
A Change Impact Analysis Approach to GRL Models

Jameleddine Hassine
Department of Information and Computer Science

King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
Email: jhassine@kfupm.edu.sa

Abstract—Goal models represent interests, intentions, and
strategies of different stakeholders in early requirements elici-
tation process. In a socio-technical context, goal models evolve
quickly to accommodate the rapid changes of stakeholders’ needs,
technologies, and business environments. In order to control
and minimize the risks brought by requirements changes, it is
important to analyze the effects of modifications in goal models.
Given a proposed modification, Change Impact Analysis (CIA)
allows for the identification of software artifacts that will be
impacted and for the estimation of the effort required to imple-
ment the proposed changes. This paper describes an approach to
analyze the propagation of changes in goal models specified using
the Goal-oriented Requirements Language (GRL). Dependencies
in the GRL model are first extracted and illustrated using a
GRL Model Dependency Graph (GMDG), describing inter- and
intra- actor dependencies. In order to identify model constructs
that are impacted by a proposed change, we apply the well-
known technique of program slicing to the GMDG model. We
illustrate our approach by applying it to a goal model describing
undergraduate students’ involvement in research activities.

Keywords-Goal models; requirements; Change Impact Analysis;
Goal-oriented language(GRL); GRL Model Dependency Graph
(GMDG); slicing;

I. INTRODUCTION

Evolving customer needs is one of the driving factors in
software development. Requirements models are the first avail-
able artifacts during the software development process. They
undergo many changes caused by changing user requirements
and business goals or induced by changes in implementation
technologies. Hence, there is a need to analyze the impact of
requirements changes in order to help detect and solve possible
conflicts between stakeholders and to assess the different
design alternatives influenced by these changes. Localizing
the impact of changes is one of the most efficient strategies
for a successful evolution. Change Impact Analysis (CIA) [1]
aims at identifying the potential consequences of a change,
and estimating what needs to be modified to accomplish a
change [1]. Hence, change impact analysis is required for
constantly evolving systems to support the comprehension,
implementation, and evolution of changes. Change impact
analysis has been applied to analyze source code, formal mod-
els (architectural and requirements models), or other artifacts
(e.g., documents, data sources, configuration files) [2].

Goal models have been introduced as a means to ensure
that stakeholders’ interests and expectations are met in the
early requirements engineering stages. As goal models gain in
complexity (e.g., large systems involving many stakeholders
and many dependencies), they become difficult to comprehend

and to maintain. The main motivation of this research is
to manage the complexity of goal models with respect to
maintenance tasks. In particular, we are interested in applying
change impact analysis techniques to Goal-oriented Require-
ment Language (GRL) [3]. This paper aims to:

• Provide a GRL-based approach to change impact anal-
ysis. The proposed approach allows requirements engi-
neers and projects leaders to ask “what if ...?” questions,
and to reason about alternative scenarios with respect to
maintain GRL models.

• Provide an insight into how changes propagate within an
actor or how they spread across many actors. In fact,
dependencies that are embedded within the GRL model
are extracted and described as a GRL Model Dependency
Graph (GMDG). Dependencies between intentional ele-
ments that are within one GRL actor are referred to as
intra-actor dependencies, while dependencies involving
different actors are referred to as inter-actor dependen-
cies. In case of a modification of the GRL model, it is
important to identify whether the changes strech across
the actor boundary. This would allow to choosing the cor-
rect validation approach (e.g., mediation process or a less
formal discussions between the intervening stakeholders).

• Extend the use of the well-known technique of program
slicing [4] to goal models. In contrast to traditional
program slicing, we apply slicing to GMDG graphs. As
a result, the GRL artifacts that are impacted by a given
change are identified.

The remainder of this paper is organized as follows. In
the following section, we provide a brief introduction to the
GRL [3] language. Our proposed change impact analysis
approach is presented in Section III. In Section IV, we apply
our proposed approach to a GRL model describing the involve-
ment of undergraduate students and professors in research
activities. A comparison with related work is provided in
Section V. Finally, conclusions and future work are presented
in Section VI.

