
NumEquaRes — Web Application for Numerical Analysis of Equations

Stepan Orlov and Nikolay Shabrov

Computer Technologies in Endineering dept.
St. Petersburg State Polytechnical University

St. Petersburg, Russia
Email: majorsteve@mail.ru, shabrov@rwwws.ru

Abstract—A new Web application for numerical simulations,
NumEquaRes, is presented. Its design and architecture are
motivated and discussed. Key features of NumEquaRes are
the ability to describe data flows in simulations, ease of use,
good data processing performance, and extensibility. Technical
challenges specific to Web applications for simulations, related to
performance and security, are discussed. In conclusion, current
results are summarized and future work is outlined.

Keywords–Simulation; Web application; Ordinary differential
equations.

I. INTRODUCTION

In this work we present a new Web application, NumE-
quaRes [1] (the name means “Numerical Equation Research”).
It is a general tool for numerical simulations available online.
Currently, we are targeting small systems of ordinary differen-
tial equations (ODE) or finite difference equations arising in
the education process, but that might change in the near future
— see Section IX.

The reasons for developing yet another simulation software
have emerged as follows. Students were given tasks to deduce
the equations of motions of mechanical systems — for exam-
ple, a disk rolling on the horizontal plane without slip [2],
or a classical double pendulum [3], — and to try further
investigating these equations. While in some cases such an
investigation can more or less easily be done with MATLAB,
SciLab, or other existing software, in other cases the situation
is like there is no (freely available) software that would allow
one to formulate the task for numerical investigation in a
straightforward and natural way.

For example, the double pendulum system exhibits quasi-
periodic or chaotic behavior [3], depending on the initial state.
To determine which kind of motion corresponds to certain
initial state, one needs the Poincaré map [4] — the intersection
of phase trajectory with a hyperplane. Of course, there are
ODE solvers in MATLAB that produce phase trajectories. We
can obtain these trajectories as piecewise-linear functions and
then compute intersections with the hyperplane. But what if we
want 104–105 points in the Poincaré map? How many points
do we need in the phase trajectory? Maybe 107 or more?
Obviously, the simplest approach described above would be
waste of resources. A better approach would look at trajectory
points one by one, test for intersections with hyperplane,
and forget points that are no longer needed. But there is no
straightforward way to have simulation process like this in
MATLAB.

Of course, there is software (even free software) that can
compute Poincaré maps. For example, the XPP (X-Window

PhasePlane) tool [5] can do that. But what we have learned
from our examples is that we need certain set of features that
we could not find in any existing software. These features are
as follows:

• ability to explicitly specify how data flows in a simu-
lation should be organized;

• reasonable computational performance;
• ease of use by everyone, at least for certain use cases;
• extensibility by everyone who needs a new feature.

The first of these features is very important, but it is missing
in all existing tools we tried (see Section VII). It seems
that developers of these tools and authors of this paper have
different understanding of what a computer simulation can be.
Common understanding is that the goal of any simulation is to
reproduce the behavior of system being investigated. Numeri-
cal simulations therefore most often perform time integration
of equations given by a mathematical model of the system.
In this paper, we give the term simulation a more general
meaning: it is data processing. Given that meaning, we do not
think the term is misused, because time integration of model
equations often remains the central part of the entire process.
Importantly, researcher might need to organize the execution
of that part differently, e.g., run initial value problem many
times for different initial states or parameters, do intermediate
processing on consecutive system states produced by time
integrator, and so on.

Given the above general concept of numerical simulation,
our goal is to provide a framework that supports the creation
of data processing algorithms in a simple and straightforward
manner, avoiding any coding except to specify model equa-
tions.

Next sections describe design decisions and technologies
chosen for the NumEquaRes system (Section II); simula-
tion specification (Section III) and workflow semantics (Sec-
tion IV); performance, extensibility, and ease of use (Sec-
tion V); examples of simulations (Section VI); comparison
with existing tools (Section VII); technical challenges condi-
tioned by system design (Section VIII). Section IX summa-
rizes current results and presents a roadmap for future work.

