
Triangulation and Segmentation-based Approach for Improving the Accuracy of

Polygon Data

Alexey Noskov and Yerach Doytsher
Mapping and Geo-Information Engineering

Technion – Israel Institute of Technology

Haifa, Israel

Emails: {noskov, doytsher}@technion.ac.il

Abstract — Often, same polygon objects are presented in

Geoinformational Systems by distinct geometries with random

positional discrepancies. It makes difficult to detect

correspondences between data layers containing same object

or parts of objects. The suggested method allows the user to

improve the accuracy of one polygon layer by another more

accurate polygon dataset by defining correspondences between

polygons and parts of polygon boundaries. Two main

techniques are applied: triangulation and segmentation. The

triangulation is used to define correspondences between whole

polygons by comparing triples of polygons. The segmentation

approach is applied for the remaining polygons. Existing

approaches do not work well in the case of partial equality of

polygon boundaries. The main idea of the segmentation

algorithm in this paper is based on defining correspondent

segments of polygon boundaries and further replacing polygon

boundary segments of the non-accurate layer with segments of

the accurate data set; segments without pairs are rectified

using ground control points. The resulting data contain parts

of the accurate data set polygon boundaries, whereas the

remaining elements are rectified according to the replaced

boundary segments. From a review implemented by specialists

it might be concluded that the results are satisfactory. The

developed method could be applied to various types of
polygonal datasets with similar scale.

Keywords – Polyline and polygon similarity; geometry

matching; shape descriptor; triangulation; topology.

I. INTRODUCTION

The same objects on different maps, which are on an
equal scale, might be shown with small differences. In an
ideal situation, accurate geometries of exiting maps should
be used for preparing new data sets or for updating. Usually,
in the real world, new maps are digitized without respect to
existing data sets. Using geometries (e.g., river line) from an
accurate topographic map for creating a thematic map (e.g.,
soil map), in many cases, is better than digitizing a new
element. Often, data are unavailable, or available with
significant restrictions, because of legal, technical, or other
reasons. Additionally, even if an accurate data set is freely
available, people usually do not want to spend time using an
existing data set; in most cases they prefer to digitize new
geometries on a satellite image or scanned map. These data
should be aligned using accurate data sets [1]. This problem
is especially sensitive for large-scale maps and plans [2].

The problem which is described in the paper refers to
cadastral and city planning maps. A cadastral map is a

comprehensive register of the real estate boundaries of a
country. Cadastral data are produced using quality large-
scale surveying with Total Stations, Differential Global
Positioning System devices or other surveying systems with
centimeter precision. Normally, the precision of maps based
on non-survey large-scale data (e.g., satellite images) is
lower. City planning data contain proposals for developing
urban areas. Most city planning maps are developed by
digitizing handmade maps, using space images. Almost all
boundaries have small discrepancies in comparison to
cadastral maps. It is very important to use exact boundaries,
or their segments, on city planning data from a cadastral
map, especially in central parts of cities. The approach
described in the paper enables us to resolve this problem of
matching two data types. Rectifying data using a set of
ground control points is a popular way of improving the
accuracy of a map [3]. The results of this approach are not
satisfactory in many cases, because rectified objects cannot
be identical to directly measured accurate objects. Another
possibility is based on defining correspondent objects on an
accurate data set by geometry or attributes and replacing
objects from the non-accurate set with the accurate
correspondent objects [4].

We present a triangulation approach. It enables us to
define correspondent polygons of two datasets. It is achieved
by dividing polygons into triples and comparing the triples of
two datasets. A serious problem with this approach follows
from the fact that objects could be partially similar (e.g.,
some segments of a polygon boundary are same, other parts
are different). In contrast to existing approaches, the main
idea of a segmentation approach is based on defining
correspondent segments of polygon boundaries and further
replacing polygon boundary segments of the non-accurate
layer with segments of an accurate data set; segments
without pairs are rectified by ground control points. The
segmentation complements the triangulation algorithm.
Triangulation is a fast process for defining correspondences
between whole polygons. Segmentation is much slower. It
enables us to define correspondences between boundary
segments of polygons (excluding polygon pairs defined by
triangulation). The triangulation is also used for evaluating
results. The proposed algorithm could be applied to different
sorts of polygon datasets with small boundary differences.
The approach has not only been designed for city planning
and cadastre datasets.

This paper is structured as follows: the related work is
considered in Section II. Source datasets and the process of

24

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defining initial variables are described in Section III. The
triangulation approach is proposed in Section IV. The
algorithm of defining correspondent polylines is presented in
Section V. The process of compiling the final map is
described in Section VI. The results are discussed in Section
VII. The conclusion is presented in Section VIII.

II. RELATED WORK

In order to develop the proposed algorithm, various
approaches were considered. The review of these approaches
is presented in this section. Many of them were evaluated.
We found several useful concepts for our task described in
the considered papers. The papers are grouped. The groups
appear in the order in which they influenced our research.
Most of our ideas were taken from the feature-based
matching group of approaches. The relational matching ideas
also affected our approach, mainly in the sense of topological
orientation of the developed approach. We have not found
useful concepts for the context of the discovered datasets in
the last category (attributes-based matching), but it discloses
and raises many useful problems of attribute processing for
data matching researchers. Additionally, several
programming techniques are described at the end of the
section, in order to improve the quality of the developed
approach. Most of the techniques are applied.

Discrepancy problems on digital maps can be resolved in
different ways. Common shape matching techniques are
currently used in the raster and vector fields, and sometimes
in combination with each other. Several common techniques
in the field of Shape Similarity or Pattern Recognition could
be applied to the various needs of the matched objects and
relevant research questions.

