the 
process of discovering missing information about the 
patterns in data by inferring or creating additional attributes 
in order to aid the mining process [5], [7]. An example for a 
simple feature construction technique on a two dimensional 
problem could be the following: assume that 𝐴1 is the width 
and 𝐴2 is the length of a square. This can be transformed 
into a one-dimensional problem by creating the feature 𝐹 as 
area 𝐹  = 𝐴1 * 𝐴2 [13]. However, the success of feature 
construction is dependent on the target hypothesis of the 
Data Mining problem at hand. There is no use in calculating 
the area as a feature; if the pattern (that needs to be found) is 
connected to the aspect ratio of the squares. Shafti and Pérez 
[14] distinguish between two types of features construction 
techniques in terms of their construction strategy:  

 hypothesis-driven: create features based on a 
hypothesis (which is expressed as a set of rules). 
These features are then added to the original data set 
and are used for the next iteration in which a new 
hypothesis will be tested. This process continues 
until a stopping requirement is satisfied. 

 data-driven methods: create features based on 
predetermined functional expressions, which are 
applied on combinations of primitive attributes of a 
data set. These strategies are normally non-iterative 
and the new features are evaluated by directly 
assessing the data. 

Our present work is using a data-driven construction 
strategy since it allows for an automated feature 
construction process that is not dependant on human 
intervention. 

IV. PROBLEM DEFINITION: 

The problem of credit card fraud detection involves a 
number of constraints, which make it difficult to apply 
traditional algorithms. 
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Firstly, gamers do not feel comfortable to reveal their real 
life names and addresses in an online gaming environment. 
This lack of personal data, in addition to the short transaction 
histories of players, makes it difficult to apply standard Data 
Mining techniques.  

Secondly, the real time nature of business makes it 
necessary to be able to apply an algorithm in real time, or 
near real-time, in order to reject fraudulent transactions at 
authorization time. Most of the techniques proposed so far 
are bulk oriented and designed for offline batch processing. 
Hence, it would be helpful to have a technique that can be 
integrated into already existing systems. This is also 
supported by Fayyad, Piatetsky-Shapiro, and P. Smyth [15] 
p. 49: “A standalone discovery system might not be very 
useful”.  

Thirdly, cardinality of the occurrences in a dataset of the 
given domain is either too high or too low. On the one hand, 
there can be millions of different credit card numbers 
involved in the transactions, so that standard algorithms are 
not able to recognize the sequence structure of transactions 
of the same credit card. On the other hand, the in-game 
products sold in the online store can be very few, so that 
frequent pattern mining algorithms having a hard time if 
there are, for example, only 6 different products available.  

Fourthly, the so far proposed methods are focusing on 
static vectors of attributes without any temporal evolution. 
Kriegel et al. [10] argues that due to historical reasons (i.e., 
given their static data during the 1980´s); many researchers 
created their algorithms only for static descriptions of objects 
and are therefore not designed to input data with dynamic 
behaviour. The inclusion of the dynamic properties of 
temporal data however, allows unveiling sequential patterns 
that occur in the course of time. An example for this in the 
field of credit card fraud detection is the current status of 
transaction. A transaction that has been approved by the 
credit card company (i.e., is booked as successful) can later 
be charged back. This change of status represents vital 
information that is revealed after some amount of time has 
passed.  

The framework described in this article is able to 
overcome all the challenges described in this section. Key to 
success is the understanding of temporal sequence based 
patterns. However, the framework is currently focusing on 
the domain of credit card fraud detection, since it also 
contains domain-specific features (that will be described 
further down). The next section highlights our contribution 
to the body of knowledge. That is followed by a description 
of the characteristics of sequential data. The last subsection 
of this chapter will give a definition for feature interaction, 
which is a pattern that can be used by our proposed 
algorithm. 

A. Contributions 

There are several hints in the literature, which give 
suggestions on how to solve such a sequence classification 
problem that is presented by online credit card fraud: one 
direction of development in the field of temporal data mining 
is described by Lin, Orgun, and Williams [9]. They postulate 
a temporal sequence measure method that allows “[…] an 

arbitrary interval between temporal points […]“ to create 
“[…] a very powerful temporal sequence transformation 
method.” [9] p. 83.  

Another direction of development is given by Tsai, Chen, 
and Chien [16]. According to their article, a sequential 
pattern classification problem can also be treated as a feature 
mining problem. This would allow feature mining algorithms 
to treat extracted patterns as features. However, Yang, Cao, 
and Liu [8] state that the well-known standard classification 
algorithms are difficult to be applied on sequential data due 
to vast number of potential features that can be generated out 
of a sequence. A solution for this could be to work on a 
different abstraction layer, i.e., to use a form of aggregation 
to simplify the data sequence into a row-based vector. This 
would then allow standard classification algorithms to be 
applied on complex sequential data.  

Simplification is also suggested by Kriegel et al. [10] 
p. 90: ”Representing complex objects by means of simple 
objects like numerical feature vectors could be understood 
as a way to incorporate domain knowledge into the data 
mining process”. However, he focuses more on the 
incorporation of domain expert knowledge into data mining. 
He postulates a technique to help domain experts “to use the 
important features of an object to e.g., classify new objects of 
the same type, eventually by employing sophisticated 
functions to transform attributes of some type to features of 
some other type” [10] p. 90 and to generalize this domain 
knowledge to keep pace with more complex ways of mining 
complex objects. 

Our contribution to that research field is a novel 
algorithm that incorporates these ideas and puts them into 
one approach. The described feature construction techniques 
are able to include the time dimension during the aggregation 
of sequences. This allows using arbitrary time intervals as 
suggested by Lin, Orgun and Williams [9]. In a later step, the 
found features are normalized and arranged in a way that 
enables threshold based classification.  

