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Abstract—In this paper, we present a new approach to component
allocation in heterogeneous embedded systems using Coloured
Petri Nets (CPNs). While several techniques in optimization exist
to solve the component allocation problem, this is the first paper
to develop a corresponding CPN model and outline a technique to
find an optimal and feasible allocation. The CPN model represents
an advancement towards a model-driven engineering view of the
problem allowing to subject the model to other types of non-
functional analysis. We also exploit the use of CPN Tools, a well-
known tool for analyzing CPNs, in generating the state spaces
and finding optimal allocations.

Keywords–Component allocation; Coloured Petri Nets; Model-
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I. INTRODUCTION

Embedded systems have recently become ubiquitous.
These systems contain multiple integrated software compo-
nents and hardware computational units. An embedded system
is a computer system, and its associated software, built into
some piece of equipment [1]. There are numerous exam-
ples where embedded systems are being exploited, including
telecommunication systems, household appliances, robots, au-
tomobiles, and airlines. These systems are also becoming more
heterogeneous with the advent of several types of processors
including Central Processing units (CPUs), Graphical Pro-
cessing Units (GPUs), and Field Programmable Gate Arrays
(FPGAs).

This heterogeneity has created new challenges for soft-
ware architects and designers who decide the placement of
the different software components on top of the hardware
computational units. While there are many ways to place the
components while meeting the functional requirements, the
problem becomes much more complex when considering the
non-functional (quality) aspects of the placement. For example,
a particular mapping of the components may result in better
performance than other mappings. The component allocation
problem aims to find an allocation (mapping) of the software
components such that a certain cost function is optimized.
Strategies to solve the problem provide software architects
with the necessary tools to make decisions on the allocation
of components for heterogeneous embedded systems.

Model-driven engineering (MDE) advocates the use of
models in systems analysis and design [2]. The use of models
permits various types of analysis to be performed on the
models before the actual system is implemented. This can

be done at a high level of abstraction and in an automated
fashion. While there exist several techniques for solving the
component allocation as an optimization problem, this pa-
per presents a new model-based approach for modeling and
solving the component allocation problem. The new approach
uses Coloured Petri Nets (CPNs) as the modeling language.
CPNs have a very rich set of supporting theory and automated
tools for model analysis [3]. By modeling the component
allocation problem in CPNs, we not only can find an optimal
allocation that optimizes a cost function, but also can subject
the optimal allocation for other types of non-functional anal-
ysis including security and dependability analysis. CPNs have
been applied extensively in analyzing non-functional aspects
of systems [4][5]. In addition, different approaches exist to
transfer other standard software modeling language models
into Petri Net models (see the work of [6]).

The contributions of the paper are summarized as follows:

1) We describe a new approach to model the component
allocation problem in CPNs.

2) We describe the use of CPN Tools [7] in analyzing
the CPN model and solving the component allocation
problem.

The organization of the paper is as follows. In Section II,
we define the component allocation problem more formally.
We illustrate our approach in Section III. In Section IV,
we evaluate our CPN based approach using a realistic case
study. The related work is discussed in Section V. Section VI
concludes the paper and outlines future work.

II. PROBLEM DEFINITION

Consider a software system consisting of n components.
Every component needs to be assigned to a computational unit
on a hardware platform consisting of m computational units.
The computational units offer a number of resources l (for
example, computation, memory, and energy resources).

The Component Resource Consumption Matrix T =
[tijk](n×m×l) defines the amount of resources each component
requires. The element tijk represents the necessary amount of
the k−th resource required by the i−th software component
when allocated on the j−th computational unit.

The Computational Unit Resource Capacity Matrix R =
[rjk](m×l) defines the amount of resources that each computa-
tional unit can provide. The element rjk represents the k−th
resource capacity of a j−th computational unit.
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An allocation of the components maps each software
component to one of the m computational units. Two or more
components can be allocated on the same computational unit.
From a mathematical viewpoint, an allocation represents a
permutation with repetition which assigns one computational
unit for each software component. Note that there are mn

possible allocations which implies that the search space in-
creases exponentially with the number of components and
computational units.