II. DESIGN DECISIONS AND CHOICE OF TECHNOLOGIES

Keeping in mind the primary goals formulated above, we
started our work. Traditionally, simulation software have been
designed as desktop applications or high performance com-
puting (HPC) applications with desktop front-ends. Nowadays,
there are strong reasons to consider Web applications instead

41Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

of desktop ones, because on the one hand, main limitations
for doing so in the past are now vanishing, and, on the other
hand, there are many well-known advantages of Web apps. For
example, our “ease of use” goal benefits if we have a Web app,
because this means “no need for user to install any additional
software”.

Thus we have decided that our software has to be a Web
application, available directly in user’s Web browser.

Now, the “extensibility by everyone” goal means that our
project must be free software, so the GNU Affero GPL v3
license has been chosen. That should enforce the usefulness
of software for anyone who could potentially extend it.

The “Reasonable performance” goal has determined the
choice of programming language for software core compo-
nents. Preliminary measurements have shown that for a typical
simulation, native code compiled from C++ runs approx.
100 times faster than similar code in MATLAB, SciLab, or
JavaScript (as of JavaScript, we tested QtScript from Qt4; with
other implementations, results might be different). Therefore,
we decided that the simulation core has to be written in C++.
The core is a console application that runs on the server
and interacts with the outer world through its command line
parameters and standard input and output streams. It can also
generate files (e.g., text or images).

JavaScript has been chosen as the language for simulation
description and controlling the core application. However, this
does not mean that any part of running simulation is executing
JavaScript code.

The decision to use the Qt library has been made, because
it provides a rich set of platform-independent abstractions for
working with operating system resources, and also because it
supports JavaScript (QtScript) out of the box.

Other parts of the applications are the Web server, the
database engine, and components running on the client side.
For the server, we preferred Node.js over other technologies
because we believe its design is really suitable for Web
applications — first of all, due to the asynchronous request
processing. For example, it is easy to use HTML5 Server
Sent Events [6] with Node.js, which is not the case with
LAMP/WAMP [7].

The MongoDB database engine has been picked among
others, because, on the one hand, its concept of storing JSON-
like documents in collections is suitable for us, and, on the
other hand, we do not really need SQL, and, finally, it is a
popular choice for Node.js applications.

As of the client code running in the browser, the com-
ponents used so far are jQuery and jQueryUI (which is no
surprise), the d3 library [8] for interactive visualization of
simulation schemes, the marked [9] and MathJax [10] libraries
to format markdown pages with TEX formulas. In the future,
we are planning to add 3D visualization using WebGL.

III. SIMULATION SPECIFICATION

The very primary requirement for NumEquaRes is to pro-
vide user with the ability to explicitly specify how data flows
are organized in a simulation. This determines how simulations
are described. This is done similarly to, e.g., the description of
a scheme in the Visualization Toolkit (VTK) [11], employing
the “pipes and filters” design pattern. The basic idea is that

simulation is a data processing system defined by a scheme
consisting of boxes (filters) with input ports and output ports
that can be connected by links (pipes). Output ports may have
many connections; input ports are allowed to have at most
one connection. Simulation data travels from output ports to
input ports along the links, and from input ports to output
ports inside boxes. Inside each box, the data undergoes certain
transformation determined by the box type.

Typically boxes have input and output ports, so they are
data transformers. Boxes without input ports are data sources,
and boxes without output ports are data storage.

Simulation data is considered to be a sequence of frames.
Each frame can consist of a scalar real value or one-
dimensional or multi-dimensional array of scalar real values.
The list of sizes of that array in all its dimensions is called
frame format. For example, format {1} describes frames of
scalar values, and format {500,400} describes frames of two-
dimensional arrays, each having size 500 × 400. The format
of each port is assumed to be fixed during simulation.

Links between box ports are logical data channels, they
cannot modify data frames in any way. This means that data
format has to be the same at ports connected by a link. Some
ports define data format, while some do not; instead, such a
port takes format of port connected with it by a link. Thus,
data format propagates along links. Furthermore, data format
can also propagate through boxes. This allows to provide quite
flexible design to fit the demands of various simulations.

