
A Lightweight Approach to the Early Detection and Resolution of Feature Interactions

Carlo Montangero

Dipartimento di Informatica
Università di Pisa, Pisa, Italy

Email: monta@di.unipi.it

Laura Semini

Dipartimento di Informatica
Università di Pisa, Pisa, Italy

Email: semini@di.unipi.it

Abstract—The feature interaction problem has been recognized
as a general problem of software engineering, whenever one
wants to reap the advantages of incremental development. In
this context, a feature is a unit of change to be integrated in a
new version of the system under development, and the problem
is that new features may interact with the others in unexpected
ways. We introduce a common abstract model, to be built during
early requirement analysis in a feature oriented development.
The model is common, since all the features share it, and is
an abstraction of the behavioural model retaining only what is
needed to characterize each feature with respect to their possible
interactions. The basic constituents are the abstract resources
that the features access in their operations, the access mode (read
or write), and the reason of each access. Given the model, the
interactions between the features are automatically detected, and
the goal oriented characterization of the features provides the
developers with valuable suggestions on how to qualify them
as synergies or conflicts (good and bad interactions), and on
how to resolve conflicts. We provide evidence of the feasibility
of the approach with an extended example from the Smart
Home domain. The main contribution is a lightweight state-based
technique to support the developers in the early detection and
resolution of the conflicts between features.

Keywords–Feature interactions; State-based interaction detec-
tion; Conflict resolution.

I. INTRODUCTION

The feature interaction problem has been recognized as
a general problem of software engineering [1] [2] [3] [4],
whenever an incremental development approach is taken. In
this broader context, the term feature, originally used to
identify a call processing capability in telecommunications
systems, identifies a unit of change to be integrated in a new
version of the system under development. The advantages of
such an approach lay in the possibility of frequent deliveries
and parallel development, in the agile spirit. The feature based
development is now becoming more and more popular in new
important software domains, like automotive and domotics.
So, it is worthwhile to take a new look at the main problem
with feature based development: a newly added feature may
interact with the others in unexpected, most often undesirable,
ways. Indeed, the combination of features may result in new
behaviours, in general: the behaviours of the combined features
may differ from those of the two features in isolation. This is
not a negative fact, per se, since a new behaviour may be good,
from an opportunistic point of view; however, most often the
interaction is disruptive, as some requirements are no longer
fulfilled. For instance, consider the following requirements,
from the Smart Home domain:

Intruder alarm (IA) Send an alarm when the main
door is unlocked.

Main door opening (MDO) Allow the occupants to unlock
the main door by an interior
switch.

Danger prevention (DP) Unlock the main door when
gas/smoke is sensed.

Assuming a feature per requirement, it is easily seen that
combining Intruder alarm and Danger prevention leads to an
interaction, since the latter changes the state so that the former
raises an alarm. However, an alarm in case of gas leak or a
fire is likely to be seen as a desirable side effect, so that we
can live with such an interaction. Also, the combination of the
first two features leads to an interaction: an alarm is raised,
whenever the occupants decide to open the main door from
inside. However, this is likely to be seen as an undesirable
behaviour, since the occupants want to leave home quietly.

In general, the process of resolving conflicts in feature
driven development has the same cyclic nature: look for
interactions in the current specification, identify the conflicts,
resolve them updating the specification, cycle until satisfaction.

Many techniques have been proposed to automate (parts of)
this process. The search for interactions by manual inspection,
as we did above, is obviously unfeasible in practice, due to
the number of requirements in current practice. It is also the
step with the greatest opportunity for automation. The other
steps need human intervention since, at the current state of
the art, they cannot be automatized. However, as discussed in
Section IV, what is still lacking, in our opinion, is the ability to
detect the interactions, identify the conflicts and resolve them
by working on a simple model, as it may be available at the
beginning of requirements analysis, before any major effort in
the development of requirements.

We introduce a technique to support the detection and
resolution of feature interactions in the early phases of require-
ments analysis. The approach is based on a common abstract
model of the state of the system, which i) is simple enough
to induce a definition of interaction which can be checked by
a simple algorithm, and ii) can be modified, together with the
feature specification, taking care only of few, essential facets
of the system.

The model is abstract, since it is an abstraction of the
behavioural model retaining only what is needed to charac-
terize each feature with respect to the possible interactions:
the constituents of the model are resources, that is, pieces of
the state of the system that the features access during their
operations. To keep the model, and the analysis, simple, the

72Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Figure 1. Activities of the lightweight approach.

operations on the resources are abstracted to consider only
their access mode, namely read or write. This way, however,
we do not loose in generality since the essential cause of an
interaction is a pair of conflicting accesses to a shared resource.
In this respect we were inspired by notion of conflict between
build tasks introduced by the CBN software build model [5].