Vector matching techniques can be divided into three
main categories.

A. Feature-based matching

This group of methods is based on an object's geometry
and shape. The degree of compatibility of objects is
determined by their geometry, size, or area. The process is
carried out by structural analysis of a set of objects and
comparing whether similar structural analysis of the
candidates fits the objects of the other data set [5][6]. In [4],
comparison of objects is based on analysis of a contour
distribution histogram. A polar coordinates approach for
calculating the histogram is used. A method based on the
Wasserstein distance was published by Schmitzer et al. [7].
A special shape descriptor for defined correspondent objects
on raster images was developed by Ma and Longin [8].
Feature-based matching approaches do not allow for
resolving our problem, because they have been developed
mainly for single shapes; however, we can use them as part
of our approach.

B. Relational matching

This group of methods takes objects' relationships into
account. In [9], topological and spatial neighborly relations
between two data sets, preserved even after running
operations such as rotation or scale, were discovered. In
relational matching, the comparison of the object is

implemented with respect to a neighboring object. We can
verify the similarity of two objects by considering
neighboring objects. The problem of non-rigid shape
recognition is studied by Bronstein et al. [10]; the
applicability of diffusion distances within the Gromov-
Hausdorff framework [10] and the presence of topological
changes have been explored in this paper. A multiple-point
geostatistical modeling based on cross-correlation functions
is proposed by Tahmasebi et al. in [11].

C. Attributes-based matching

Matching two data sets' objects by attributes could be
very effective if a similar data model is used. Two types of
attribute matching could be mentioned: Schema-based [12]
and Ontology-based. The concept of semantic proximity,
which is essentially an abstraction/mapping between the
domains of the two objects associated with the context of
comparison, is proposed by Kashyap and Sheth in [13]. In
[14], an approach based on both types is presented. An
ontology-based integration of XML Web Resources focusing
on the significance of offering appropriate high-level
primitives and mechanisms for representing data semantics is
described by Amann et al. in [15]. A technique for building
approximate string join capabilities on top of commercial
databases by exploiting facilities already available in them is
described by Gravano in [16] and [17]. Attributes-based
matching is a specific group of approaches; it can only be
applied efficiently in special cases with special data. In most
situations it is ineffective.

The merging and fusion of heterogeneous databases has
been extensively studied, both spatially [18] and non-
spatially [19]. The Map conflation method is based on data
fusion algorithms; the aim of the process is to prepare a map
which is a combination of two or more maps (often for
updating an old map). Map conflation approaches are
presented in [2] [20] [3]. In [21], three approaches for the
linking of objects in different spatial data sets are described.
The first defines the linking as a matching problem and aims
at finding a correspondence between two data sets of similar
scale. The two other approaches focus on the derivation of
one representation from the other one, leading to an
automatic generation of new digital data sets of lower
resolution.

In order to resolve the described problem, the mentioned
approaches have been considered. It has been concluded, that
a new solution need to be developed.

Computer Vision algorithms are popular in the field of
data matching [22]. The Open Computer Vision (OpenCV)
framework [23] is widely used today; it provides a number
of "out-of-the-box" functions enabling us to detect and
compare objects and bindings for popular programming
languages (e.g., Python [24]). This makes the OpenCV
framework very useful for data-matching tasks. Delaunay
Triangulation [25] and Voronoi Polygons [26] are very
useful techniques for working with discrete vector data and
neighbor analysis. We should also note that in practice, data
is distributed in non-topological formats (e.g., Shape File
format). That leads to complication of the analysis, because
of a surplus number of objects and duplication of primitives,

25

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

e.g., polygon boundaries, unexpected gaps between objects
etc. We need to use one of the topological data formats
presented by Landa [27] to avoid these obstacles. The
topology in GIS context is described in detail by Blazek et al.
in [28]. The main topological data types are presented: point,
line (comprising nodes, vertices and segments), and
polygons (consisting of boundaries and centroid). Many
useful GIS definitions and techniques, including geometry
relations, topology and operations (e.g., overlay), are
described by Herring in [29].

 Additionally, two perspective methods could be used in
GIS data matching to reduce the time and computer
resources required: Genetic Algorithms [30] help to avoid
Brute-force operations in some cases; OpenCL technology
[31] makes it possible to split a process into a huge number
of parallel threads on a video card.

Figure 1. Source data: land-use city planning (color background) and

cadastre (black polylines) of Nesher (upper) and Yokne'am (lower)
datasets.

III. DEFINING INITIAL VARIABLES

For implementing and testing our approach, GIS data
provided by Survey of Israel have been used. They contain

cadastre and land-use city planning polygon shape files
covering a part of Nesher and Yokne'am (towns in the Haifa
District of Israel). Figure 1 depicts source data; red numbers
in circles correspond to numbers of extents in Figure 21.
Overlaid polygon boundaries of two data sets are presented
in Figure 2. From the figure, one can conclude that
transformation of lines would not yield positive results,
because the gaps are extremely variable - the curved parts of
lines consist of different numbers of vertices; thus, even with
correct parameters of transformation, the result would not be
satisfactory.

Figure 2. Positional discrepancies of city planning (red lines) and cadastre

(black lines) datasets: Nesher (upper) and Yokne'am (lower).

Source shape files have been converted to GRASS GIS 7

topological data format [27]. Data preparation can be divided
into 3 steps:

 Extracting polygon boundaries.

 Splitting polylines into a set of equidistant points.
For depicting this parameter we will use the symbol
d in the paper.