IV. SIMULATION WORKFLOW

This section explains how simulation runs, i.e., how the
core application processes data frames generated by boxes.

Further, the main routine that controls the data processing
is called runner.

A. Activation notifications

When a box generates a data frame and sends it to an
output port, it actually does two things:

• makes the new data frame available in its output port;

• activates all links connected to the output port. This
step can also be called output port activation.

Each link connects an output port to an input port, and its
activation means sending notification to input port owner box.
The notification just says that a new data frame is available at
that input port.

When a box receives such a notification, it is free to do
whatever it wants to. In some cases, these notifications are
ignored; in other cases, they cause box to start processing data
and generate output data frames, which leads to link activation
again, and the data processing goes one level deeper. For ex-
ample, the Pendulum box has two input ports, parameters
and state. When a data frame comes to parameters, the
activation notification is ignored (but next time the box will
be able to read parameters from that port). When a data frame
comes to state, the activation is not ignored. Instead, the
box computes ODE right hand side and sends it to the output
port oderhs.

42Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

B. Cancellation of data processing
Link activation notification is actually a function call, and

the box being notified returns a value indicating success or
failure. If link activation fails, the data processing is canceled.
This can happen when some box cannot obtain all data it needs
from input ports. For example, the Pendulum box can process
the activation of link connected to port state only if there
are some parameters available in port parameters. If it is
so, the activation succeeds. Otherwise, the activation fails, and
the processing is canceled.

If a box sends a data frame to its output port, and the
activation of that output port fails, the box always cancels the
data processing. Notice that this is always done by returning
a value indicating activation failure, because the box can only
do something within an activation notification.

C. Data source box activation
Each simulation must have at least one data source box

— a box having output ports but no input ports. There can be
more than one data source in a simulation.

Data sources can be passive sources or generators. A
generator is a box that can be notified just as a link can be. A
passive data source cannot be notified.

A passive data source produces one data frame (per output
port) during the entire simulation. The data frame is available
on its output port from the very beginning of the simulation.

D. Initialization of the queue of notifications
When the runner starts data processing, it first considers

all data sources and builds the initial state of the queue of
notifications. For each generator, its notification is enqueued.
For each passive data source, the notification of each of its
links is enqueued.

E. Processing of the queue of notifications
Then the queue is processed by sending the activation

notifications (i. e., calling notification functions) one by one,
from the beginning to the end. If a notification call succeeds,
the notification is removed from the queue. Otherwise, if the
notification call fails (i.e., the data processing gets canceled),
the notification is moved to the end of the queue, and the
process continues.

The runner processes its queue of notifications until it
becomes empty, or maximum number of activation notification
failures (currently 100) is exceeded. In the latter case, the entire
simulation fails.

F. Post-processing
When the queue of notifications becomes empty, the runner

can enqueue post-processors before it stops the data process-
ing. The only example of a post-processor is the Pause box.
Post-processors, like generators, are boxes that can receive
activation notifications.

G. User input events
The above process normally takes place during the sim-

ulation. In addition, there could be events that break the
processing of the queue of notifications. These events are
caused by interactive user input. Once a user input event
occurs, an exception is thrown, which leads to the unwinding

of any nested link activation calls and the change of the
queue of notifications. Besides, each box gets notified about
simulation restart.

The queue of notifications is changed as follows when user
input occurs. First, the queue is cleared. Then one of two things
happens.

• If the box that threw the exception specifies which
box should be activated after restart, the notifications
for that box are enqueued (if the box is a generator,
its activation notification is enqueued; otherwise, the
activation notifications of all links connected to its
output ports are enqueued). An input box can only
specify itself as the next box to activate, or specify
nothing.

• If the box that threw the exception specifies no box
to be activated after restart, the standard initialization
of the notification queue is done.

After that, the processing of notification queue continues.
There is an important issue that must be taken care of.