II. GOAL-ORIENTED REQUIREMENTS LANGUAGE (GRL)

GRL [3] is a visual notation used to model stakeholders’
intentions, business goals, and non-functional requirements
(NFR).

The basic notational elements of GRL are summarized in
Figure 1. Actors (see Figure 1(a)) are holders of intentions;
they are the active entities in the system or its environment

1Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

who want goals to be achieved, tasks to be performed, re-
sources to be available, and softgoals to be satisfied. Actor
definitions are often used to represent stakeholders as well
as systems. A GRL actor may contain intentional elements
describing its intentions and capabilities. Figure 1(b) illus-
trates the GRL intentional elements (i.e., goal, task, softgoal,
resource and belief) that optionally reside within an actor.

 Alternative presentation
for an actor reference

Actor with boundary Collapsed Actor

(a) GRL actors

(b) GRL intentional elements

Contribution Correlation Belief link Dependency Decomposition

(c) GRL links

Make Help SomePositive Unknown SomeNegative Break Hurt

(d) GRL qualitative contribution types

Fig. 1. GRL notational elements

Figure 1(c) illustrates the various kinds of links in a goal
model. Decomposition links allow an intentional element to
be decomposed into sub-elements (using AND, OR, or XOR).
Beliefs, used to represent rationales from model creators, are
connected to GRL intentional elements using belief links.
Contribution links indicate desired impacts of one intentional
element on another element. A contribution link has a qual-
itative contribution type (see Figure 1(d)) and/or a quantita-
tive contribution (an integer value between -100 and 100 in
standard GRL). Correlation links are similar to contribution
links but describe side effects rather than desired impacts.
Finally, dependency links model relationships between actors
and between intentional elements (within the same actor). In
addition, GRL defines indicators as containable elements used
to analyze GRL models based on real-world measurements.
Since, indicators are used only in converting real-world values
into satisfaction levels, they are out of the scope of this
research. For a detailed description of the GRL language, the
reader is invited to consult the URN standard [3].

III. GRL CHANGE IMPACT ANALYSIS APPROACH

In what follows, we present our GRL-based change impact
analysis approach.

A. Dependencies in GRL Models

Goal-oriented models describe the actors within a com-
plex socio-technical system, dependencies between system
elements, and organizational goals. Dependencies enable rea-
soning about how actors/elements depend on each other to
achieve the planned goals. Dependencies in GRL models can
be classified as explicit or implicit [5]. Explicit dependencies
are modeled as dependency links , while implicit depen-
dencies are modeled using contributions

, correlations ,
and decompositions [5]. For instance, in Figure 2(a), the
satisfaction of Goal1 depends on the satisfaction of Goal2
and the type of the contribution ContributionG2G1. A change
to the satisfaction level of Goal2 or to the contribution’s
qualitative/quantitative type/level, will have a direct impact
on the satisfaction of Goal1. Explicit dependency links can
be used in many types of configurations according to the
required level of detail [3]. GRL actors (described as collapsed
actors) can be used as source and/or destination of an explicit
dependency link. Intentional elements inside actor definitions
can be used as source and/or destination of a dependency link.
Collapsed actors (see Figure 1(a)) are used when an actor is
the source/destination of an explicit dependency. In addition,
actors cannot be used as source or destination of a contribution,
a correlation, or a decomposition link. We further classify
dependencies as:

• Intra-actor dependencies: describes a dependency (ex-
plicit or implicit) having its source and target within the
same actor boundary.

• Inter-actor dependencies: describes a dependency (ex-
plicit or implicit) having its source and target bound to
different actor definitions.

It is worth noting that GRL syntax does not allow actors to
overlap (i.e., share common GRL elements).

B. GRL Model Dependency Graph (GMDG)

Before we define the GMDG graph, we define formally
GRL models.

Definition 1 (GRL Model): We assume that a GRL model
GRLM is denoted by a 3-tuple (or a triple): (Actors, Elements,
Links), where:

• Actors is the set of actors in the GRL model. It contains
a set of actor references and a set of collapsed actors,
denoted by CollapsedActors.