 Calculating an array of distances between the nearest
points of two datasets. Setting of initial measures.

We have decided to use 2 meters between equidistant
points. Using a greater distance makes impossible to detect
small curves, whereas a smaller distance significantly
increases the calculation time.

Several initial measures need to be calculated. Maximal
distance (Dmax) between the nearest points of two datasets

26

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

and maximal standard deviation (σmax) have been calculated.
To calculate these parameters we need to create a list of 100
percentiles. Then we implement a loop from the first to the
last percentile on the list. Dmax equals percentile i and σmax
equals the double standard deviation of distance in the
interval between percentiles number i and 100 if the
standard deviation of distances between percentiles i-1 and i
is more than 1. We calculate tail parameter (t) as follows: t=
Dmax/d, minimal tail parameter equals 4. Tail defines a
starting or ending segment of polyline that can be ignored.

We have developed a special shape descriptor (S), based
on the descriptor presented in [8]. The descriptor measures
the similarity of polylines. Polylines are more similar if S is
larger.

)1(log)1(log 1010 distBdistAd

(1)

2

22

)(

))(exp(exp

kk

angBangAd
S

In the equation, 1 means matrix of ones, distA – matrix

of distances between all pairs of points laid on polyline a.
distB – matrix of distances between all pairs of points laid on
polyline b. If the number of points of a line is k, then matrix
size is k×k. angA and angB are matrices of angles in radians
between all pairs of points of lines a and b, correspondingly.
The shape descriptor is calculated for the segments with
equal length (k).

A list containing pairs of point sets has been prepared,
where all points laid on line A are closest to points laid on
line B of another dataset. For each element of the list, two
shape descriptors of tails with t number of points have been
calculated and collected into a list of shape descriptors of
tails. St_min, St_max – minimal and maximal elements of
the list. Also, we use maximal tail standard deviation of point
distances (σt), and its (maximal tail) maximal value –
σt_max.

The list of initial variables has been calculated:
Nesher datasets: Dmax=2.1, σmax=1.0,

St_min=0,St_max=0.23; Yokne'am datasets: Dmax=7.9,
σmax=1.5, St_min=0,St_max=0.25.

IV. DEFINING CORRESPONDING POLYGONS OF DATASETS

BY TRIANGULATION

As we can see in Figure 1, many polygons of city
planning datasets have corresponding polygons in cadastre
datasets. Thus, we can simply take attributes of these city
planning polygons and link them to the geometry of
correspondent cadastre polygons. To implement this idea we
have developed a triangulation algorithm.

The triangulation consists of several stages: calculating
of Delaunay triangulation based on polygon centroids;
comparing all possible pairs of polygon triples and defining
correspondent candidate pairs of polygon triples of two
datasets by area and perimeter comparison; defining correct
triple correspondence by considering distances between

polygon centroids. Further in this section, the algorithm will
be described in detail.

Figure 3. Delaunay triangulation (red lines) of cadastre (upper) and city

planning (lower) datasets. Black lines are polygon boundaries, blue points
are polygon centroids. Yokne'am.

Delaunay triangulation maps are presented in Figure 3.
These maps enable us to select triples of polygons, where
each triple belongs to one of the triangles (centroids of
polygons are vertices of Delaunay triangles). Then, for each
triple we try to find a candidate counterpart triple on a
second dataset. A candidate counterpart is detected by
comparing perimeters and areas of polygons as follows. A
triple of first dataset polygons is the candidate counterpart of
a triple of a second dataset, if for each polygon in the first
triple we can find a polygon in the second triple (each
polygon can only participate in one correspondence). The
area and perimeter of the first polygon are more than the area
and perimeter of the second polygon minus 20% and less

27

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

than the area and perimeter of the second polygon plus 20%.
The value 20% is empiric. It has been defined as optimal for
the considered datasets, but it may be used with other
datasets. It could be feasible to let the user modify the value.

At this time a list of candidate counterpart triples is
prepared. The candidates are evaluated by distances between
centroids of counterpart polygons to define the most likely
correspondence of polygons in the triple pair
(TripleB.GetTheMostSimilar() function in Figure 4). For
each candidate triple of polygons, all possible combinations
of polygon correspondences implemented by permutation are
considered. For each combination, a sum of distances
between correspondent polygons is calculated. A
combination with the lowest sum describes the most likely
correspondence of polygons in the current triple pair. The
correspondence of polygons in the triple pair is correct if one
of the two follows conditions is true. The first condition is
valid if the sum of distances between centroids of
correspondent polygons is less than Dmax defined in the
previous section. This condition does not work for incompact
long curve polygons (e.g., road polygons), because even
small changes in polygon boundary significantly changes
centroid position. That is why another condition has been
developed. This condition is valid if the mean distance
between boundaries of all correspondent polygons in the
triple pair is less than Dmax. To calculate the mean distance
between polygon boundaries, the boundaries have been split
by equidistance points with intervals equaling d (2 meters) as
defined in the previous section. For each point of the first
polygon boundary, a distance to the closest point of the
second polygon boundary is calculated. The mean distance
between the polygon boundaries equals the mean value of
the calculated point distance.

The described algorithm is presented as a pseudo code
listing in Figure 4 and Figure 5. Figure 4 explains the process
of preparing a candidate counterpart triples list. It mainly
comprises standard geoprocessing operations like buffering,
triangulating and overlaying. In order to improve the
performance of the algorithms, we used a number of tricks
for calculating a list of candidate counterpart triples,
presented in Figure 4. In Figure 5, we consider a process of
evaluating the candidate list by a number of conditions and
loops. Each element of a result list contains polygon pairs of
two datasets. The following text contains more detailed
explanation of the listings.