The framework presented in this work is able to handle 
the difficult data situation in the area of online credit card 
fraud detection. In addition to that, the framework is able to 
adapt to changes of the fraudulent behaviour. All necessary 
steps are described, starting from data preparation to feature 
construction to applying the right threshold.  

In order to assess transactions without any history, a 
concept of cultural clusters is introduced to help classifying 
those transactions. In addition to that, a metric for assessing 
the suitability of features as well as the calculation of the 
threshold are introduced. The suggested approach was 
pitched against other algorithms on a real life data set. It was 
able to perform 16.26 % better than the best standard method 
(Bayesian Net) and achieves an almost perfect 99.59 % 
precision.  

B. Characteristics of sequential data 

Sequential Data is defined in the literature as a series of 
nominal symbols from a defined alphabet. This list of objects 
is normally registered within a domain ontology according to 
Adda et al. [17] as well as Antunes and Oliveira [18]. The 
term sequence must not be confused with the term time  
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TABLE I.  SCHEMA OF SEQUENTIAL DATA 

r t 𝑠𝑖𝑑  𝑎1 𝑎2 ... 𝑎𝑖  𝑠𝑙𝑎𝑏𝑒𝑙  

𝑟1 𝑡1 𝑠𝑖𝑑1
 𝑎11

 𝑎21
 … 𝑎𝑖1

 0 

𝑟2 𝑡2 𝑠𝑖𝑑1
 𝑎12

 𝑎22
 … 𝑎𝑖2

 0 

𝑟3 𝑡3 𝑠𝑖𝑑1
 𝑎13

 𝑎23
 … 𝑎𝑖3

 0 

𝑟4 𝑡4 𝑠𝑖𝑑2
 𝑎14

 𝑎24
 … 𝑎𝑖4

 1 

𝑟5 𝑡5 𝑠𝑖𝑑2
 𝑎16

 𝑎25
 … 𝑎𝑖5

 1 

… … … … … … … … 

𝑟𝑚  𝑡𝑚  𝑠𝑖𝑑𝑛
 𝑎1𝑚

 𝑎2𝑚
 … 𝑎𝑖𝑚  … 

 
series, which is a sequence of continuous, real-valued 
elements. The research work proposed in this article is 
focusing on transactional datasets, which include information 
about the time of the transaction and can be attributed to 
logical units (i.e., sequences). This logical unit in the field of 
credit card fraud detection is the customer id. Every action 
can be represented in a data base as a row 𝑟 , which has 
several attributes (i.e., columns). Each row is provided with a 
timestamp t. The attributes 𝑎𝑖 ∈ 𝐸 of a row can be associated 
to a logical unit 𝑠𝑖𝑑  (i.e., the customer_id). There are 𝑛 

sequences 𝑠𝑖𝑑𝑛
 in a data set 𝐸. Each sequence 𝑠𝑖𝑑𝑛

consists of 

at least one row 𝑟. The number of rows in a sequence equals 
the length of a sequence 𝑙𝑠, so that 1 ≤ 𝑙𝑠 ≤ 𝑚. 

Table I depicts the general schema of sequential data: It 
is important to differentiate between the number of rows (or 
tuples) 𝑚  of a data set and the number of sequences 𝑛 . 
Sequence 𝑠1, from the example below, has a length 𝑙𝑠 = 3 

and can be described as matrix such as 𝑠1 = 

𝑎11

𝑎12

𝑎13

𝑎21

𝑎22

𝑎23

…
…
…

𝑎𝑖1

𝑎𝑖2

𝑎𝑖3

  

C. Feature Interaction 

The proposed framework is able to use interrelations 
among attributes of a dataset: It is possible, that the original 
data is not sufficient to adequately describe such an 
eventually existing interaction among attributes. Thereby 
interaction means that “the relation between one attribute 
and the target concept depends on another attribute” [19] 
p. 246. If the existing dependency is not constant, the 
interaction is called complex. An example of a complex 
interaction between two attributes in an instance space is 
shown below in Figure 1. 

The „+‟ and „-„ signs depict the distribution of the class 
labels of instances. So in the case of the left hand side, 
instances with a high vale for a1  and a2  have the label „-„. 
Interactions among data in general pose a problem for 
classifiers, since neither a1nor a2  by itself contains enough 
information to distinguish between the labels. 

 
 
 
 
 
 
 
 
 

 
 

Figure 1.  Schematic representation of complex feature interaction, 

based on Shafti and Pérez [19] p. 246 

V. PROPOSED FRAMEWORK 

The proposed framework is designed for classification 
tasks on data sequences consisting of transactions. 
Originally, the used features were constructed manually and 
incorporated domain specific knowledge [1]. The used 
feature construction techniques were automated, enriched, 
and generalized in a later step, also shown in Schaidnagel 
and Laux [42]. These techniques (also briefly discussed in 
Section V.A) are now combined to create an adaptive 
algorithm that is able to attune to changing fraud behaviour. 
Figure 2 shows an overview. The framework consists of two 
systems: the first one processes the credit card transactions 
and executes the classification (i.e., the fraud / non-fraud 
decision). The decision is based on a signal value that is 
calculated using the transaction history of the corresponding 
user account. The calculation is carried out by the feature 
assembler, which uses a formula (described in Subsection 
V.D) that consists of a multitude of features. The features are 
templates for how to aggregate a given sequence. They are 
provided from the feature pool, which is kept up to date by 
the second system.  

The second system hosts the feature construction 
algorithm, which is briefly described in Subsection V.A. 
After a certain period of time, e.g., a week or a month, the 
second system uses a sliding window to query for training 
data, which is used to create new features. They are assessed 
using feature selection (also described in Subsection V.B). 
The performance of the newly constructed features is 
compared to the older ones in the feature pool and replaced if 
necessary. 