• Elements is the set of intentional elements (i.e., tasks,
goals, softgoals, resources, and beliefs) in the GRL
model.

• Links is the set of links in the model. A GRL link is
defined as a triple (type, src, dest), where type is the
link type (of type LinkTypes = {contribution, correlation,

2Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

dependency, decomposition}), src and dest are the source
and destination of the link, respectively (they are either
part of Elements or CollapsedActors).

Definition 2 (Links Access Functions): We define the fol-
lowing access functions over the set of links (i.e., Links):

• TypeLink: Links → LinkTypes, returns the type of the link.
• Source: Links → Elements ∪ CollapsedActors, returns the

intentional element/actor source of the link.
• Destination: Links → Elements ∪ CollapsedActors, re-

turns the intentional element/actor destination of the link.

For example, given a contribution C=(contribution, Goal2,
Goal1) (see Figure 2(a)), then TypeLink(C)= contribution,
Source(C)= Goal2, and Destination(C)= Goal1.

Using the dependency definitions given above, we can now
define the GRL Model Dependency Graph (GMDG).

Definition 3 (GRL Model Dependency Graph (GMDG)):
A GRL Model Dependency Graph (GMDG) is a directed,
connected graph defined as GMDG=(N, E), consisting of:

• N is a set of nodes. Each GRL intentional element (i.e.,
of type Elements), each link (i.e., of type LinkTypes), and
each collapsed actor is mapped to a node n∈N.

• E is a set of edges. An edge e∈E represents a dependency
link (intra- or inter- actor dependency).

C. Constructing the GMDG Graph

In a GMDG graph, intra-actor dependencies are illustrated
as solid arrows (see Figure 2(b)), while inter-actor depen-
dencies are illustrated as dashed arrows (see Figure 4(b)).
Figure 2(b) illustrates the GMDG corresponding to a single
contribution link (Figure 2(a)). GMDG nodes are created for
Goal1, Goal2, and the contribution link ContributionG2G1.
Two intra-actor dependency links are created from node Goal1
to both Goal2 and ContributionG2G1 nodes.

ContributionG2G1

(a) Contribution link

Goal1

Goal2 ContributionG2G1

(b) GMDG for the contribution
link

Fig. 2. Contribution relationship and its Associated GMDG

In case of a decomposition relationship (see Figure 3(a)),
each intentional element is mapped to a GMDG node (i.e.,
Softgoal1, Goal1, Goal2). The decomposition is mapped
to one single node (i.e., DecompositionSG1G1G2). Intra-
actor dependencies are created between Softgoal1 and Goal1,
Goal2, and DecompositionSG1G1G2 (see Figure 3(b)).

DecompositionSG1G1G2

(a) Decomposition Relationship

Softgoal1

Goal1

DecompositionSG1G1G2

Goal2

(b) GMDG for the De-
composition Relationship

Fig. 3. Decomposition relationship and its associated GMDG

Figure 4(a) illustrates a GRL having two actors (i.e., Actor1
and Actor2) and two inter-actor dependencies (i.e., Depen-
dencyG1G2 and ContributionT1G1). Explicit dependencies are
mapped to GMDG nodes as follows: nodes are created to map
the depender (e.g., Goal1), the dependee (e.g., Goal2), and
the dependency link (e.g., DependencyG1G2). Two inter-actor
dependency links are created from node Goal1 to Goal2 and
DependencyG1G2 nodes. The contribution link is mapped to
two inter-actor dependencies, one between Goal1 and Task1,
and the other between Goal1 and ContributionT1G1 as shown
in Figure 4(b).

DependencyG1G2

ContributionT1G1

(a) Inter-actor Dependencies

Goal1

Task1

ContributionT1G1

Goal2

DependencyG1G2

(b) GMDG with Inter-actor De-
pendencies

Fig. 4. Inter-actor dependencies and their associated GMDG

It is worth noting that beliefs are always associated with one
single intentional element. Consequently, we don’t create a
separate GMDG node for representing a belief. The algorithm
in Figure 5 is used to construct the GMDG graph.