Simulation can potentially be defined in such a way that its
execution leads to an infinite loop of recursive invocation of
activation notifications. This normally causes program to crash
due to stack overflow. In our system, however, some boxes (not
all, but only those activating outputs in response to more than
one input notification) are required to implement counters for
recursive call depth. When such a counter reaches 2, simulation
is considered to be invalid and is terminated. This allows to do
some kind of runtime validation against recursion at the cost
of managing call depth counters.

V. PERFORMANCE, EXTENSIBILITY, AND EASE OF USE

As stated in Section I, computational performance and
functional extensibility are considered important design fea-
tures of the NumEquaRes system. This section provides tech-
nical details on what has been done to achieve performance and
support extensibility. Last subsection highlights design features
that make system easier to use.

A. Performance
To achieve reasonable performance, it is not enough to

just use C++. Some additional design decisions should be
made. Most important of them are already described above.
The ability to organize simulation workflow arbitrarily allows
to achieve efficient memory usage, which is illustrated by
an example in Section I. A number of specific decisions
made in the design of NumEquaRes core are targeted to high
throughput. They are driven by the following rules.

• Perform simulation in a single thread. While this is a
serious performance limitation for a single simulation,
we have made this decision because the simulation
runs on the Web server, and parallelization inside a
single simulation is likely to impact the performance
of server, as it might run multiple simulations simulta-
neously. And, on the other hand, single thread means
no synchronization overhead.

• No frequent operations involving interaction with op-
erating system. Each box is responsible for that. For
example, data storage boxes should not write output
data to files or check for user input frequently. The

43Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

performance might drop even if the time is measured
using QTime::elapsed() too frequently.

• No memory management for data frames within ac-
tivation calls. In fact, almost 100% of simulation
time is spent in just one activation call made by
runner (during that call, in turn, other activation calls
are made). Therefore, memory management outside
activation calls (e.g., the allocation of an element of
the queue of notifications) is not a problem. Still some
memory allocation happens when a box writes its
output data, but this is not a problem as well, since
such operations are not frequent.

• No movement of data frames in memory. If a box
produces an output frame and makes it available in
its output port, all connected boxes read the data
directly from memory it was originally written to. This
item and the previous one both imply that there are
nothing like queues of data frames, and each frame is
processed immediately after it is produced.

• No virtual function calls within activation calls. In-
stead, calls by function pointer are preferred.

A simple architecture of classes has been developed to comply
with the rules listed above and, in the same time, to encapsulate
the concepts of box, port, link, and others. These classes
are split into ones for use at the initialization stage, when
simulation is loaded, and others for use at simulation run
time. First set of classes may rely on Qt object management
system to support their lifetime and the exposure of parameters
as JavaScript object properties. Classes of the second set are
more lightweight; their implementations are inlined whenever
possible and appropriate, in order to reduce function call
overhead.

Although NumEquaRes core performance has been opti-
mized in many aspects, it seems impossible to combine speed
and flexibility. Our experience with some examples indicates
that hand-coded algorithms run several times faster than those
prepared in our system.

B. Extensibility
The functionality of NumEquaRes mostly resides in boxes.

To add a new feature, one thus can write code for a new
box. Boxes are completely independent. Therefore, adding a
new one to the core simply boils down to adding one header
file and one source file and recompiling. The core will be
aware of the presence of the new box through its box factory
mechanism. Next steps are to support the new box on server
by adding some meta-information related to it (including user
documentation page) and some client code reproducing the
semantics of port format propagation through the box. The
checklist can be found in the online documentation.

Some extensions, however, cannot be done by adding
boxes. For example, to add 3D visualization, one needs to
change the client-side JavaScript code. We are planning to sim-
plify extensions of this kind; however, this requires refactoring
of current client code.

C. Ease of use
First of all, NumEquaRes is an online system, so user does

not have to download and install any software, provided user

already has a Web browser. All user interaction with the system
is done through the browser.

To formulate a simulation as a data processing algorithm,
user composes a scheme consisting of boxes and links, and
there is no need to code.