𝑎1 
 

𝑎2 

𝑎1 
 

𝑎2 
 

Interaction Complex 

Interaction 
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Figure 2.  Framework Overview, Section A-E refer to the subsections in the description of Section VI. 

A. Feature Construction for transactional data 

As briefly described above, training data is periodically 
drawn from the execution environment, which is then used 
for „training‟. The training process consists of constructing 
and selecting suitable features that are able to distinguish 
between the two given labels. The columns of the original 
data set are called attributes, while the constructed data is 
called features. 

The feature construction techniques that we used for this 
work utilizes a data-driven approach. It is in detail described 
in [42]. The data set needs to be annotated in an initial step. 
This is done by selecting an attribute 𝑠𝑖𝑑  of the original data 
set that is used as a sequence identifier column for sequence 
aggregation. It identifies events/objects that can be logically 
associated to one entity. An example for such an attribute 
could be the account number or email address of a user. For 
the domain of credit card fraud detection, we use the term 
sequence to refer to all transactions belonging to a certain 
user email address. Please note that in the feature 
construction step, the transactions of a sequence are sorted 
by the transactions timestamp prior to aggregation. In a next 
step the user has to select two more columns: 𝑡 and 𝑠𝑙𝑎𝑏𝑒𝑙 . 
The timestamp column 𝑡 is used to calculate the time elapsed 
between the collected data points of a sequence. The column 
𝑠𝑙𝑎𝑏𝑒𝑙  contains the binary target hypothesis. The label is 
sequence based, which means that every sequence must only 
have transaction of the same label value. In the domain of 
credit card fraud detection this means that all transactions of 
a user carry the genuine label until one transaction is charged 
back. Then the label of the sequence (i.e., all associated 
transactions) changes to fraudulent.  

In a next step, we formulated feature construction 
techniques, which are able to create distinctive features if 
such a pattern is hidden in the data. We found four different 

feature construction techniques, which will be briefly 
described in the following subsections: 

1) Features based on distinct occurences 
A first approach for detecting sequential patterns is to 

investigate the number of distinct occurrences per sequence. 
It is possible that one target label has a higher variety in 
terms of occurrences than the other. This variety can be 
assessed by aggregating all sequences 𝑠𝑖𝑑𝑛

 of an attribute 𝑎𝑖𝑛  

and count the number of distinct occurrences, so no 
duplicates are counted. This can be applied on all string as 
well as numeric attributes of a data set. The results for all 
sequences 𝑠𝑖𝑑𝑛

 and attributes 𝑎𝑖𝑛  are stored in an 

intermediate feature table and are assessed in terms of their 
suitability for classification in step B of the proposed 
framework. 

2) Concatenation based features 
A way to highlight interactions between two attributes is 

to concatenate them. Therefore, we systematically 
concatenate every string attribute in pairs of two and then 
again, count the distinct value-pairs per sequence identifier. 
Thereby interactions such as, if 𝑎1 AND 𝑎2 have low value 
pair variety for label 0, but a high value-pair variety for label 
1, are highlighted. Even for data sets with a high number of 
different occurrences, this kind of feature construction will 
highlight distinct occurrences between both labels.  

This technique can be applied on all string attributes of 
the given dataset. This simple technique is similar to most 
common column combinations that are described widely in 
the literature (e.g., [38], [40], [41]). However, we once again 
use this technique on a different abstraction layer since we 
aggregate by the sequence identifier 𝑠𝑖𝑑 . 
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3) Numeric operator based features 
Interactions among data can also occur between two 

numeric attributes. It is possible to capture such a pattern by 
combining two numeric attributes with basic arithmetic 
operators such as ”+”, ”-”, ”*” or ”/”. García [39] and 
Pagallo [37] describe such a technique for feature 
construction with fewer operators. Our approach 
incorporates more arithmetic operators and again, uses the 
sequence identifier attribute to aggregate the constructed 
features for each sequence. Let us put this into an example: 
attributes 𝑎𝑖  and 𝑎𝑗  are combined with the multiplication 

operator ”*” for a sequence 𝑠𝑖𝑑1
. The resulting feature 

𝑓 =  𝑎𝑖 ∗ 𝑎𝑗  is derived from the sequence  

𝑠 𝑖𝑑1
=  

𝑎𝑖1
𝑎𝑗1

𝑎𝑖2
𝑎𝑗2

𝑎𝑖3
𝑎𝑗3

   (1) 

To construct 𝑓  we have to multiply each „row‟ in the 
sequence and sum up the results: 𝑓 = (𝑎𝑖1

∗ 𝑎𝑗1
+ 𝑎𝑖2

∗

𝑎𝑗2
+ 𝑎𝑖3

∗ 𝑎𝑗3
) . If there is an interaction between two 

attributes for a certain target label, it will affect the resulting 
sum and can be measured (as described further in Section 
B.1). This process is repeated for all possible combinations 
of numeric attributes and for all of the above mentioned 
arithmetic operators. 

4) Temporal based attributes 
Patterns in sequences can also occur over time. 

Therefore, we created a feature construction technique that is 
able to use the time axis, which is incorporated in each 
sequence by the timestamp column 𝑡 . This feature 
construction technique is applicable for both, numeric as 
well as string attributes. However, for string attributes, there 
need to be some preparations done, which are explained 
further down in this subsection. The process for numeric 
attributes basically multiplies the time interval (e.g., days, 
hours or minutes), between earliest data point and the current 
data point with the numeric value of the corresponding 
attribute, which results in a weighting. A hypothetical 
example is depicted in Table II. 