D. Slicing the GRL Model Dependency Graph

The notion of program slicing was originated in the seminal
paper by Weiser [4]. Weiser defined a slice S as a reduced
independent program guaranteed to faithfully represent the
original program within the domain of the specified subset of
behavior. Informally, a static program slice consists of those
parts of a program that potentially could affect/affected by

3Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Input : A GRL Model
Output: A GMDG Graph
foreach element e ∈ Elements ∪ CollapsedActors do CreateNode(e);
foreach link l ∈ Links do

if (TypeLink(l)=contribution or TypeLink(l)=correlation or
TypeLink(l)=dependency then

CreateNode(l);
if (Source(l) and Destination(l) are within the same actor)
then

Create an intra-actor dependency link from Destination(l)
to Source(l);
Create an intra-actor dependency link from Destination(l)
to l;

else
Create an inter-actor dependency link from Destination(l)
to Source(l);
Create an inter-actor dependency link from Destination(l)
to l;

end
end
if (TypeLink(l)=decomposition) then

if (no node is created for l) then
CreateNode(l);

end
if (Source(l) and Destination(l) are within the same actor)
then

Create an intra-actor dependency link from Destination(l)
to Source(l);

else
Create an inter-actor dependency link from Destination(l)
to Source(l);

end
end

end

Fig. 5. Constructing the GMDG graph

the value of a variable V at a point of interest, called the
slicing criterion. The application of slicing has been extended
to other software artifacts such as requirements and design
models, formal specifications, software architectures, etc. In
what follows, we extend the application of slicing to GRL
models. In our CIA approach, we are interested in obtaining
the GRL elements that are impacted by a given modification
represented by the slicing criterion.

Definition 4 (GRL Slicing Criterion): Given a GRL model,
a slicing criterion may be either a GRL intentional element, a
GRL link, or a collapsed actor.

The proposed slicing algorithm (see Figure 6) is based
on a backward traversal of the GMDG. It starts with the
localization of the node corresponding to the slicing criteria.
Next, it follows all incoming links and marks all encountered
nodes. The procedure stops when all reached nodes have no
incoming edges. Encountering inter-actor dependency links is
an indication that the proposed change would affect other
actors.

The GMDG marked nodes are then mapped back to the
original GRL model, representing all GRL constructs impacted
by the proposed change.

Input : A GMDG + a slicing criterion (SC)
Output: A set of marked GMDG nodes + whether the impact is spread

to other actors (ImpactingOtherActors)
Locate SC;
Mark node SC;
currentNode= SC;
ImpactingOtherActors = false;
forall the incoming links to SC do

if (incoming link is inter-actor) then
ImpactingOtherActors = true;

end
Follow the link;
Mark the reached node;
currentNode ←− reached node;
recursively call the algorithm with GMDG and currentNode as
input

end

Fig. 6. GMDG Slicing Algorithm

IV. CASE STUDY: UNDERGRADUATE STUDENT
INVOLVEMENT IN RESEARCH ACTIVITIES

In this section, we apply our proposed CIA approach to
a GRL model describing undergraduate student involvement
in research activities (see Figure 7). The model involves two
actors (Professor and Undergraduate Student) and describes
one explicit dependency stating that “In order to achieve stu-
dent satisfaction with their participation in university research
projects, undergraduate students depend on professors to en-
sure active involvement of students in their research projects”.
Research opportunities may take one of the following two
forms: (1) programming duties and (2) experiments and data
collection. These duties are described as two professor tasks
(i.e., “Assign programming duties to undergraduate students”
and “Assign experiments and data collection to undergraduate
students”) contributing positively (i.e., using two GRL help
contributions) to the softgoal “Active involvement of under-
graduate students in research projects”. The latter softgoal
hurts (i.e., using the hurt contribution type) the completion
of critical projects having tight deadlines. Student satisfac-
tion with research activities is modeled as a softgoal “Stu-
dents satisfied with their participation in university research
projects” and it is subject to getting an academic credit for
their performed tasks (i.e., goal “Receive academic credits for
research activities”) and getting a financial compensation (i.e.,
goal “Receive financial compensation for research activities”)
from professors.