Online help system contains a detailed documentation
page for each box; it also explains simulation workflow, user
interface, and other things; there is one step-by-step tutorial.

To prepare a simulation, user can find a similar one in
the database, then clone it and modify. User can decide to
make his/her simulation public or private; public simulations
can be viewed, run, and cloned by everyone. To share a
simulation with a colleague, one shares a hyperlink to it;
besides, simulations can be downloaded and uploaded.

Currently, user might have to specify part of simulation,
such as ODE right hand side evaluation, in the form of C++
code. We understand this might be difficult for people not
familiar with C++. To mitigate this problem, there are two
features. Firstly, each box that needs C++ code input provides
a simple working example that can be copied and modified.
Secondly, NumEquaRes supports the concept of code snippets.
Each piece of C++ input can be given a documentation page
and added to the list of code snippets. These snippets can easily
be reused by everyone.

VI. EXAMPLES OF SIMULATIONS

This section lists several examples of simulations.
Figure 1 shows one of the simplest simulations — the one

that plots a single phase trajectory for a simple pendulum. The
ODE system is provided by the ode box. NumEquaRes has a
number of options for user to supply equations. In particular,
it is possible to provide C++ code that computes ODE right
hand side. Such code compiles and runs on the server, if it
passes a security check. The ODE right hand side depends
on the state variables and the vector of parameters. They
are supplied through input ports. Parameters are specified in
the odeParam box. State variables come from the solver
box. The solver performs numerical integration of the initial
value problem, starting from the user-specified initial state (the
initState box). The solver can be configured to perform a
fixed number of time steps or to run until interrupted by a data
frame at its stop port. Each time the solver obtains a new
system state vector, it sends the vector to its nextState
port. Once the solver finishes, it activates the finish port
to let others know about it. In this simulation, consecutive
system states are projected to the phase plane (the proj box)
and then rasterized by the canvas box. Finally, the data
comes to the bitmap box that generates the output image file.
Notice that this simulation has three data sources, odeParam,
solverParam, and initState.

Figure 1. Single phase trajectory

44Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

From this simplest example one can see how to construct
simulation scheme from boxes and links that computes what
user needs. Other examples are more complex, but they ba-
sically contain boxes of the same types, plus probably some
more. So far, there are 40 different box types in NumEquaRes,
and it is beyond the scope of this article to describe them all.
Further, we will just focus on some of them to show how
simulations work.

Figure 2. Interactive phase portrait

An important aspect of a simulation is its ability to interact
with the user. There are a few boxes that transform various
kinds of interactive user input (clicking, moving sliders, ro-
tating mouse wheel, etc.) into numerical values. These boxes
usually act as simple filters of data frames; they replace
some components of data frames with values obtained from
user. Figure 2 shows an example of interactive simulation: it
generates phase trajectories going through points on plane —
the ones user has clicked with the mouse. The box isInput is
responsible for that kind of input. Each generated phase curve
has two parts: blue in the time-positive direction (with resp.
to the clicked point) and red in the time-negative direction.

Figure 3. Double pendulum, Poincaré map (50000 points, 28.5 s)

Figure 3 shows the Poincaré map for the classical double
pendulum system. Importantly, there is no need to store phase
trajectory or individual points of intersection of the trajectory
with the plane during simulation. The entire processing cycle
(test for intersection; projection; rasterization) is done as soon
as a new point of the trajectory is obtained. After that, we need
to store just one last point from the trajectory. Simulations like
this are what we could not do easily in MATLAB or SciLab,
and they have inspired us to develop NumEquaRes.

Figure 4. Ince-Strutt stability diagram (500× 500 points, 6.3 s)

Figure 4 shows a simple simulation that allows one to
obtain a stability diagram of a linear ODE system with periodic
coefficients on the plane of parameters. Here the picture on the
right is the Ince–Strutt diagram for the Mathieu equation [12].
People who have experience with it know how difficult it is
to build such kind of diagrams analytically, even to find the
boundaries of stability region near the horizontal axis. What
we suggest here is the brute force approach — it is fast enough,
general enough, and it is done easily. The idea is to split the
rectangle of parameters into pixels and analyze the stability in
the bottom-left corner of each pixel (by computing eigenvalues
of the monodromy matrix [4]), then assign pixel color to black
or white depending on the result. In this simulation, important
new boxes are odeParamGrid and stabilityChecker.
The former one provides a way to generate points on a multi-
dimensional grid, and the latter one analyzes the stability of a
linear ODE system with periodic coefficients.