The example shows two attributes 𝑎𝑖  and 𝑎𝑗  for two 

sequences (𝑠𝑖𝑑 = 1  and 𝑠𝑖𝑑 = 2) as well as the 𝑡 column. In 

order to calculate the temporal based feature𝑓𝑝  for attribute 

sequence sid  =  1 in terms of attribute 𝑎𝑖 , we first have to 
calculate the time between the earliest data point of 𝑠𝑖𝑑  =  1 
and each of the ‟current‟ data points. This is depicted in 
Table II by the 𝛥𝑡𝑖𝑚𝑒 𝑖𝑛 𝑑𝑎𝑦𝑠 column. The next step is to 
multiply the value of each 𝑡𝑖  in 𝑠𝑖𝑑  =  1  with its 
corresponding delta time value: (𝑎𝑖1

∗ 1,𝑎𝑖2
∗ 11,… ,𝑎𝑖4

∗
24). The sum of this value is the new time based constructed  

 

TABLE II.  EXAMPLE FOR CREATING TEMPORAL BASED FEATURES 

𝑠𝑖𝑑  t min(t) / 𝑠𝑖𝑑  ∆time 
in days 

𝑎𝑖  𝑎𝑗  𝑠𝑙𝑎𝑏𝑒𝑙  

1 01.01.2013 01.01.2013 1 𝑎𝑖1
 𝑎𝑗1

 0 

1 10.01.2013 01.01.2013 11 𝑎𝑖2
 𝑎𝑗2

 0 

1 15.01.2013 01.01.2013 16 𝑎𝑖3
 𝑎𝑗3

 0 

1 23.01.2013 01.01.2013 24 𝑎𝑖4
 𝑎𝑗4

 0 

2 24.01.2013 01.01.2013 1 𝑎𝑖5
 𝑎𝑗5

 1 

2 28.01.2013 01.01.2013 5 𝑎𝑖6
 𝑎𝑗6

 1 

2 30.01.2013 01.01.2013 7 𝑎𝑖7
 𝑎𝑗7

 1 

feature 𝑓𝑝 .This technique can be applied on all numeric 

attributes. 

To use temporal based feature construction on string 
attributes, we need to incorporate an intermediate step. 
During this step we replace the string value by its posterior 
probability 𝑝 𝜃|𝑥  (see also Hand [43], pp. 117-118 and pp. 
354-356). The posterior probability is the probability of an 
occurrence 𝑎𝑖 , given that its label 𝑠𝑙𝑎𝑏𝑒𝑙 = 1 divided by the 
overall number of that occurrence 𝑝(𝑎𝑛). The probability is 
based on the distribution of the occurrences in the training 
data: 

 𝑝 𝑎𝑖 |𝑠𝑙𝑎𝑏𝑒𝑙 = 1 =  
𝑝(𝑎𝑖|𝑠𝑙𝑎𝑏𝑒𝑙 =1)

𝑝(𝑎𝑛 )
  (2) 

It is possible that there is a pattern within the data that 
can be characterized by certain occurrences. This means that 
some occurrences have great tendency towards one of the 
target labels (i.e., having a high probability for one label). 
The above described technique allows us to make this pattern 
visible by multiplying the posterior probability with the 
temporal axis of the given sequences.  

However, it is also possible that the number of distinct 
occurrences of a string attribute is too high. This will lead to 
very small posterior probabilities that make it difficult to 
create meaningful and distinctive features. In such cases, it is 
recommended to take the logarithm of the posterior 
probability for cases with high cardinality. 

B. Feature Selection 

The feature construction techniques described in previous 
section generate a vast amount of features, which need to be 
assessed if they are useful for classification. Therefore, the 
next step in our framework (see also Figure 2) is dealing 
with feature selection. 

Feature selection in general is an important step in the 
KDD process. The performance of classification algorithms 
can deteriorate, if the wrong input is given and also the 
computational costs can increase tremendously. Reason for 
the deterioration in performance is the tendency of classifiers 
to overfit, if provided with misleading information. In order 
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to avoid this, data miners created methods such as feature 
selection to decrease dimensionality of the data and as a 
result of that, increase classification performance and also 
the execution times.  

A supervised filter model (see also Charu and Chandan 
[12]) is adopted in our framework to find the most suitable 
features created. There are two measurements that we used 
for assessing whether a constructed feature is suitable to 
distinguish between the two given label. The assessment is 
executed by applying a user defined threshold for both 
measurements. It is favourable to start with high thresholds, 
since they allow only the most distinguishing features. This 
also keeps the feature space, which needs to be constructed 
during classification, on a manageable level. If the 
classification performance of the top features is not 
satisfactory, the threshold can be subsequently lowered. 

1) Split 
Goal for this feature selection measurement is to find 

features that are „in general‟ suitable for distinction between 
the two given labels. The average of the features for both 
groups (i.e., the two given labels) is calculated. The average 
is a sort of centre for the two clusters. The so-called split 
value is calculated by measuring the normalized distance 
between the two cluster-centres as it can be seen in (5) 

 

𝑎𝑣𝑔0 = 𝑎𝑣𝑔({𝑓𝑝 ∈ 𝑆|𝑠𝑙𝑎𝑏𝑒𝑙 = 0})  (3) 

𝑎𝑣𝑔1 = 𝑎𝑣𝑔({𝑓𝑝 ∈ 𝑆|𝑠𝑙𝑎𝑏𝑒𝑙 = 1})  (4) 

𝑠𝑝𝑙𝑖𝑡𝑓𝑖
=

|𝑎𝑣𝑔0−𝑎𝑣𝑔1|

𝑎𝑣𝑔0+𝑎𝑣𝑔1
   (5) 

A large distance is thereby favoured. The advantage of 
calculating the average is that a few false positives within the 
data do not have such a big impact on the feature selection 
process. However, average calculation is prone to single 
extreme or erroneous values if the data is completely 
unprepared (data normalization would not help in that case). 