Figure 4 starts from the definition of source polygon
maps. PolsA and PolsB compare polygon maps. For each
map several preparatory procedures are applied. Area,
perimeter and centroid coordinates have been added to the
attribute table for each polygon. Then, a map of centroids is
created. An attribute table of source polygon is inherited.
GetBuffer function returns the 0.1 m buffers around
centroids. In our case, 0.1 m means the small value that we
can ignore, i.e., we consider it as “almost 0”. Another small
value could be used; it depends on specific datasets and
software. The attribute table is also inherited. GetDelaunay
pseudo function generates a triangulation map based on
centroids. OverayMap is the result of overlaying the buffer
and triangulation map with an “and” operator. The three last

described operations are illustrated in Figure 4. This
approach of grouping polygons into triples works very fast.
Many GIS applications have the described functions in the
standard edition.

PolsA=first_polygon_map
PolsB=second_polygon_map
InitTriples=GetEmptyList()

Foreach map in [PolsA, PolsB] {

 CalculateAreaOfPolygons(map)
 CalculatePerimeterOfPolygons(map)
 CalculateXYOfPolygonsCentroids(map)
 CentroidMap=GetCentroidsAsPoints(map)
 BufferMap=GetBuffer(CentroidMap, buffer_size=0.1)
 TriangMap=GetDelaunay(CentroidMap)
 OverlayMap=GetOverlay(BufferMap, TriangMap)
 TempList=GetEmptyList()

 Foreach TriangleId in GetIds(TriangMap) {

 Attributes=GetAttribs(OverlayMap,get=map_perimeter,
map_area,map_centroidXY, where=TriangMap_id= TriangleId)
 TempList.append(Attributes)

 }

 InitTriples.append(TempList)

}

CandidateTriples= GetEmptyList()
Foreach TripleA in InitTriples[0] {
 Foreach TripleB in InitTriples[1] {
 Appropriate=True
 Foreach PolA in TripleA {
 PolB=TripleB.GetTheMostSimilar(PolA)
 TripleB.remove(PolB)

 If not (0.8*PolB.area < PolA.area < 1.2*PolB.area) and not
(0.8*PolB.perimeter < PolA. perimeter < 1.2*PolB. perimeter) {
 Appropriate=False
 }

 }

 If Appropriate==True {
 CandidateTriples.append([TripleA,TripleB]) }
 }

Figure 4. The first part of the triangulation algorithm: preparing of a list

of candidate counterpart triples.

Now we can easily get a polygon triple belonging to any

triangle. The first element of InitTriple contains all triples of
polygons of the first polygon map; the second element
contains all triples of polygons of the second polygon map.
Then the triples of the two polygon maps are compared by
area and perimeter and appropriate triples are added to the
CandidateTriples list.

28

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 In Figure 5, an algorithm for evaluating candidate
counterpart triples and defining correspondences between
polygons is described. The combinations list comprises all
possible correspondences of polygons in a triple pair. For
each combination, a sum of distances between the centroids
of correspondent polygons is calculated. A combination with
a minimal sum of distances is kept in optimal variable for
further processing.

Result= GetEmptyList()

 Foreach TripleA, TripleB in CandidateTriples {

 Combinations=getAllPossibleCombinations(TripleA, TripleB)
 DistList= GetEmptyList()

 For {i=0; i<length(Combinations);i++} {

 PolA1,PolB1,PolA2,PolB2,PolA3,PolB3=
Combinations.GetPolygonsAsList()

 DistList.append(CentoidDistance(PolA1,PolB1)+
CentoidDistance(PolA2,PolB2)+ CentoidDistance(PolA3,PolB3)+)

 }

 MinDist= Minimal(DistList)
 Index=DistList.GetIndex(MinDist)

 Optimal= Combinations[Index]
 Foreach PolA, PolB in Optimal {

 If not (0.8*PolB.area < PolA.area < 1.2*PolB.area) and not
(0.8*PolB.perimeter < PolA. perimeter < 1.2*PolB. perimeter) {
 Continue
}

 Appropriate=True

 If MinDist < max_dist {
 Appropriate=True
 }

 Else {
 Foreach PolA, PolB in Optimal {
 Xa,Ya=PolA.CentroidCoords
 Xb,Yb=PolB.CentroidCoords
 AreaA=PolA.area
 Delta=Sqrt(AreaA)+max_dist

 If (Xa-Delta < Xb <Xa+Delta) and (Ya-Delta < Yb
<Ya+Delta) {

 EqdBoundsMapA= GetEquidistancePoints(PolA)
 EqdBoundsMapB= GetEquidistancePoints(PolB)
 DistArray=PointDistance(EqdBoundsMapA,
EqdBoundsMapB)

 If Mean(DistArray)>max_dist {
 Appropriate=False
 }

 }
 Else {

 Appropriate=False
 }
 } #end of Foreach PolA, PolB in Optimal

 If Appropriate == True {

 PolA1,PolB1,PolA2,PolB2,PolA3,PolB3=
Combinations.GetPolygonsAsList()

 Result.append([PolA1,PolB1])
 Result.append([PolA2,PolB2])
 Result.append([PolA3,PolB3])

 }

Figure 5. The second part of the triangulation algorithm: preparing a list

of polygon correspondences.