The work required to build the abstract feature model can
be amortized in two ways. The shared state models can be
defined in a reusable and generic manner so that, for a given
domain, they can be exploited in many different development
efforts, as it happens in Software Product Lines; moreover, the
model can be fleshed-out as requirements analysis proceeds.

In the following, we use the Smart Home domain described
in [6] as a running example. The features are intended to
automate the control of a house, managing the home entertain-
ments, providing surveillance and access control, regulating
heating, air conditioning, lighting, etc.

The next section describes the approach. Section III as-
sess the correctness and completeness of the approach, and
Section IV discusses related work. Finally, we draw some
conclusions and discuss future work.

II. APPROACH

The lightweight approach to the detection and resolution
of feature interaction consists in the activities presented in
Figure 1 and elaborated in the next subsections.

Note that, from the point of view of the development
process, there is no constraint on how the abstract feature
model is built: in other words, domain model building and
feature specification can be performed in sequence, as well as
arm in arm as suggested in Figure 1. All the other activities
are each dependent on the outcomes of the previous one in the
list.

A. Domain model building
The description of the domain is an integral part of the

abstract feature model. Its purpose is to provide a definition
of the accessible resources, i.e., of the shared state that the
features access and modify, detailed enough to allow describ-
ing the features precisely. There are no special requirements
on the notation to express the model. In this paper, we use
UML2.0 class diagrams for their wide acceptance.

Figure 2 shows the class diagram of part of the Smart Home
design domain. The shared state is made up of the states of
the all the resources, which may structured, like MainDoor,
which owns a Lock.

The structure shown is not final, as new resources can be
added by the analyst if he needs them, not only to introduce
new features, but also to resolve conflicts, as it happens with
refinement (Section II-E5).

Figure 2. Smart Home Domain.

TABLE I. FEATURE SPECIFICATION TEMPLATE.

〈name〉 〈acronym〉 read write
〈feature goal〉 〈label〉 〈resource〉 〈label〉 〈resource〉

〈access reason〉 〈access reason〉

B. Feature specification
We model a feature defining: its goal; the resources in the

domain model it accesses (r/w); the reason for each access.
To make references short, we provide an acronym to each
feature, and an integer label to each resource access. We
introduce a template (Table I), which lists the feature name, its
goal, and the involved resources, grouped in two sets (read or
written) together with the reason for reading or writing each
resource. The three features introduced in the previous section
are represented in Table II.

Note that the accesses are numbered only for reference: no
sequencing is implied, as the order of the accesses is abstracted
away, as part of the simplicity of the model.

C. Interaction detection
Our definition of feature interaction is based on the access

mode (read or write) to the resources that make up the shared
state of the system. The features access the resources in read
mode to assess the state of the system, and in write mode to
update it. By definition,

there is an interaction whenever two features are
composed in the same system, and at least one of
them accesses in write mode at least a resource
accessed also by the other, in any mode.

Let us reconsider the features defined above and the
discussion in the previous section that led to detect some

TABLE II. FEATURE SPECIFICATION: IA, MDO, DP.

Intruder Alarm (IA) read write
To raise an alarm when
the main door is un-
locked.

(1) main door lock (2) alarm
To know when to To raise the alarm
raise an alarm

Main door opening
(MDO)

read write

To manually unlock the
door.

(1) InteriorSwitch (2) MainDoor.Lock
To receive the command To unlock

Danger prevention
(DP)

read write

To automatically unlock
the door in case of dan-
ger

(1) GasSensor (3) MainDoor.Lock
(2) SmokeSensor
To know when there is an
alert

To unlock

73Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Figure 3. Interaction detection matrix.

TABLE III. INTERACTING ACCESS TO MAINDOOR.LOCK.

Feature Feature Goal Mode Access Reason

IA To raise an alarm when
the main door is un-
locked.

r To know if it has been
unlocked

MDO To manually unlock the
door.

r To unlock

interactions. We can rephrase it in term of resource accesses.
For instance, consider the main door lock: accessing it in read
mode allows knowing its current state, that is, if the door is
locked or unlocked; accessing it in write mode allows locking
or unlocking the door. Both IA and MDO access the door lock,
in read and write mode, respectively. By definition, we have
an interaction. Similarly, also IA and DP interact, since they
access the same resource in the same way.