2) Number of null values 
The second feature selection measurement is the number 

of NULL values for each target label. This is a support 
measurement, which denotes if the achieved split value is 
based on many sequences or not. So there could be the 
situation that a constructed feature has a high split value, but 
might be useless since it cannot be used very often due to 
large number of NULL values for the particular features. 

C. Fixed domain specific features 

In order to maximize the amount of information retrieved 
from the transaction history, we incorporate domain specific 
features to the classification process. The concept of so 
called cultural clusters was introduced in order to help 
classifying transactions without any history. The basic idea is 
to get as much information out of the given attributes as 
possible. These attributes include the origin of the user (IP 
country) and the origin of the credit card used in a 
transaction (BIN country – BIN is an abbreviation for Bank 
Identification Number: The first 6 digits of a credit card 
number, enables to locate the card issuing bank of the 
cardholder). Countries are grouped together by an expert 

regarding their cultural proximity to each other. The clusters 
used in this work are roughly based on continents. A range 
of weights is assigned to each cluster. Every country is 
assigned with a specific weight within its cluster´s range 
depending on its cultural distance to its cluster centre and the 
risk of the county of being defrauded. The weight of a 
country within a certain cultural cluster is set empirically and 
can be subject for adaption, in case the fraudulent behaviour 
changes. In other words: the weight of a country lies within 
the range of its cultural cluster and is set by an initial value, 
based on the experience of a fraud expert. If cards from this 
country turn out to be defrauded frequently, the weight can 
be increased (within the limits of its cultural clusters). This 
will increase the risk value of a country pair, which can be 
calculated as it can be seen in (6):  

𝑟𝑖𝑠𝑘 = |𝑤𝑒𝑖𝑔𝑡  𝐼𝑃 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 − 𝑤𝑒𝑖𝑔𝑡 𝐵𝐼𝑁 𝑐𝑜𝑢𝑛𝑡𝑟𝑦 | (6) 

This value will be low for country pairs within the own 
country cluster (e.g., a user from Sweden tries to use a card 
originated in Norway) or 0 if the user and the corresponding 
card are from the same country. On the other hand, this value 
increases if there is a suspicious country pair involved (e.g., 
cross-cultural cluster). This simple metric allows depicting 
complex risk relationships between several countries. 

D. Feature Assembler 

The previous subsections described how to construct and 
assess suitable features for the given fraud detection task. 
This subsection is about how to use these features to make 
use of feature interaction by assembling the respective 
features in a certain way. Prior to that, the features are 
normalized with the min-max normalization [5] to bring 
them on the same numerical level (ranging from 0 to 1). The 
Feature Assembler is part of System 1 and is invoked at the 
time a sequence of credit card transactions need to be 
classified. It uses the templates of features as input, which 
are currently held in the Dynamic Feature Pool as well as the 
fixed domain specific features (see also Figure 2). The 
templates of the features (i.e., the description on how to 
construct them), are then applied on the sequences in the 
incoming data stream that need to be classified. We thereby 
differentiate between two types of interactive features 𝑓𝑖 ∈ 𝐹.  

The first type of features𝑓𝑖𝑛𝑜𝑚  tends to 1 if normalized 

and will be summed up in the nominator of a fraction. The 
denominator, in contrary, is composed of the second type of 

features 𝑓𝑖𝑑𝑒𝑛𝑜𝑚 ∈ 𝐹 , which tend to 0 if normalized with 

min-max normalization. If the quotient of the normalization 
expression is not defined, it will be discarded. The fraction 
depicted in (7), is used for calculating a signal value that can 
then be used for binary classification.  

The assembling of the interactive features will result in a 
high signal value if the sequence in question is similar to the 
average of all sequences of the target label.  

𝑠𝑖𝑔𝑛𝑎𝑙 =  
 𝑓𝑖𝑛𝑜𝑚

 𝑓𝑖𝑑𝑒𝑛𝑜𝑚

   (7) 
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E. Threshold selection and application 

The resulting signal value from (7) is an indication on 
how predominant fraudulent behaviour is in the assessed 
sequence. As a last step of our framework, a threshold value, 
whose violation will lead to the classification fraudulent 
transaction, needs to be defined. This threshold is determined 
empirically by undertaking a series of experiments with a set 
of thresholds (e.g., from 0 to 100). We use accuracy metrics 
such as Precision 𝑃, Recall 𝑅 and score F1 to assess each 
tested threshold.  

Precision 𝑃 is defined in the literature as (e.g., [44], [45]) 
the ratio of true positives (TP) and the total number of 
positives predicted by a model. That is in our case the 
number of genuine transactions that have been declared to be 
genuine plus the number of fraudulent transaction that also 
have been labelled genuine: 

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑃)
  (8) 

Recall 𝑅 on the other hand is defined as the number of 
true positives divided by the sum of true positives and false 
negatives. In our example, we have to divide the number of 
fraudulent transactions detected by our model by the sum of 
the detected fraudulent transactions (TP) and the not detected 
fraudulent transactions (FN): 

𝑃 =
𝑇𝑃

(𝑇𝑃+𝐹𝑁)
  (9) 

The measurement F1 represents the harmonic mean of 
Precision and Recall and is used to rank the performance of 
different methods in the experimental evaluation: 

𝐹1 = 2 ∗  
𝑃∗𝑅

𝑃+𝑅
  (10) 

The development of these performance measures over 
different threshold values is depicted Figure 3 for an 
example case. 