All polygon correspondences are evaluated using areas
and perimeters; if the condition is false, the triple pair is not
considered and the next candidate is processed. If the sum of
distances is less than Dmax (max_dist in the listing; the
parameter has been defined in the previous section), the
polygon correspondences are correct and are added to the
Result list. If the previous condition is false, then we
calculate mean distance between polygon boundaries. It is
implemented by calculating distances between equidistant
points splitting boundaries. If the mean distance is less than
Dmax, a polygon pair passes the check. This condition has to
be true for all polygon pairs in the combination. The
performance of the described condition is quite low, which is
why we use the Delta variable for filtering distant polygons.
Delta equals to the square root of PolA’s area plus Dmax.
Only if centroid PolB is placed inside a rectangle Xa-Delta,
Ya-Delta, Xa+Delta and Ya+Delta (where Xa and Ya are
PolA’s centroid coordinates), we can calculate mean distance
between polygon boundaries.

Figure 6. Grouping polygons into triples by triangulation (color

background and red boundaries), buffering (circles) and overlaying (color
sectors of the circles).Yokne'am.

 The cadastre and city planning polygon datasets have
been compared by the triangulation algorithm, and
counterpart polygons have been detected. The result is
presented in Figure 7 and in Figure 8: counterpart polygons
are depicted by gray background and black boundaries,
polygons without pairs are light gray areas with gray
boundaries.

29

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Almost all polygons of the Nesher datasets (see Figure 8)
have correspondences; only several northern polygons do not
have pairs. Many polygon correspondences have been
defined on the Yokne'am datasets (see Figure 7). Several
polygons look similar in the figure and have no defined
correspondences. That means that either we do not see the
differences because of the scale, or that polygons participate
only in incorrect triples (triples with at least one polygon
without correspondences).

Figure 7. The result of triangulation. Upper – cadaster, lower – city

planning. Yokne'am.

The counterpart polygons are excluded from further

processing and will be involved in the processing only at the
last stage of the approach. The polygons without pairs are
extracted from the datasets for defining correspondences
between boundaries and boundaries’ segments.

V. DEFINING CORRESPONDING LINES OF DATASETS

To define corresponding lines, we have developed a
special descriptor based on several measures: distances
between points, standard deviation of distances, shape
descriptor. Figure 9 depicts the main idea – using
equidistant points on a polyline to detect corresponding
polylines, or segments of polylines. In the figure, a polyline
of cadastral data set with the nearest polylines of a city
planning map are presented.

Figure 8. The result of triangulation. Upper – cadaster, lower – city

planning. Nesher.

Figure 9. Equidistant points used to calculate similarity of polylines and

polylines’ segments. Red line – city planning dataset, black – cadastre.

The algorithm for line pairs searching is presented in

pseudo code in Figure 10.
The pseudo-function gets the ‘id’s_of_closest_lines ()

and returns a pair of neighboring lines’ ids points which are
closest. Usually, for one line A, several pairs of ids can be

30

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defined (idA1-idB1, idA1-idB2, …). All id pairs are
processed. Pts_A – points of a city planning dataset are
situated on a line with id idA; Pts_B – points of line idB
(cadastral map). The pseudo function gets_segments (Pts_A,
Pts_B) and splits lines into segments at intervals where the
distance between the nearest points is more than Dmax. In the
first line of the pseudo function - finding_pairs (PtsA,PtsB) -
we test distances from start point of line A to start and end
points of line B. If start-start distance is more than start-end,
we invert the order of points in line A. Then we set l,i,j
variables: l – length of line, i - number of starting points on
line A, j - number of starting point on line B.

Foreach idA,idB in get_ids_of_closest_lines(){
 Pts_A = get_points(‘city planning’,idA)
 Pts_B = get_points(‘cadastre’,idB)
 If min(len(Pts_A),len(Pts_B)) > tail {
 Foreach segm in get_segments(Pts_A,Pts_B){
 Pts_A_segm=segm[‘Pts_A’]
 Pts_B_segm=segm[‘ Pts_B’]
 Result_line_pair=find_pair(Pts_A_segm,Pts_B_segm)}}}

Function find_pair(PtsA,PtsB) {
 If (distance(PtsA[0],PtsB[0]) >
 distance(PtsA[0], PtsB[-1])){ PtsA=reverse(PtsA) }
 Length=min(len(PtsA), len(PtsB))
 Global_measures=[]
 Foreach l in reverse([tail,…,length]){
 Local_measures=[]
 Foreach i in [0,…,len(PtsA)-tail]{
 Foreach j in [0,…,len(PtsB)-tail]{
 cur_measure=Calc_measures(PtsA,PtsB,i,j,l)
 if (cur_measure[0]<max_stand_dev and
 cur_measure[1]<max_distance){
 Local_measures.append(cur_measure)} } }
 Global_measures
.append(Find_local_indicator(Local_measures))
 If Global_measures and (l==length or
len(Global_measures)>tail){
 Gen_desc_list=[calculate_global_indicator(cur) for cur in
 Global_measures]
 If max(Gen_desc_list[:-tail])> max(Gen_desc_list[-tail:]){
 Return
Global_measures[index_of_maximal(Gen_desc_list)]}}}

Function Calc_measures(PtsA,PtsB,i,j,l){

 cur_PtsA= PtsA[i:i+l]
 cur_PtsB= PtsB[j:j+l]
 dists=Distances(cur_PtsA,cur_PtsB)

 Return [stand_dev(dists),max(dists),
 min(dists),delta_x,delta_y,
 get_max_stddev_of_tailes(cur_PtsA,cur_PtsB),
 get_min_shape_descr_of_tails(cur_PtsA,cur_PtsB),
 get_shape_descriptor(cur_PtsA,cur_PtsB), i, j, l]}

Figure 10. Searching for equal polylines or polylines’ segments.