Figure 5. Strange attractor for forced Duffing equation (interactive
simulation)

Figure 5 shows another application of the Poincaré map,
now in the visualization of the strange attractor arising in
the forced Duffing equation [13]. User can change parameters
interactively and see how the picture changes. This simulation
is simpler than the one shown in Figure 3, because to obtain a
new point on canvas, one just needs to apply time integration
over known time period of system excitation.

Figure 6 shows an interactive simulation of the Mandelbrot
set [14]. User can pan and zoom the picture using the mouse.
Importantly, we did not have to develop any new box types
in order to describe the logic of convergence analysis for
sequences of complex numbers generated by the system. This

45Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Figure 6. Colored Mandelbrot set (interactive simulation)

is done with general purpose boxes d (computes differences of
subsequent data frames), dn (computes vector norm), and tdn
(detects if a scalar value exceeds some threshold). Pixel colors
depend on how many iterations passed (box c is a counter, its
output value is joined with pixel coordinates at box j and sent
to canvas).

VII. COMPARISON WITH OTHER TOOLS

Direct comparison between NumEquaRes and other exist-
ing tools is problematic because all of them (at least, those
that we have found) do not provide an easy way for user to
describe the data processing algorithm. In some systems, the
algorithm can be available as a predefined analysis type; in
others, user would have to code the algorithm; also, there are
systems that need to be complemented with external analysis
algorithms.

Let us consider example simulations shown in Figures 3,
4, 5, and try to solve them using different free tools; for
commercial software, try to find out how to do it from the
documentation. Further in this section, figure number refers to
the example problem.

TABLE I. COMPARISON OF NUMEQUARES WITH OTHER TOOLS

Name Free Web Can solve Fast
Mathematica no yes 3, 4, 5; needs coding n/a
Maple no no 3, 4, 5; needs coding n/a
MATLAB no no 3, 4, 5; needs even more coding no
SciLab yes no no
OpenModelica yes no none could be
XPP yes no 3, 5 yes
InsightMaker yes yes none n/a

In Table I, commercial proprietary software is limited to
most popular tools — Mathematica, Maple, and MATLAB. In
many cases, purchasing a tool might be not what a user (e.g.,
a student) is likely to do.

All of the three example simulations are solvable with
commercial tools Mathematica, Maple, and MATLAB.

In Mathematica, it is possible to solve problems like
3, 5 using standard time-stepping algorithms since version 9
(released 24 years later than version 1) due to the WhenEvent
functionality. Problem 4 can also be solved. All algorithms
have to be coded. Notice that Wolfram Alpha [15] (freely
available Web interface to Mathematica) cannot be used for
these problems.

Maple has the DEtools[Poincare] subpackage that
makes it possible to solve problem 3 and others with Hamil-
tonian equations; problems 4, 5 can be solved by coding their
algorithms.

With MATLAB or SciLab, one can code algorithms for
problems 4, 5 using standard time-stepping algorithms. For
problem 3, one needs either to implement time-stepping
algorithm separately or to obtain Poincaré map points by
finding intersections of long parts of phase trajectory with the
hyperplane. Both approaches are more difficult than those in
Mathematica and Maple. And, even if implemented, simula-
tions are much slower than with NumEquaRes.

OpenModelica [16] is a tool that helps user formulate the
equations for a system to be simulated; however, it is currently
limited to only one type of analysis — the solution of initial
value problem. Therefore, to solve problems like 3, 4, 5, one
has to code their algorithms (e.g., in C or C++, because the
code for evaluating equations can be exported as C code).