 

Figure 3.  Determining threshold value 

Accuracy indicators are increasing fast until threshold 
value 5. It is not reasonable to select a threshold lower than 
5, since the F1 is far from the global optimum. From 
threshold 5 on, there is an intersection point, which will keep 
the F1 near the global optimum. This second range can be 
called “trade-off range” and spans up to threshold value 12, 
in the case depicted in Figure 3. Within this range the 
merchant can choose between detecting more fraudsters, 
including a higher rate of false positives or catching less 
fraudsters, but increase Precision and therefore avoid false 
positives. This choice can depend on the ability of the 

merchant to deal with false positives and on the merchants 
specific total fraud costs. In the context of fraud detection the 
term total fraud costs means the sum of lost value, scanning 
cost as well as reimbursement fees associated with a fraud 
case. 

After a certain threshold value, in the shown case 12, the 
Precision is almost 1 and will only increase insignificantly. 
The Recall and consecutively F1, will decrease from that 
point. Reason for this is the intrinsic mechanic in the used 
formula. Fraudulent transactions with a comparable low 
fraud profile will be assigned a lower risk level. This level 
will hopefully be still higher than the risk level of genuine 
users. If however, the threshold is set high enough these 
lower profile fraud cases will be classified incorrectly as 
genuine. This will cause the Recall and F1 to drop. Hence, it 
makes no sense to choose a threshold greater than 12. 

VI. RELATED WORK 

So far, there have been many standard data mining 
algorithms applied in the field of credit card fraud detection 
[5]. Please note that we do not go into details here on how 
they work. All mentioned methods have been implemented 
and will be compared in terms of fraud detection 
performance in Section VII. 

Artificial Neural Network (ANN): Gosh and Reilly [20] 
were the first ones to adapt Neural Networks on credit card 
fraud detection. Other authors such as Dorronsoro et al. [21], 
Brause et al. [22] and Maes et al.[23] have also implemented 
ANNs in real life applications. ANNs in general are too 
dependent on meaningful attributes, which might not 
necessarily be available. The information gain from such 
attributes is too low to be utilized in ANNs. 

Bayesian Belief Network (BBN): The first 
implementation for fraud detection was done by Ezawa et al. 
[24]. Other recent implementations are Lam et al. [23], Maes 
et al. [23] and Gadi et al. [25]. However, some data set do 
not provide enough attributes in order to construct a suitable 
network. 

Hidden Markov Model (HMM): In recent years several 
research groups applied this model for fraud detection. 
Srivastava et al. [26] have conducted a very systematic and 
thorough research in their work. Other implementations were 
done by Mhamane et al. [27], Bhusari et al. [28] as well as 
Dhok and Bamnote [29]. A classic and comprehensive 
introduction to the topic of HMM was published by Rabbiner 
and Juang [30] and also Stamp [31] is worth reading for 
introductory purposes. HMMs in general are only able to 
utilize a single numeric attribute for their prediction, which is 
insufficient for a proper classification. 

Decision Tree (DT): The biggest impact on how Decision 
Trees are built had Quinlan [32] in the late 90s. There have 
been some applications on fraud detection in recent years, 
e.g., Minegishi et al. [33]. Other mentionable fraud detection 
implementations are Sahin and Duman [34], Sherly et al. 
[35] and Gadi et al. [25]. DTs in general suffer the same 
insufficiencies as ANNs. 

Support Vector Machine (SVM): Li and Sleep [49] use a 
Support Vector Machine for sequence classification. In 
essence, they compare similarity using a kernel matrix. Their 
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similarity measure is based on n-grams of varying length. 
The problem of exploding features generation complexity is 
alleviated by the use of LZ78 algorithm. The constructed 
features are not only simple binary presence/absence bits, but 
so-called relative frequency counts. This is assumed to create 
a finer grain of features. They also use a weighting scheme to 
highlight discriminative, but infrequent patterns. Dileep and 
Sekhar [48] describe an intermediate matching kernel for a 
SVM to help classification of sequential patterns.  

Earlier work in the field of feature construction was done 
by Setiono and Liu [36]. They used a neuronal network to 
construct features in an automatic way for continuous and 
discrete data. Pagallo [37] proposed FRINGE, which builds a 
decision tree based on the primitive attributes to find suitable 
Boolean combinations of attributes near the fringe of the 
tree. The newly constructed features are then added to the 
initial attributes and the the process is repeated until no new 
features are created. Zupan and Bohanec [38] used a 
neuronal net for attribute selection and applied the resulting 
feature set on the well known C4.5 [32] induction algorithm. 
Feature construction can also be used in conjunction with 
linguistic fuzzy rule models. García et al. [39] use previously 
defined functions over the input variables in order to test if 
the resulting combination returns more information about the 
classification than the single variables. 

However, in order to deal with the increasing complexity 
of their genetic algorithm in the empirical part, García et al. 
only used three functions (SUM(𝑥𝑖 ,𝑥𝑗 ), PRODUCT(𝑥𝑖 ,𝑥𝑗 ), 

SUBSTRACT_ABS( 𝑥𝑖 , 𝑥𝑗 )) to enlarge the feature space. 

Another approach to feature construction, which utilizes a 
genetic algorithm, is described by Sia and Alfred [40]. 
Although, his approach is not using different functions to 
create new combinations of features, it can create a big 
variety of features since it is not limited to binary 
combination. The method is called FLFCWS (Fixed-Length 
feature construction with Substitution). It constructs a set 
that consist of randomly combined feature subsets. This 
allows initial features to be used more than once for feature 
construction. That means that it is able to combine more than 
two attributes at a time. The genetic algorithm selects 
thereby the crossover points for the feature sequences. 
Another mentionable contribution to the field of feature 
construction was done by Shafti and Pérez [41]. They 
describe MFE3/GA, a method that uses a global search 
strategy (i.e., finding the optimal solution) to reduce the 
original data dimension and find new non-algebraic 
representations of features. Her primary focus is to find 
interactions between the original features (such as the 
interaction of several cards in a poker game that form a 
certain hand).  