We are now ready to see how interaction detection can be
automated: we build a matrix with a row per feature and a
column per resource, and put r (w) in cell (Fi, Ri) when Fi

accesses Ri in read (write) mode. The matrix is completed
to take into account the composited resources of the domain.
Indeed, potentially, the access to the field of a resource is an
access to the resource itself and vice versa. We put /r or /w in
a cell when the design domain entails that potentially there is
a derived resource access. As an example, Figure 3 shows the
matrix for IA, MDO, and DP.

In the interaction detection matrix, it is possible to identify
all the pairs of interacting features: any pair of non empty
entries in the same column with at least a w (or /w) denote an
interaction of the features in the selected rows. In the example,
from the first column, we have (IA, MDO), (IA, DP), and
(MDO, DP).

As an example where derived accesses are essential, let us
assume a different version of DP: open the main door when
gas/smoke is sensed. In order to find the interaction between
the write on the main door (to open it) and the read on the
door lock of feature IA, we need the derived read of IA on
the main door.

The superclass relation (an example is given in the ex-
tended case study in Figure 4) is dealt with in a similar way:
the access to a superclass is also an access to its subclasses.

D. Conflict and synergy identification
For each detected interaction a summarizing table is built,

with the information on the goals of the interacting features
and on the reasons for the interacting accesses.

As an example, table III captures the interaction (IA, MDO)
on the main door lock.

Such a table will help the expert in the classification of
the interaction and its resolution. At this point the expert

Figure 4. Extended Smart Home Domain.

can state if the interaction is a conflict, as clearly in this
case, since we do not want the alarm to be sent when the
opening is authorized, or a synergy. Instead, sending the alarm
is useful when some danger sensor is triggered. Hence, there
is a synergy between Intruder Alarm and Danger Prevention.
Finally, also the interaction between Main Door Opening and
Danger Prevention is a synergy. Indeed, the two features
pursue the same goal, that is to open the door.

E. Conflict resolution

Once an interaction is recognized as a conflict in the
analysis phase, we can take some actions to resolve it. In order
to discuss them, we need to extend the working example. In
addition to IA, MDO, DP we consider also a few more features,
namely:

Air change (AC) At 10:00 a.m. open the win-
dows, at 10:30 a.m. close the
windows.

Close window with rain (CW) Close the windows when the
rain sensor is triggered.

Video surveillance (VS) Surveillance cameras are
watched remotely via wifi.

Wifi switch-off (WSO) Switch off the wifi at night.

The extended domain model is in Figure 4, and the
specification of the new features is in Table IV.

Various routes to resolution have been proposed in the
literature (see [7] [8] [9] for interesting surveys):

1) Restriction: Avoid tout-court that the conflicting fea-
tures are ever applied in the same system. This is the resolution
strategy to be taken when the two features have incompatible
goals. In other cases, it is an option the expert can choose.
In the running example, we could prevent Video surveillance
(VS) and Wifi switch-off (WSO) from being applied in the same
house.

2) Priority between the features: A weaker form of restric-
tion is to guarantee that conflicting features are never applied
at the same time. This behaviour can be obtained by defining
priorities. Then, in the case two features are both enabled,
only the one with higher priority is executed. In our example,
priority can be likely used between Air Change (AC) and Close
window with rain (CW). Both features write on the resource
window. In the case of rain at 10:00 a.m., we do not want the
windows to be open.

74Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

3) Sequencing: This technique applies when the conflict
is caused by a bad order of application of features that are
triggered at the same time. In this case, to solve the conflict it
is sufficient to force the features to be applied in the correct
order.

4) Integration: According to this resolution strategy, the
two interacting features are combined in a new one whose
goal encompasses the goals of the two original ones.

VS and WSO can be integrated in a unique feature to
switch off the wifi at night, and switch it on if an intruder
is sensed, so that surveillance cameras can be watched from a
remote machine.

5) Refinement: In any approach based on a shared state,
we can apply another resolution strategy, considering if it is
possible to add a new resource and make the two conflicting
accesses insist on two distinct resources. Since two features
conflict only because they access the same resource, this
refinement solves the problem, by definition.

Think again of the conflict between Intruder Alarm and
Main door opening. We might specify a new IA feature
excluding the case where the door was unlocked using the
interior switch. In some sense, we distinguish between the
electrical and mechanical commands to the lock.

It is obvious that, after each resolution step, features are
to be checked again to detect if the changes have solved the
conflicts without introducing new ones.

The first three strategies do not change the features, but
extend the model adding relations between them. A new struc-
ture is introduced that records mutual exclusions, priorities,
and sequencing between features, as done, e.g., in [10]: This
structure is used in the detection phase to disregard the pairs
that might interact but will not, since incompatibilities have
already been solved by the introduced relations.