XPP [5] provides all functionality necessary to solve prob-
lems 3, 5. It contains many algorithms for solving equations
(while NumEquaRes does not) and is a powerful research tool.
Yet it does not allow user to define a simulation algorithm, and
we have no idea how to use it for solving problem 4.

Among other simulation tools we would like to mention
InsightMaker [17]. It is a free Web application for simulations.
It has many common points with NumEquaRes, although its
set of algorithms is fixed and limited. Therefore, problems 3,
4, 5 cannot be solved with InsightMaker.

VIII. TECHNICAL CHALLENGES

The design of NumEquaRes governs technical challenges
specific to Web applications for simulations. They are related
to performance and security, and are discussed in this section.

A. Server CPU resources

Currently, all simulations run on the server side. Some of
them can be computationally intensive and consume consider-
able amount of CPU time. For example, there are simulations
that consume 100% of single CPU core time for as long as
user wishes. This is a problem if the number of users grows.
Of course, we do not expect millions of users simultaneously
running their simulations, but still there is a scalability prob-
lem.

The problem can be addressed in a number of ways. Firstly,
the server can be an SMP computer, so it will be able to run
as many simulations as the number of CPU cores, without
any loss of performance. Secondly, it is technically possible
to have a cluster of such computers and map its nodes to
user sessions. Obviously, this approach requires the growth
of server hardware to provide sufficient server performance.

A different approach is to move running simulations to
the client side. In this case, the server loading problem will
disappear. But how is it possible to offer user’s browser to
run something? Actually, today the only choice seems to be
JavaScript. We will have to compile simulations into it, or to
the asm.js subset of JavaScript. This approach is quite possible
for some simulations, but is problematic for other ones that can
make use of some large libraries like LAPACK.

46Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

B. User code security
NumEquaRes web server accepts C++ code as part of

simulation description provided by user. This is the direct
consequence of our wish to provide good computational perfor-
mance of simulations. Such pieces of code typically describe
how to compute the right hand side of an ODE system, or
how to compute another transformation of input data frames
into the output data frames. The server compiles that code into
dynamic library to be loaded and executed by core application
that performs the simulation. Potentially, we have serious risk
of direct execution of malicious code.

Currently, this problem is solved as follows. Once user
code is compiled into a library (shared object on UNIX or
dynamically linked library on Windows), it is checked for the
absence of any external or weak symbols that are not found
in a predefined white list (the list contains symbol names for
mathematical functions and a few more). Due to this, user code
is not able to make any system calls. For example, it cannot
open file /etc/passwd and send it to the user because it
cannot open files at all. If the security check on the compiled
library fails, no attempt to load it is done, and the user gets
notified about the reason of check failure.

On the other hand, malicious code could potentially exploit
such things as buffer overrun and inline assembly. It is an open
problem now how to ensure nothing harmful will happen to the
server due to that. However, the ban on any non-white-listed
calls seems to be strong enough. Probably, one more level of
protection could be achieved with a utility like chroot.

A better approach to provide security is to disallow any
C++ code provided by user. But this would imply giving the
user a good alternative to C++ allowing to describe his/her
algorithms equally efficiently. For example, there could be
a compiler of formulas into C++ code. Nothing like this is
implemented at the moment, but can be done in the future. In
this case, the user code security problem will vanish.

IX. CONCLUSION AND FUTURE WORK

A new tool for numerical simulations, NumEquaRes, has
been developed and implemented as a Web application. The
core of the system is implemented in C++ in order to de-
liver good computational performance. It is free software
and thus everyone can contribute into its development. The
tool already provides functionality suitable for solving many
numerical problems, including the visualization of Poincaré
maps, stability diagrams, fractals, and more. Simulations run
on server; besides, they may contain C++ code provided by
user. This creates two challenges — potential problems of
server performance and security. The security problem has
been addressed in our work; the performance problem is not
currently taken into account.

The algorithm of simulation runner implies that the order
of activation calls it makes is not important, i.e., does not affect
simulation results. While this is true for typical simulations,
counter-examples can be invented. Further work is to make it
possible to distinguish such simulations from regular ones and
render them invalid.