 Lesh, Zaki and Ogihara [46] present FeatureMine - a 
feature construction technique for sequential data. It 
combines two data mining paradigms: sequence mining and 

classification algorithms. They understand sequences as a 
series of events. Each event is described by a set of 
predicates, e.g. AB --> B --> CD. There is also a timestamp 
associated with each event. FeatureMine starts by mining 
frequent and strong patterns. Frequency is defined by a 
threshold that is specified by the user. Strong is defined as a 
confidence level that needs to be over a user specific 
threshold. The found sequences are pruned and selected 
using some heuristics. The prevailing sequences lattices are 
stored in a vertical database layout. The constructed features 
have been feed into the Winnow and Naive Bayes 
classification algorithms. However, this approach only 
creates frequent itemsets and is not applicable on 
transactional data. 

Shafti and Pérez [47] present MFE3/GA, which is a 
feature construction technique that is able to detect and 
encapsulate feature interactions. The encapsulation is what 
allows classifiers to deal with interacting features. MFE3/GA 
in essence searches through the initial space of an attribute 
subsets to find subset of interaction attributes as well as a 
function over each of the found subsets. The suitable 
functions are then added as new features to the original data 
set. The C4.5 learner is then applied for the data mining 
process. So far only nominal attributes are being processed, 
so that class labels and binary/continuous attributes need to 
be normalized. A feature is in this context is a bit-string of 
length 𝑁, where each bit shows the presence or absence of 
one of the 𝑁 original attributes. This form of representation 
reduces the complexity if elaborate features are constructed. 
The number of subsets within each feature is limited by a 
parameter, which is defined by the user. The bit 
representation of data is not sufficient to model real-world 
transactional data. 

VII. EXPERIMENTAL EVALUATION 

The performance of the proposed feature construction 
techniques are compared to the standard techniques, 
mentioned in the related work. This comparison is based on 
real credit card fraud data, which was thankworthy provided 
by a successful gaming company in the online games market. 
Unfortunately, the given data did not span a long enough 
time frame to show the adaption capabilities of the presented 
feature assembler. Hence, Subsection VII.C shows a 
synthetic example for a pattern that is changing over the 
course of time. 

A. Data Set 

The given credit card fraud data set comprises of 156,883 
credit card transactions from 63,933 unique users. The 
records in the data set have the schema as it can be seen in 
Table III. Due to the high number of occurrences in several  
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Figure 4.  Fraud detection performance comparison 

 

TABLE III.  FULL DATA SET SCHEMA 

column Name description 

created timestamp of the payment transaction 

user_signuptime  Time a user startet the game 

creditcard_token identifies credit card, hashed 

card_bin Bank Identification Number 

user_country user´s land of origin 

user_id  User identification number 

user_email hashed for privacy compliance 

transaction_amount  Volume of purchase 

order_payment_status  Status of order 

TABLE IV.  ADDITIONAL FEATURES OF THE PREPARED DATA SET 

column Name description 

bin_country 2 letter country code derived from card_bin 

days_since_signup integer attribute calculated as difference from 
signup_time to created 

total_count denotes total transaction figure for a particular 
user_email 

package a single letter attribute ranging from A to E. It 
was derived from the offer_price attribute to 
reduce the cardinality of the offer_price 
attribute 

 
columns as well as the lack of distinctive attributes, most of 
the standard algorithms were not applicable on that data set  
right away. In order to get a fair comparison and to overcome 
these obstacles, several adaptations to the data set were 
made. The resulting prepared data has a minimum sequence 

length of three (smaller sequences have been discarded) and 
four derived attributes (see Table IV) were added. 

The prepared data set comprised of 13,298 unique users, 
which are accompanied by 46,516 transactions. The data 
label distribution in the data set is heavily skewed, which 
means that there are ~99 % of genuine transactions. The last 
transaction of each user was cut out in order to form the test 
data set. This procedure segmented the prepared data set into 
71.4 % train data and 28.58 % test data.  

B. Fraud Detection Performance  

All tests in this section were performed using the 
prepared data set. We used the F1 score in order to rank the 
compared methods. As shown in Figure 4, the proposed 
approach is able to perform 16.25 % better than the best 
standard method, which is the Bayesian Net. The SVM was 
not able to detect the pattern within the rather short 
sequences. Hence, it defaulted and predicted genuine for all 
transaction. This resulted in a F1 measure of 0.00 %. Main 
reason for the poor performance of HMM´s in credit card 
fraud detection for online gaming merchants is the very low 
sequence length. These models are successful at credit card 
issuing banks since their sequence length enfolds the entire 
history of the cardholder. The HMM is also not able to 
properly use the time elapsed during the transactions. The 
neural nets were performing poor due to their focus on just 
the tuple level of the underlying data. They were not able to 
incorporate the sequence dimension into the model.  

There have also been additional experiments with various 
combinations of neurons and different learning rates were 
carried out. All experiments resulted in the weak 
performance as shown above. The algorithm proposed in this 
article is also able to achieve an almost perfect 99.59 % 
Precision, which is especially valuable for online gaming 
merchants, since it reduces the risk of punishing genuine 
users and consecutively reduces the risk of reputation loss. 
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C. Adaptive Framework example 

This subsection describes a small example that will show 
the adaptive capabilities of the proposed framework. To keep 
things simple, we left out the sequential part of the 
construction algorithm and just focus on a two dimensional 
problem (rectangle classification).  