The function Calc_measures (PtsA, PtsB, i, j, l) and

calculates a set of parameters (standard deviation of

distances, shape descriptor, minimal shape descriptor of line
tails, minimal and maximal distance between points). This
enables us to define similarity of line A segment from i to i+l
and for line B - from j to j+l. Variables i and j, which define
the optimal segment (pseudo function Find_local_optimal
(Local_measures)), have been found for each possible length
l using (2).

min_max_

max_

max

max)(
_

tt

t

SS

Ss

D

Dd
IndLoc

 (2)

max

max

max

max_
D

Dd
IndG t

(3)

L/)1(
min_max_

max_
l

SS

Ss

tt

t

Figure 11. Segment of line A (city planning) – green; segment of line B

(cadastre) – blue. Start and end point of the most similar line segments are
red points (i=6,j=6, Loc_ind=0.86); blue points – i=2, j=1, Loc_Ind=0.026.

Figure 12. Plot of indicator Loc_Ind: X axis – i, Y axis - j. The segment

with i=6 and j=6 is the most optimal.

The meaning of parameters in (2): d – maximal distance

between points of lines A and B for (l,i,j), s - minimal tail
shape descriptor. In this step, we have a Global_measures list
containing elements that correspond to some l and contain

31

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

measures of line segments with maximal indicator Loc_Ind
derived from the list (Local_measures) with variable (i,j).

This process is illustrated in Figures 11 and 12 (segment
length is 20 meters). Figure 11 depicts different segments
with the same length; Figure 12 is a plot of indicator
Loc_Ind depicted by color. The next stage is defining
optimal segment length. In the previous stage, we defined
optimal segments i,j for some length l by calculating local
indicator Loc_Ind. To define optimal segment length we use
global indicator G_Ind; its formula is presented as (3).

In the equation, σt means maximal standard deviation of
point distances of line segments’ tails; for more details see
Section III and (2). The resulting optimal line length is
defined by maximal global indicator G_Ind. The process is
illustrated in Figures 13 and 14. Figure 13 depicts examples
of optimal segments with different lengths. Figure 14 is a
plot of indicator G_Ind. It is obvious that the optimal
segment length is 41 meters (element with maximal G_Ind,
according to the plot presented in Figure 14).

Figure 13. Segment of line A (city planning) – green; segment of line B

(cadastre) – blue. Nodes of the most similar line segments with different

lengths of segment: red points – l=41,i=5,j=5,G_Ind=2.35; green points –
l=10,i=5,j=5 G_Ind=1.69; blue points – l=43,i=3,j=3 G_Ind=1.64.

Figure 14. Plot of indicator G_ind: X axis – segment length (in meters), Y

axis – G_Ind.

VI. COMPILING A FINAL MAP

At this point, we have the pairs of corresponding
polygons and polygon boundary segments. Some segments
are overlapped; to resolve conflicts, a special parameter was
developed:

max

_

min_

lenrange

lenl
P (4)

where: l is length of line of one of the lines in a line pair,
min_len – minimal length of line of all line pairs, range_len
– range of length of all line pairs. A line pair with maximal
P will be saved; others will be removed. The process is
shown in Figure 15.

Figure 15. Overlaped line pairs: red line pair – P=1.23, green line pair –

P=1.09 . Green line pair will be removed.

Figure 16. Moving segments without pairs and closing boundaries: green –

lines that do not have pairs in cadastral dataset, blue – moved green lines,

red – closing boundary by moving nodes, black – cadastral pair of city-
planning line segments.

After removing overlapping line pairs, we can use a

correspondent line segment of the cadastral dataset instead of
the city-planning dataset. The boundaries of counterpart
polygons are extracted from polygon maps calculated by
triangulation. The pair segments are composed with the
extracted boundaries. We will use nodes of pair segments
and centroids of pair polygons as control ground points for
transformation.

The lines and line segments of the city-planning dataset
without corresponding lines of the cadastral dataset have
been moved. Delta X and delta Y have been calculated as
average delta X and delta Y of neighboring nodes of line
pairs and centroids of pair polygons. Unclosed boundaries of
polygons have been closed by moving the nodes of an
unclosed line to the nearest node of a neighboring line (see
Figure 16).

We now have a map containing closed boundaries. All
legacy centroids have been removed. To create polygons we
add a new centroid to each set of closed boundaries (see
Figure 17). As mentioned above, we have prepared a list of
control ground points. The list contains coordinates of
correspondent polygons’ centroids and line pairs’ nodes. We
use these control ground points to transform the original city
planning dataset to its accurate position. The transformed
city panning dataset could be used as a product by itself,
because it is a more accurate dataset in comparison to the
original map. But we will use it mainly for detecting
attributes of the resulting dataset.

32

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As mentioned earlier, the legacy centroids have been

removed from the resulting map and new centroids have
been added. In other words, we have removed all
connections between result and original datasets. To define
the final correspondences we need to apply the triangulation
process one more time, but now we will compare the results
(Figure 17) with the transformed city planning dataset. For
each polygon a correspondence must be found, otherwise the
polygon will be marked as an error polygon. We have
applied the triangulation to both datasets. For each polygon a
correspondence has been established; no error polygons have
been detected.

Figure 17. Adding centroids to closed boundaries. Yokne'am.

Figure 18. Calculation of minimal distances from segmented boundaries of

the result dataset (color segments) to cadastre dataset (black lines).

VII. RESULTS

In order to evaluate the results, we use distances between
the boundaries of the result and cadastre datasets as a main
measure. As mentioned in the previous section, no error
polygons have been defined by the triangulation, i.e., no
semantic errors have been detected.