The component allocation problem is to find an allocation
(p1, · · · , pn), where component i is assigned to computational
unit pi, such that it is both feasible and optimal. A feasible
allocation means that the resources consumed by the software
components allocated on any computational unit do not exceed
the resource capacities that the computational unit provides.
Thus, the feasibility condition can be stated as follows: given
an allocation (p1, · · · , pn), for any computational unit j:∑

i,pi=j

(tipik) ≤ rjk (1)

for all resources k.

In addition to satisfying (1), we might consider additional
constraints that need to be satisfied by a feasible allocation.
In this paper, we consider the system architectural constraint
that in a feasible allocation a particular component should be
(or should not) be allocated on a particular computational unit.
There could be several of such architectural constraints that a
feasible allocation needs to satisfy.

Given an allocation (p1, · · · , pn), its cost can be computed
using the following cost function:

w =

l∑
k=1

fk

n∑
i=1

tipik (2)

Here, fk represents a trade-off factor whose purpose is to
specify the weights of each resource in the cost function. This
allows to differentiate the importance of different resources.
An optimal allocation has the smallest w (greater than 0).
The component allocation problem is to find an optimal
and feasible allocation. Thus, the chosen allocation needs to
satisfy (1) (in addition to possibly additional constraints) and
has the smallest cost w (greater than 0) which is defined by (2).

The component allocation problem can be formulated as
a 0-1 integer linear programming problem which is NP-
complete [8]. For exact solutions and small problem sizes (the
problem size is based on the number of components and com-
putational units), one can use traditional integer programming
techniques. However, for large problem sizes, one needs to
resort to heuristics which find good approximations through
large space search methods.

III. APPROACH

In this section, we apply the CPN based approach to
solve a component allocation problem using parameters of
a realistic system borrowed from [9]. Section III-A gives a
brief description of the system. In Section III-B, we develop a
CPN model of the system and in Section III-C we describe the
generation and analysis of the state space using CPN Tools.



10 90 90 55
50 20 20 72
30 20 20 72
10 40 40 72
20 40 40 72
20 50 50 55
90 20 20 15
20 10 10 70
20 10 10 70
20 15 15 70
90 10 10 33


(a)



48 256 256 128
128 256 256 148
64 256 256 148
48 168 168 148
64 168 168 148
64 168 168 64
168 128 128 64
148 96 96 148
48 32 32 148
48 32 32 148
168 64 64 96


(b)

2 18 18 11
10 4 4 14
6 4 4 14
2 8 8 14
4 8 8 14
4 10 10 11
18 4 4 3
4 2 2 14
4 2 2 14
4 3 3 14
18 2 2 7


(c)

Figure 1. The component resource consumptions.

A. Case Study

To demonstrate our approach, we borrow the same parame-
ters used to develop a component allocation problem from [9].
The system considered is a software system that handles and
interprets vision data on an autonomous underwater vehicle
(AUV) while simultaneously interacting with them in real
time. That system is being developed as a part of RALF3
project [10].

The system consists of n = 11 components. These are:
1-UI User Interface, 2-CH Communication Handler, 3-MP
Message Parser, 4-MD Manual Drive, 5-MM Mission Man-
ager, 6-MC Movement Control, 7-V Vision, 8-AC Actuator
Control, 9-SI Sensors Layer 1, 10-S2 Sensors Layer 2, and
11-SF Stream Filtering components. The hardware platform
consists of m = 4 computational units. These are: 1-mCPU
Mulicore CPU, 2-FPGA FPGA I, 3-FPGA FPGA II, and 4-
GPU GPU. There are l = 3 resources: average execution time
(measured in milliseconds), memory (measured in megabytes),
and average energy consumption (measured in milliamperes
per hour).