NumEquaRes is a new project, and the current state of its
source code corresponds more to the proof-of-concept stage
than the production-ready stage, because human resources
assigned to the project are very limited. To improve the source

code, it is necessary to add developer documentation, add unit
tests, and deeply refactor both client and server parts of the
Web interface.

Further plans of NumEquaRes development include new
features that would significantly extend its field of application.
One of them is an engine helping user to formulate mathemat-
ical model equations — for example, for mechanical mod-
eling of multibody systems. To simulate these models, more
advanced time-stepping algorithms should be implemented.

Another set of planned features aims to enhance the level of
presentation of simulation results (currently, it is quite modest).
Among them is 3D visualization and animation.

Last but not least, an important usability improvement can
be achieved with a feature that visualizes simulation data flows;
its role is similar to debugger’s.

REFERENCES
[1] “Numequares — an online system for numerical analysis of equations,”

URL: http://equares.ctmech.ru/ [accessed: 2015-02-21].
[2] E. J. Routh, The Advanced Part of a Treatise on the Dynamics of a

System of Rigid Bodies, 6th ed. Macmillan, London, 1905, reprinted
by Dover Publications, New York, 1955.

[3] L. Meirovitch, Elements of vibration analysis. New York: McGraw-
Hill, 1986.

[4] G. Teschl, Ordinary Differential Equations and Dynamical Systems,
ser. Graduate studies in mathematics. American Mathematical Soc.,
URL: http://books.google.ru/books?id=FSObYfuWceMC [accessed:
2015-02-21].

[5] B. Ermentrout, Simulating, Analyzing, and Animating Dynamical Sys-
tems: A Guide to XPPAUT for Researchers and Students, ser. Software,
Environments and Tools. Society for Industrial and Applied Math-
ematics, 2002, URL: http://books.google.ru/books?id=Qg8ubxrA060C
[accessed: 2015-02-21].

[6] “Using server-sent events,” URL: https://developer.mozilla.org/en-
US/docs/Server-sent events [accessed: 2015-02-18].

[7] “Lamp (software bundle),” URL:
http://en.wikipedia.org/wiki/LAMP (software bundle)
[accessed: 2015-02-21].

[8] “D3.js — data-driven documents,” URL: http://d3js.org/
[accessed: 2015-02-21].

[9] “A full-featured markdown parser and compiler, written in javascript,”
URL: https://github.com/chjj/marked [accessed: 2015-02-21].

[10] “Mathjax — beautiful math in all browsers,” URL:
http://www.mathjax.org/ [accessed: 2015-02-21].

[11] VTK user’s guide. Kitware, Inc., 2010, 11th ed.
[12] M. Abramowitz and I. Stegun, Mathieu Functions, 10th ed. Dover

Publications, 1972, chapter 20, pp. 721–750, in Abramowitz,
M. and Stegun, I., Handbook of Mathematical Functions, URL:
http://www.nr.com/aands [accessed: 2015-02-22].

[13] C. M. Bender and S. A. Orszag, Advanced Mathematical Methods
for Scientists and Engineers I: Asymptotic Methods and Perturbation
Theory. Springer, 1999, pp. 545–551.

[14] J. W. Milnor, Dynamics in One Complex Variable, 3rd ed., ser. Annals
of Mathematics Studies. Princeton University Press, 2006, vol. 160.

[15] “Wolframalpha — computational knowledge engine,” URL:
http://www.wolframalpha.com/ [accessed: 2015-02-26].

[16] P. Fritzson, Principles of Object-Oriented Modeling and Simulation with
Modelica 2.1. Wiley-IEEE Computer Society Pr, 2003.

[17] S. Fortmann-Roe, “Insight maker: A general-purpose tool for
web-based modeling & simulation,” Simulation Modelling
Practice and Theory, vol. 47, no. 0, 2014, pp. 28 – 45, URL:
http://www.sciencedirect.com/science/article/pii/S1569190X14000513
[accessed: 2015-02-21].

47Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