In order to evaluate the geometrical accuracy of the
resulting map, the result boundaries have been split to 0.5 m
segments and a minimal distance to the boundaries of the
cadastre dataset is calculated. In Figure 18 the prepared color
segments and black lines are presented. The minimal
distance from each segment to the closest point on the
nearest line is calculated.

TABLE I. GEOMETRIC ACCURACY OF THE RESULT DATASETS

Measures

in meter

Nesher datasets compared with cadastre boundaries

Original Transformed Result

Mean

distance

0.59 0.55 0.01

Standard

deviation
0.55 0.54 0.05

 Yokne'am datasets compared with cadastre boundaries

Mean

distance

0.82 0.63 0.13

Standard

deviation
0.81 0.84 0.77

Table I presents the geometric accuracy of the result

datasets estimated by the distances between result boundary
segments and cadastre (accurate) dataset. We can conclude
that positional accuracy has been significantly improved for
the result datasets. The accuracy of transformed maps has
only slightly improved.

In addition to the table, the histograms of distances are
presented in Figures 19 and 20. The vertical axis of the
histogram is the number of segments, the horizontal axis
depicts distance in meters. The histograms also prove the
significant improvement in positional accuracy.

In contrast to the mean and the standard deviation values
presented in the table, we cannot unambiguously conclude
from the histograms in Figure 19 (Nesher dataset), that the
transformed map is more accurate. The main reason for this
is the fact that most polygons of the map have
correspondences, and only several northern polygons do not.
That leads to a situation of the presence of one type of
control ground points (line pair nodes) in the northern part of
the dataset only, with another type in the remaining area. For
larger and more differentiate datasets this would not work.
The histogram of result datasets depicts significant
improvement of positional accuracy in comparison to
original and transformed maps.

33

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

As mentioned earlier, in the case of a larger and more
differentiate dataset, the contrast between the histograms of
original and transformed datasets will be clearer. We can see
this in Figure 19.

Figure 19. Histogram of distances. From top to bottom: original,

transformed, and result datasets. Nesher. X axis – distance in meter, Y axis
– number of segments.

Results are presented in Figure 21 for six extents. The
extents correspond to the red numbers in circles in Figure 1.
Color background is the result dataset. It is overlaid by red
and black lines. Red lines are the original city planning
dataset. Black lines are the cadastre dataset. We can
conclude that most line segments have been taken from the
cadastral dataset; others have been transformed to
correspond with cadastral polyline segments. The result
looks satisfactory; the final map is holistic and does not
contain significant deficiencies. A review implemented by
specialists enables us to state that the results are satisfactory
and the approach could be used in real applications after
fixing some lacks.

VIII. CONCLUSION

An approach for improving the accuracy of polygons’
data is presented. Land-use city planning dataset locations
have been corrected according to the cadastral dataset. The
polylines’ segments along the polygons have been split by
equidistant points. Analysis has been performed using
statistics based on the points of the neighboring polylines of
the two datasets. A set of parameters has been used: shape
descriptor of polyline segments, standard deviation of point
distances, minimal and maximal point distances, standard
deviation of segment tails, etc. A set of correspondent
polyline segments using special indicators has been found. It
enables us to find optimal segments from the list of polyline
segments with different lengths and starting points.

Figure 20. Histogram of distances. From top to bottom: original,

transformed, and result datasets. Yokne'am. X axis – distance in meter, Y

axis – number of segments.

The polyline segments of the city planning data with
parameters similar/identical to the segments of the cadastral
data were linked to these segments (defining counterpart
segments). Segments without a counterpart were
transformed. The triangulation process has been used to
define correspondences between polygons. It enables us to
find optimal segments from the list of polyline segments
with different lengths and starting points.

34

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1 2

3 4

5 6

Figure 21. Results. Color background is result polygons. Red lines are original city planning polygons’ boundaries. Black lines are

cadastre polygons’ boundaries. 1 and 2 - Nesher; 3-6 – Yokne'am. Figure 1 depicts the positions of the extents.

35

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

 The polyline segments of the city planning data with
parameters similar/identical to the segments of the cadastral
data were linked to these segments (defining counterpart
segments). Segments without a counterpart were
transformed. The triangulation process has been used to
define correspondences between polygons.

In the future, we need to test the approach with additional
datasets and different parameters, to compare it with other
approaches, and to improve calculation speed.

To implement the approach, we used Python 2.7
programming language (with numpy, scipy and matplotlib
additional libraries), GRASS GIS 7.1, and Debian
GNU/Linux 7 operating system.

ACKNOWLEDGEMENT

This research was supported by the Survey of Israel as a

part of Project 2019317. The authors would like to thank the

Survey of Israel for providing financial support and data for

the purpose of this research.

REFERENCES

[1] A. Noskov and Y. Doytsher, “A Segmentation-based
Approach for Improving the Accuracy of Polygon Data,”
GEOProcessing 2015, 2009, Portugal, pp. 69-74.

[2] S. Filin and Y. Doytsher, “The detection of corresponding
objects in a linear-based map conflation,” Surveying and land
information systems, vol. 60(2), 2000, pp. 117-127.

[3] V. Walter and D. Fritsch, “Matching spatial data sets: a
statistical approach,” International Journal of Geographical
Information Science (IJGIS), vol. 13 (5), 1999, pp. 445–473.

[4] X. Shu and X. Wu. “A novel contour descriptor for 2D shape
matching and its application to image retrieval”, Image and
vision Computing, vol. 29.4, 2011, pp. 286-294.