Figure 1 shows the component resource consumptions (i.e.,
the elements of the matrix T ). Since T is three-dimensional
(components, computational units, resources), we use three
matrices to display three different resources (i.e., the third
dimension): (a) average execution time, (b) memory, and (c)
average energy consumption. The computational unit resource
capacity matrix is given by:

R =

 100 256 50
150 640 25
150 640 25
100 256 15


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Components

Component

1`1++1`2++1`3++1`4++1`5
++1`6++1`7++1`8++1`9++1`10
++1`11

CompUnits

CompUnit

1`(1,100,256,50)++1`(2,150,640,25)++
1`(3,150,640,25)++1`(4,100,256,15)

ResConsumptions ResCons

1`(1,1,10,48,2)++1`(1,2,90,256,18)++1`(1,3,90,256,18)++1`(1,4,55,128,11)++
1`(2,1,50,128,10)++1`(2,2,20,256,4)++1`(2,3,20,256,4)++1`(2,4,72,148,14)++
1`(3,1,30,64,6)++1`(3,2,20,256,4)++1`(3,3,20,256,4)++1`(3,4,72,148,14)++
1`(4,1,10,48,2)++1`(4,2,40,168,8)++1`(4,3,40,168,8)++1`(4,4,72,148,14)++
1`(5,1,20,64,4)++1`(5,2,40,168,8)++1`(5,3,40,168,8)++1`(5,4,72,148,14)++
1`(6,1,20,64,4)++1`(6,2,50,168,10)++1`(6,3,50,168,10)++1`(6,4,55,64,11)++
1`(7,1,90,168,18)++1`(7,2,20,128,4)++1`(7,3,20,128,4)++1`(7,4,15,64,3)++
1`(8,1,20,148,4)++1`(8,2,10,96,2)++1`(8,3,10,96,2)++1`(8,4,70,148,14)++
1`(9,1,20,48,4)++1`(9,2,10,32,2)++1`(9,3,10,32,2)++1`(9,4,70,148,14)++
1`(10,1,20,48,4)++1`(10,2,15,32,3)++1`(10,3,15,32,3)++1`(10,4,70,148,14)++
1`(11,1,90,168,18)++1`(11,2,10,64,2)++1`(11,3,10,64,2)++1`(11,4,33,96,7)

Allocations

Allocation
Cost

REAL

1`0.0

NextSend

INT1`1

allocate

[a_cpu>=r_cpu andalso a_mem>=r_mem andalso a_pwr>=r_pwr 
andalso (not (c=7) orelse cu=4) andalso not(c=4 andalso cu=1)]

c

(cu,a_cpu,a_mem,a_pwr)

(c,cu)

(c,cu,r_cpu,r_mem,r_pwr)

(cu,a_cpu-r_cpu,a_mem-r_mem,a_pwr-r_pwr)

co

co+0.1557*(Real.fromInt r_cpu)+
0.0856*(Real.fromInt r_mem)+
0.7095*(Real.fromInt r_pwr)

c

c+1

Figure 2. The CPN model for the system of the case study.

To compute the cost of an allocation in (2), we use the
trade-off vector:

F = [ 0.1557 0.0856 0.7095 ]

Here, the k-th element in vector F represents the trade-off
factor fk. The trade-off factors are computed using Analytic
Hierarchy Process (AHP) [11]. The details are given in [9].

We will consider two additional constraints:

• Constraint I: Component 7-V should be allocated on
4-GPU.

• Constraint II: Component 4-MD should not be allo-
cated on 1-mCPU.

B. The CPN Model
The CPN model is shown in Figure 2. The CPN contains

six places. The place Components holds tokens which rep-
resent the components. The place CompUnits holds tokens

representing the computational units. Each token records the
available resources that the corresponding computational unit
currently has. The place ResConsumptions holds tokens
which encode the component resource consumption matrix
T . The place Allocations holds tokens which represent the
allocations of components to computational units. The place
NextSend is used to control which component is to be
allocated next. The place Cost holds a single token which
records the total cost of the allocated components. There is
only one transition in the CPN. Firing the transition allocate
corresponds to assigning a component to one of the computa-
tional units.