III. DISCUSSION

A discussion is needed on the soundness and completeness
of our detection method with respect to existing ones. We
restrict to design-time techniques, since we are interested in

TABLE IV. MORE SMART HOME FEATURES

Air Change (AC) read write
To ventilate the house (1) Clock (2) Window

To know when to
open/close

To open/close

Close window with rain
(CW)

read write

To close windows
in case of rain

(1) RainSensor (2) Window
To know when to
close

To close

Video surveillance
(VS)

read write

To remotely control the
house

(1) VideoCamera
To read the record-
ed data
(2) Wifi
To access the camera

Wifi switch-off (WSO) read write
To switch off the wifi
when not used

(1) Clock (2) Wifi
To know when to
switch-off

To switch-off

early detection. The most common way to define a feature
interaction is based on behaviours [2]:

A feature interaction occurs when the behavior of
one feature is affected by the presence of another
feature.

Soundness depends on the expert competence: the rough
detection based on the shared resources access model can
indeed render false positives, e.g., synergies. These will have
to be discarded during the subsequent analysis. However, also
the approaches analyzing the concrete behaviour cannot auto-
matically distinguish between conflicts and synergies and some
human intervention is still needed to complete the analysis.

On the other side, the completeness problem can be stated
as: is it possible that the behaviour of two features interfere
even if they do not access any shared resource? Consider the
following example dealing with air conditioning (AC):

Natural AC (NAC) If the room temperature is above 27
degrees and the temperature outside is
below 25, open the windows.

AC switch-on (ACS) If the room temperature is above 27
degrees switch-on the air conditioner.

These two features read the same resource, and act dif-
ferently under identical conditions, but they do not interfere
according to our definition. Do they interfere according to the
behaviour based definition? The answer is no, the behaviour
of each feature is not affected by the other one. Indeed, the
conflict between the actions of opening the windows and
switching on air conditioning can be stated only by an expert.
Similarly, in our case, a relation between open windows and
air conditioning can be recognized during domain description,
permitting the conflict to be detected.

Sometimes features interactions are defined in an even
more abstract way:

Features interactions are conflicts between the inter-
ests of the involved people.

We express the personal interests in the feature goals, and
base the analysis on it. Hence, we are compliant with respect
to this notion. Understanding if the persons involved have
conflicting interests is a different problem.

IV. RELATED WORK

A. Programming features
Bruns proposed to address the problem at the programming

language level, by introducing features as first class objects [1].
Our view is that such an approach is worth pursuing, but
needs be complemented by introducing features for features
in the early stages of the development process, namely in
requirements analysis.

B. Requirements interaction
Taxonomies of feature interaction causes have been pre-

sented in the literature [3] [11]. Among the possible causes,
there are interactions between feature requirements. We ad-
dress here a special case of the general problem of require-
ments interaction. A taxonomy of the field is offered in [12].
It is structured in four levels, and identifies 24 types of
interaction collected in 17 categories. It assumes that the
requirements specification is structured in system invariants,

75Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

behavioural requirements, and external resources description.
Their analysis is much finer grained than ours. Should the two
analysis be performed in sequence, our own should prevent the
appearance of some interaction types in the second one, like
those of the non-determinism type.

Nakamura et al. proposed a lightweight algorithm to screen
out some irrelevant feature combinations before the actual
interaction detection, on the ground that the latter may be
very expensive [13]. They first build a configuration matrix
that represents concisely all possible feature combinations,
and is therefore similar in scope to our interaction matrix.
However, it is very different in contents, since it is derived
from feature requirements specifications in terms of Use Case
Maps, which give a very detailed behavioural description of
the features. The automatic analysis of the matrix lends to three
possible outcomes per pair of features: conflict, no interaction,
or interaction prone. In our approach, the automatic analysis
gives only two outcomes: no interaction or interaction prone,
as one might expect, given the simpler model.

Another similar approach is Identifying Requirements In-
teractions using Semi-formal methods (IRIS) [6]. Both meth-
ods are of general application, and require the construction of
a model of the software-to-be. In IRIS the model is given in
terms of policies, but the formality is limited to prescribing a
tabular/graphical structure to the model. Both methods leave
large responsibility to the engineers in the analysis. However,
larger effort is required, and larger discretion is left to them in
IRIS: in our approach, interaction detection is automatized, and
the engineer can focus on conflict identification and resolution.
Finally, the IRIS model is much more detailed than ours, so
that resolving the identified conflicts may entail much rework,
while resolution in our case provides new hints to requirements
specification. The last consideration applies as well to the two
previous approaches.