Figure 8 illustrates three changes to be implemented in the
original GRL model:

1) Change1: Addition of a new task “Assign mechanical
and electrical assembly tasks to undergraduate students”
contributing positively (i.e., SomePositive type) to the
softgoal “Active involvement of undergraduate students
in research projects”.

2) Change2: Replace the And by an Or decomposition.
3) Change3: Deletion of task “Assign programming duties

to undergraduate students” and its corresponding help
contribution.

4Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Fig. 7. GRL model describing undergraduate student involvement in research activities

+

(a) Change1: Add a new task and a
new help contribution

Or

(b) Change2: Replace the And by an OR decom-
position

(c) Change3: Delete a task and
its corresponding contribution

Fig. 8. Three planned changes to the GRL model

Active involvement of
undergraduate students

in research activities

Assign programming
duties to undergraduate

students

Help contribution-
Programming duties

Assign experiments and
data collection to

undergraduate students

Help contribution-
Experiments and data

collection

Students satisfied with their
participation in university research

projects

AND decomposition

Dependency
UndergraduateStudent Professor

Completion of critical projects
having tight deadlines

Hurt
contribution

Receive academic
credits for research

activities

Receive financial
compensation for
research activities

Intra-actor dependency
Inter-actor dependency

Impacted GRL elements by change1
Impacted GRL elements by change2
Impacted GRL elements by change3

Fig. 9. GRL Model Dependency Graph corresponding to the GRL model in Figure 7

5Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Figure 9 illustrates the marked GMDG corresponding to
the GRL model in Figure 7 and the three proposed changes
of Figure 8.

V. COMPARISON WITH RELATED WORK

There have been a number of studies on goal models that
establish traceability links between the requirements and the
system design. Lamsweerde [6] has proposed an approach to
derive software architectures from a system goal model using
heuristics. The approach assigns responsibilities for achieving
goals to their corresponding components and establish con-
nections among them. Yu et al. [7] have proposed a technique
for generating a highly versatile software design from goal
models. Their technique transforms goals into components and
determines component connections from AND/OR-refinement
links. Lee et al. [8] have proposed a change impact analysis
approach using a goal-driven traceability-based technique. The
authors have used traces among goals and use cases to analyze
requirements changes. Goals and use case are connected via
three different traceability relations (evolution, dependency,
and satisfaction), which are stored in a design structure matrix.
Impacted entities can then be determined by applying a reacha-
bility analysis on the matrix. While these approaches establish
traceability with other artifacts, our proposed approach focus
on the impact of changes in the goal model itself. Furthermore,
our approach can be combined with approaches like the ones
presented in [6] [7] [8] by adding traceability links from the
GRL elements to other artifacts.

Some studies have proposed ways to support developers in
making requirements changes in goal models. Ernst et al. [9]
have introduced the notion of a Requirements Engineering
Knowledge Base (REKB) for maintaining a requirements
model. The authors explore the case where unanticipated
changes occur to the requirements of an operational system,
such as a new law coming into effect, or adding new features
suggested by the marketing team. Our proposed approach
is different from this respect as we conduct change impact
analysis on goal models once requirements changes have
been identified. Cleland-Huang et al. [10] have introduced
a probabilistic approach to manage traceability links for
non-functional requirements. Non-functional requirements and
their dependencies are modeled with a Softgoal Interdepen-
dency Graph (SIG). Designers can then analyze the impact
of changes by retrieving links between classes affected by
changes in a softgoal interdependency graph. While Cleland-
Huang et al. use the interdependence of non-functional re-
quirements, our proposed approach is based on the intrinsic
structure of the goal model and does not consider the type
of requirements. Nakagawa et al. [11] proposed a process of
elaboration for goal models, expressed in KAOS [12], that
extracts a set of control loops from the requirements descrip-
tions. These control loops are considered to be independent
components, hence, preventing the impact of a change from
spreading outside them. Our proposed approach allows for the
identification of effects spreading between GRL actors.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed an approach to change impact analysis
that allows requirements engineers to assess the possible
impact of early changes in goal-oriented models. The proposed
approach identifies whether the proposed changes are propa-
gated to external actors. Furthermore, we have extended the
use of the well-known technique of program slicing to GRL
Model Dependency Graphs, that are derived from GRL models
to describe model dependencies. As a future work, we plan
to combine our approach with existing GRL goal satisfaction
evaluation strategies, in order to have a precise assessment of
the magnitude of a given change.