[5] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and
object recognition using shape contexts,” IEEE Trans. on
Pattern Analysis and Machine Intelligence, 24(4), 2002, pp.
509-522.

[6] E. Safra, Y. Kanza, Y. Sagiv, C. Beeri, and Y. Doytsher, “Ad-
hoc matching of vectorial road networks,” International
Journal of Geographical Information Science, iFirst, 2012, pp.
1–40, ISSN: 1365-8816, ISSN: 1362-3087.

[7] B. Schmitzer and S. Christoph, "Object segmentation by
shape matching with Wasserstein modes," Energy
Minimization Methods in Computer Vision and Pattern
Recognition, Springer Berlin Heidelberg, 2013.

[8] T. Ma and J. Longin, "From partial shape matching through
local deformation to robust global shape similarity for object
detection," Computer Vision and Pattern Recognition
(CVPR), IEEE Conference on. IEEE, 2011, pp. 1441-1448.

[9] X. Chen, “Spatial relation between uncertain sets,”
International archives of Photogrammetry and remote sensing,
vol. 31(B3), Vienna, 1996, pp. 105-110.

[10] A. Bronstein, R. Kimmel, M. Mahmoudi, and G. Sapiro, “A
Gromov-Hausdorff framework with diffusion geometry for
topologically-robust non-rigid shape matching,” International
Journal of Computer Vision, vol. 89(2-3), 2010, pp. 266-286.

[11] P. Tahmasebi, A. Hezarkhani, and M. Sahimi, “Linking
Objects of Different Spatial Data Sets by Integration and
Aggregation,” vol. 2(4), 1998, pp. 335-358.

[12] E. Rahm and P. Bernstein, “A survey of approaches to
automatic schema matching,” The International Journal on
Very Large Data Bases (VLDB), vol. 10(4), 2001, pp. 334–
350.

[13] V. Kashyap and A. Sheth, “Semantic and schematic
similarities between database objects: a context-based
approach,” The International Journal on Very Large Data
Bases (VLDB), vol. 5(4), 1996, pp. 276–304.

[14] P. Shvaiko and J. Euzenat, “A survey of schema-based
matching approaches,” Journal on Data Semantics IV,
Springer Berlin Heidelberg, 2005, pp. 146-171.

[15] B. Amann, C. Beeri., I. Fundulaki, and M. Scholl.,
“Ontology-based integration of XML Web resources,” 1st
International Semantic Web Conference (ISWC), Sardinia,
Italy, June 9-12 2002, pp. 117–131.

[16] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava, “Approximate String Joins
in a Database (Almost) for Free,” Proceedings of the 27th
International Conference on Very Large Data Bases, Italy,
2001.

[17] L. Gravano, P. G. Ipeirotis, N. Koudas, and D. Srivastava,
"Text joins in an RDBMS for web data integration,"
Proceedings of the 12th international conference on World
Wide Web. ACM, 2003.

[18] C. Parent and S. Spaccapietra, “Database integration: the key
to data interoperability,” Advances in Object-Oriented Data
Modeling, M. P. Papazoglou, S. Spaccapietra, Z. Tari (Eds.),
The MIT Press, 2000.

[19] G. Wiederhold, “Mediation to deal with heterogeneous data
sources,” Interoperating Geographic Information System,
1999, pp. 1–16.

[20] A. Saalfeld, “Conflation-automated map compilation,”
International Journal of Geographical Information Science
(IJGIS), vol. 2 (3), 1988, pp. 217–228.

[21] M. Sester, K. Anders, and V. Walter, “Linking Objects of
Different Spatial Data Sets by Integration and Aggregation,”
GeoInformatica, vol. 2(4), 1998, pp. 335-358.

[22] C. Steger, M. Ulrich, and C. Wiedemann, “Machine vision
algorithms and applications”, Weinheim: wiley-VCH, 2008,
pp. 1-2.

[23] G. Bradski and A. Kaehler, “Learning OpenCV: Computer
vision with the OpenCV library,” O'Reilly Media, Inc, 2008.

[24] J. Howse, “OpenCV Computer Vision with Python,” Packt
Publishing Ltd, 2013, ISBN: 978-1-78216-392-3.

[25] J. Shewchuk, “Triangle: Engineering a 2D quality mesh
generator and Delaunay triangulator,” Applied computational
geometry towards geometric engineering, Springer Berlin
Heidelberg, 1996, pp. 203-222.

[26] F. Aurenhammer, “Voronoi diagrams - a survey of a
fundamental geometric data structure,” ACM Computing
Surveys (CSUR), vol. 23(3), 1991, pp. 345-405.

[27] M. Landa, “GRASS GIS 7.0: Interoperability improvements,”
GIS Ostrava, Jan. 2013, pp. 21-23.

[28] R. Blazek, M. Neteler, and R. Micarelli, "The new GRASS
5.1 vector architecture," Open source GIS-GRASS users
conference, University of Trento, Italy, 2002.

[29] J. Herring, "OpenGIS Implementation Standard for
Geographic information-Simple feature access-Part 1:
Common architecture," OGC Document 4, no. 21, 2011.

[30] I. Wilson, J.M. Ware, and J.A. Ware, “A genetic algorithm
approach to cartographic map generalisation” Computers in
Industry, vol. 52(3), 2003, pp. 291-304.

[31] B. Gaster, L. Howes, D. Kaeli, P. Mistry, and D. Schaa,
“Heterogeneous Computing with OpenCL: Revised
OpenCL1,” Newnes, 2012.

36

International Journal on Advances in Software, vol 9 no 1 & 2, year 2016, http://www.iariajournals.org/software/

2016, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