The colour sets are defined as follows:
colset UNIT = unit;
colset INT = int;
colset REAL = real;
colset BOOL = bool;
colset STRING = string;
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val max_val: real = 2000.0;

fun tot_cost n =
let
val accCostsToken = Mark.model'Cost 1 n;
in
hd(accCostsToken)
end;

fun DesiredTerminal1 n = (Mark.model'Components 1 n == empty);
val x = SearchNodes(EntireGraph, DesiredTerminal1, NoLimit, tot_cost, max_val, Real.min);
fun DesiredTerminal2 n = DesiredTerminal1(n) andalso (Mark.model'Cost 1 n == 1`x);
val y = SearchNodes(EntireGraph, DesiredTerminal2, NoLimit, fn n => n,[],op ::);

CalculateOccGraph();

Figure 3. The CPN ML queries used to generate and search through the state space for the CPN model of Figure 2.

colset Component = int;
colset CompUnit = product INT * INT * INT *

INT;
colset Allocation = product INT * INT;
colset ResCons = product INT * INT * INT * INT

* INT;

The variables are declared as follows:
var c,cu: INT;
var co:REAL;
var a_cpu,a_mem,a_pwr: INT;
var r_cpu,r_mem,r_pwr: INT;

The place NextSend is used to reduce the state space by
allocating the components in order of their numbers. This is
valid since the order of assigning components to computational
units does not matter with respect to the feasibility condition
(see (1)).

The constraints are included in the CPN model by using
the guard of transition allocate. For example, in Constraint
I, Component 7-V should be allocated on 4-GPU. Thus, a
feasible allocation of components should satisfy the condition
that (c = 7) → (cu = 4) which is logically equivalent to
¬(c = 7) ∨ (cu = 4). For Constraint II, Component 4-MD
should not be allocated on 1-mCPU. Thus, a feasible allocation
of components should also satisfy the condition that ¬((c =
4) ∧ (cu = 1)). Both conditions are added to the guard of
transition allocate.

When a component is allocated to a computational unit,
the corresponding cost needs to be added to the total cost (the
colour of the token in place Cost). This is modeled by using
the arc from transition allocate to place Cost. Note the trade-
off factors fk in the arc expression.

C. State Space Generation and Analysis
We use the state space tool of CPN Tools Version 4.0

to find an optimal and feasible component allocation. CPN
Tools Version 4.0 adds the support for real colorsets. Figure 3

shows the query functions used to generate and search through
the state space. These queries are written in the CPN ML
programming language (presented in Chapter 3 in [3]). For a
given marking represented by n, the function tot cost returns
the total cost of the assigned components which is equal to
the value (colour) of the token in place Cost.

To find the optimal allocations, we use the CPN ML
defined function SearchNodes twice. First, we use it to
find the minimum value for the total allocation cost over all
markings which satisfy the predicate DesiredTerminal1. The
predicate DesiredTerminal1 returns true if and only if the
marking represented by n satisfies the condition that there is
no token in place Components (hence, all components have
been assigned). Thus, the variable x stores the minimum total
component allocation cost. The constant max val is a large
real number useful in the start of applying the combination
function Real.min of SearchNodes. The constant max val
can be set to any large real number, but one should ensure that
it is larger than the cost of a single allocation chosen at random.
Second, we use SearchNodes to find the markings which sat-
isfy DesiredTerminal2. The predicate DesiredTerminal2
returns true if and only if the marking represented by n satisfies
DesiredTerminal1 and that the total allocation cost is equal
to x. Thus, the output of the second SearchNodes (stored
in variable y) is the list of all markings corresponding to the
optimal allocations. The optimal allocations are determined by
examining the tokens in place Allocations in any of such
markings.

IV. EVALUATION

In this section, we show results of applying our approach
on the case study presented in Section III-A. We use CPN
Tools to create the corresponding CPN model as developed in
Section III-B and analyze the generated state space as outlined
in Section III-C.

Table I shows the evaluation results. The table includes the
cost of an optimal and feasible component allocation computed
by an exhaustive search. In addition, the table shows the
optimal and feasible component allocation computed using the
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CPN based approach, its cost w, and the time (in seconds)
it took CPN Tools to generate the state space. Note that the
state space generation was done on a Dell desktop computer
equipped with a 3.00GHz dual-core processor and 2GB RAM.
The table validates the CPN approach in the case study since
the returned component allocation is optimal (its cost is equal
to that of the optimal allocation returned by the exhaustive
search) and feasible.