REFERENCES

[1] R. S. Arnold, Software Change Impact Analysis. Los Alamitos, CA,
USA: IEEE Computer Society Press, 1996.

[2] S. Lehnert, “A taxonomy for software change impact analysis,”
in Proceedings of the 12th International Workshop on Principles
of Software Evolution and the 7th Annual ERCIM Workshop
on Software Evolution, ser. IWPSE-EVOL ’11. New York,
NY, USA: ACM, 2011, pp. 41–50. [Online]. Available:
http://doi.acm.org/10.1145/2024445.2024454

[3] ITU-T, “Recommendation Z.151 (10/12), User Requirements Notation
(URN) language definition, Geneva, Switzerland,” Genève,Switzerland,
2012. [Online]. Available: http://www.itu.int/rec/T-REC-Z.151/en

[4] M. Weiser, “Program slicing,” in Proceedings of the 5th International
Conference on Software Engineering, ser. ICSE ’81. Piscataway,
NJ, USA: IEEE Press, 1981, pp. 439–449. [Online]. Available:
http://dl.acm.org/citation.cfm?id=800078.802557

[5] J. Hassine and M. Alshayeb, “Measurement of actor external
dependencies in GRL models,” in Proceedings of the Seventh
International i* Workshop co-located with the 26th International
Conference on Advanced Information Systems Engineering (CAiSE
2014), Thessaloniki, Greece, June 16-17, 2014., ser. CEUR Workshop
Proceedings, F. Dalpiaz and J. Horkoff, Eds., vol. 1157. CEUR-WS.org,
2014. [Online]. Available: http://ceur-ws.org/Vol-1157/paper22.pdf

[6] A. van Lamsweerde, “From system goals to software architecture,”
in Formal Methods for Software Architectures, ser. Lecture Notes in
Computer Science, M. Bernardo and P. Inverardi, Eds. Springer Berlin
Heidelberg, 2003, vol. 2804, pp. 25–43.

[7] Y. Yu, A. Lapouchnian, S. Liaskos, J. Mylopoulos, and J. C. S. P. Leite,
“From goals to high-variability software design,” in Proceedings of the
17th International Conference on Foundations of Intelligent Systems,
ser. ISMIS’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 1–16.
[Online]. Available: http://dl.acm.org/citation.cfm?id=1786474.1786476

[8] W.-T. Lee, W.-Y. Deng, J. Lee, and S.-J. Lee, “Change impact analysis
with a goal-driven traceability-based approach,” International Journal
of Intelligent Systems, vol. 25, no. 8, 2010, pp. 878–908. [Online].
Available: http://dx.doi.org/10.1002/int.20443

[9] N. Ernst, A. Borgida, and I. Jureta, “Finding incremental solutions
for evolving requirements,” in 19th IEEE International Requirements
Engineering Conference (RE), Aug 2011, pp. 15–24.

[10] J. Cleland-Huang, R. Settimi, O. BenKhadra, E. Berezhanskaya,
and S. Christina, “Goal-centric traceability for managing non-
functional requirements,” in Proceedings of the 27th International
Conference on Software Engineering, ser. ICSE ’05. New
York, NY, USA: ACM, 2005, pp. 362–371. [Online]. Available:
http://doi.acm.org/10.1145/1062455.1062525

[11] H. Nakagawa, A. Ohsuga, and S. Honiden, “A goal model elaboration for
localizing changes in software evolution,” in Requirements Engineering
Conference (RE), 2013 21st IEEE International, July 2013, pp. 155–164.

[12] A. van Lamsweerde, “Requirements engineering: from craft to disci-
pline,” in Proceedings of the 16th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering (FSE 2008), Atlanta,
Georgia, USA, 2008, pp. 238–249.

6Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