Assume that we are given data about rectangles as shown 
in Table V. Given are the two attributes width and length of 
the rectangles as well as the label column. Goal is to be able 
to distinguish between the two given classes. We can then 
use this data to create several features, as described in 
Section A. Please note that for the sake of simplicity in this 
case we only create some operator numeric based features. 
The constructed features are depicted in Table VI. The 
constructed features are assessed by calculating the split 
value, as described in Section B and shown in Table VII. The 
highest split values have features 𝑓3 and 𝑓4. Reason for this is 
that these features are capturing the underlying pattern 
behind the labels: the blue rectangles are „laying‟ (length 
<width) while the orange rectangles are „standing‟ (length > 
width). 

So we can now use features 𝑓3 and 𝑓4 for classification of 
new rectangles where the label is unknown (e.g., we set up a 
threshold of 1 for feature 𝑓4  so that 𝑓4 ≥ 1 → 𝑏𝑙𝑢𝑒). The 
blueprint of 𝑓4 and the threshold are forwarded to the feature 
assembler, which is used to execute the classification.  

Now let us assume that some time has passed and new 
training data is handed into the features construction system. 
Table VIII depicts the new data. Again, we apply the feature 
construction algorithm on the data (depicted in Table IX) and 
calculate the split value (depicted in Table X). It can be seen 
that features 𝑓3 and 𝑓4 are not suitable anymore to distinguish 
between the two given labels. Reason for this is that the 
underlying pattern has changed. It seems like that the area of 
the rectangles is now useful for classification. The proposed 
framework can adapt to this change by sending the blueprints 

TABLE V.  RECTANGLE EXAMPLE DATA 

id  
width 

a1 
length 

a2 label  

#1 2 3 orange  

#2 4 1 blue  

#3 2 2 blue  

#4 3 2 blue  

#5 1 3 orange  

TABLE VI.  CONSTRUCTED FEATURES 

id  
width 

a1 
length 

a2 label  
f1 =  

a1 * a2 
f2 = 

a1+a2 
f3 =  
a1-a2 

f4= 
a1/a2 

#1 2 3 orange  6 5 -1 0.67 

#2 4 1 blue  4 5 3 4 

#3 2 2 blue  4 4 0 1 

#4 3 2 blue  6 5 1 1.5 

#5 1 3 orange  3 4 -2 0.33 

 

 

TABLE VII.  CALCULATING SPLIT VALUE 

average  a1 * a2 a1+a2 a1-a2 a1/a2 

blue  4.67 4.67 1.33 2.17 

orange  4.5 4.5 -1.5 0.5 

split  0.17 0.17 2.83 1.67 

TABLE VIII.  NEW TRAINING DATA 

id  

width 

a1 

length 

a2 label  

#6 2 1 orange  

#7 3 2 orange  

#8 5 3 blue  

#9 6 2 blue  

TABLE IX.  NEW CONSTRUCTED FEATURES 

id  

width 

a1 

length 

a2 label  

f1 =  

a1 * a2 

f2 = 

a1+a2 

f3 =  

a1-a2 

f4 

=a1/a2 

#6 2 1 orange  2 3 1 2 

#7 3 2 orange  6 5 1 1.5 

#8 5 3 blue  15 8 2 1.67 

#9 6 2 blue  12 8 4 3 

TABLE X.  NEW FEATURE SELECTION 

average  a1 * a2 a1+a2 a1-a2 a1/a2 

blue  13.5 8 3 2.33 

orange  4 4 1 1.75 

split  9.5 4 2 0.58 

 
for feature 𝑓1 to the feature assembler, which will then use 
the new selected features for classification.  

VIII. CONCLUSION 

Data pre-processing and selection are very important 
steps in the data mining process. This can be challenging, if 
there is no domain expert knowledge available. The 
framework proposed in this work aims to give guidance on 
how to systematically find knowledge in data by using an 
automated feature construction algorithm. In addition to that 
it shows how these features can be used for binary 
classification. The proposed automated feature construction 
algorithm is able to systematically find and assess suitable 
sequence based features for binary classification tasks. It 
thereby is able to utilize the time dimension in a sequence of 
actions in order to access information, which can have a 
significant impact on the discriminatory power of features. 
The feature assembling formula is an efficient way to store 
discovered patterns and use them without starting each time 
from scratch when a new transaction is added to the 
sequence. 

The framework was applied on the problem of credit card 
fraud detection in online games. The problem is caused by 
the lack of useful financial data, the anonymity in online 
games as well as the comparably short transaction sequences. 
In addition, a domain specific concept of country clusters is 
used to evaluate the legitimacy of a transaction. The 
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proposed techniques were able to perform 16.25 % better 
than the best standard method (Bayesian Net) and achieve 
99.59 % Precision. The achieved Recall rate (87.05 %) 
reduced the probability for false negatives and therefore the 
need for human intervention is reduced.  

Future Work: The next steps in the development of the 
proposed algorithms and its associated techniques, is to 
apply it on other domains with similar specifications. 
Intrusion detection in networks or detecting DDOS attacks 
are both fields in which few attributes are available and 
behaviour over time is important. 

The further development of the feature construction 
algorithm comprises of the implementation of further 
mathematical functions into the construction process. So it is 
possible to generate features with logarithm or exponential 
powers. It would also be possible to create features based on 
more than two attributes. 

In terms of feature alignment, it would also be helpful to 
incorporate the sequence length into the algorithm. The 
algorithm may be susceptible to the sequence length due to 
the proposed additive technique depicted in Formula (7). The 
used data set did not allow us to precisely quantify possible 
impacts.  
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