Table II shows the evaluation results for the same com-
ponent model, but excluding Constraint II. To exclude this
constraint, we remove the corresponding condition from the
guard of transition allocate. The optimal cost found by the
CPN approach is equal to that found by the exhaustive search.
Note that the state space search time is almost three times
worse than the previous result. This is explained by the
increase in the size of the state space due to the exclusion
of the constraint.

V. RELATED WORK

The authors of [9] apply a genetic algorithm to find feasi-
ble, optimal solutions to the component allocation problem.
Our model that defines the component allocation problem
is based on the model presented in [9]. However, we do
not consider communication costs between components. The
authors also apply analytical hierarchical process to deal with
the problem of different measurement units in calculating
the trade-off factors. Genetic algorithms usually find good
solutions; however, generally speaking there is no guarantee
that these solutions are the optimal solutions. Compared to the
CPN based approach presented in the paper, genetic algorithms
scale well for large systems.

Another method for solving the component allocation prob-
lem is presented in [12]. The method uses branch-and-bound
and forward checking mechanism. The method was imple-
mented in the Automatic Integration of Reusable Embedded
Software (AIRS) toolkit [13].

A generic framework aimed at finding the most appropriate
deployment architecture (mapping of software components
onto hardware resources) for a distributed software system
is presented in [14]. The framework formally defines the
allocation problem and provides a set of applicable algorithms
for solving the problem. In addition, a tool suite is developed
to enable the use of the proposed framework. The component
allocation problem presented in this paper can be though of
as a particular instantiation of the framework. In addition, the
CPN based approach can supplement the solution algorithms
presented in [14].

The authors of [15] present a formal model for allocation
optimization of embedded systems which contains a mix of
CPU and GPU processing nodes. The authors use mixed-
integer nonlinear programming as the optimization model. In
addition, the authors translate the model into a solver using
a standard format called MPS (Mathematical Programming
System) that can be interpreted using most solvers. The
authors make the observation that the mixed-integer nonlinear
programming solvers do not scale well for medium and large
size problems.

Several approaches exist for component allocation in real-
time embedded systems [16][17]. In real-time embedded sys-
tems, components (tasks) have additional attributes such that

TABLE I. EVALUATION RESULTS.

Optimal Cost - Exhaustive Search 141.01

Optimal and Feasible Allocation - CPN Approach (1,3,1,2,1,1,4,3,3,2,3)

Optimal Cost - CPN Approach 141.01

Number of Seconds - CPN Approach 44

TABLE II. EVALUATION RESULTS EXCLUDING
CONSTRAINT II.

Optimal Cost - Exhaustive Search 132.23

Optimal and Feasible Allocation - CPN Approach (1,3,1,1,1,4,4,2,2,2,3)

Optimal Cost - CPN Approach 132.23

Number of Seconds - CPN Approach 128

completion time, period, and deadline. The allocation problem
for real-time embedded systems needs to ensure that tasks
complete before their deadlines. Our CPN based approach uses
a different component model which does not take these timing
properties into account.

VI. CONCLUSION AND FUTURE WORK

This paper has presented a new approach to component
allocation using CPNs and CPN Tools. One potential limitation
that needs to be considered in the future work is the exponen-
tial increase in the generated state space for larger systems.
Techniques to scale the applicability of the CPN approach are
needed. One approach is to determine an upper bound on the
cost and only generate states having cost less than this upper
bound. The upper bound can be guessed or can be determined
using other optimization methods including genetic algorithms.
Also, part of our future work should concentrate on automated
methods for model transformation to/from other modeling lan-
guages, including the UML Profile for Modeling and Analysis
of Real-Time and Embedded systems (MARTE) [18]. Finally,
the CPN models need to be analyzed in terms of other non-
functional properties such as security and dependability. Future
work should apply the new approach and its techniques on
several realistic case studies.
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