C. Design and run-time techniques
As another example of the ubiquity of the feature interac-

tion problem, Weiss et al. show how it appears also in web-
services [14]. The approach to design-time conflict detection
entails the construction of a goal model where interactions are
first identified by inspection, and the subsequent analysis is
then conducted on a process algebraic refined formal model.
Also in this case, our model is more abstract, and the two
techniques may be used synergically.

In a visionary paper, Huang foresees a runtime monitoring
module that collects information on running compositions of
web-services, and feeds it to an intelligent program that, in
turn, detects and resolves conflicts [15].

Several run-time techniques to monitor the actual behaviour
of the system and detect conflicts and possibly apply corrective
actions, are reported in the literature, as surveyed in [9]: for in-
stance, [16] tackle the problem with SIP based distributed VoIP
services; in [17] policies are expressed as safety conditions in
Interval Temporal Logic, and they can be checked at run-time
by the simulation tool Tempura. These techniques should be
seen as complementary to the design-time ones, like ours: the
combined use of both approaches can provide the developers
with very high confidence in the quality of their product, as
suggested also by [8], which discusses the need for both static
and dynamic conflict detection and resolution.

D. Aspect oriented techniques
A related topic is that of interactions between aspect-

oriented scenarios. A scenario is an actual or expected execu-
tion trace of a system under development. The work described
in [18] is similar to ours, in so far as they place it in the
phase of requirements analysis, propose a lightweight semantic
interpretation of model elements. The technique relies on a
set of annotations for each aspect domain, together with a
model of how annotations from different domains influence
each other. The latter allows the automatic analysis of inter-
domain interactions. It is likely that, if feature and aspect
orientation are combined in the same development, the two
techniques could be integrated.

E. Formal methods
A recent trend of design-time conflict detection exploits the

current advances in formal static analysis by theorem proving
and model checking. The need for experimentation along this
line has been recognized by Layouni et al. in [19], where they
exploit the model checker Alloy [20] for automated conflict
detection. In [21], we show how to express APPEL [22] policies
in UML state machines, and exploit the UMC [23] model
checker to detect conflicts. In [24], we automate the translation
from APPEL to the UMC input language, and address the
discovery and handling of conflicts arising from deployment-
within the same parallel application-of independently devel-
oped management policies.

A feature interaction detection method close to model
checking is presented in [25]: a model of the features is built
using finite state automata, and the properties to be satisfied
are expressed in the temporal logic Lustre. The environment
of the feature is described in terms of the (logical) properties
it guarantees, and a simulation of its behaviour is randomly
generated by the Lutess tool; the advantage is that such an
approach helps avoiding state explosion.

F. Abstract Interpretation
We remark a difference with the usual way of performing

abstract interpretation [26], where the starting point is a
detailed model, which is simplified, by abstracting away the
information that is not needed for the intended analysis. What
is proposed here is to start with an abstract view in terms of
feature goals and resource accesses, and to perform conflict
analysis and resolution up-front.

G. Interactions affecting performance
Recently, work has been done on detecting and resolving

interactions that, thought not disrupting the behaviour, impact
on the overall performance of the system. The approach
described in [27] is based on a simple black box model: in-
teractions are detected using direct performance measurements
designed according to few heuristics. It would be interesting to
assess whether our technique may supplement advantageously
the heuristics to the point of balancing the cost of the required
domain model.

V. CONCLUSIONS

We present a state based approach to the early detection,
analysis and resolution of interactions in feature oriented soft-
ware development. Starting with a light model of the state that
the features abstractly share, the main steps of our approach

76Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

are the generation of an interaction matrix, the assessment of
each interaction (conflict or synergy), and the update of the
model to resolve conflicts. The abstraction is such that only
the mode (read or write) of an access to the shared state is
considered; each access is characterized by its contribution to
the overall goal of the feature it pertains to.

We provide a proof of concept of how interactions can be
detected automatically, as well as of how the developers can get
support in their assessment of the interactions and resolution of
the conflicts, looking at the well known Smart Home domain.

An interesting development will be to evaluate whether
to formalize the goal model, and how, in view of a (partial)
automatic support to the developers’ analysis tasks. Another
line of development of the approach would be to supplement
each resource in the shared space with a standard access
protocol, to prevent conflicting interactions. Inspiration in this
direction may come from well established practices, like access
control schemes and concurrency control.

ACKNOWLEDGMENTS

The work was partly supported by the Italian MIUR PRIN
project “Security Horizons”.

REFERENCES

[1] G. Bruns, “Foundations for Features,” in Feature Interactions in
Telecommunications and Software Systems VIII, S. Reiff-Marganiec
and M. Ryan, Eds. IOS Press (Amsterdam), June 2005, pp. 3–11.

[2] S. Apel, J. M. Atlee, L. Baresi, and P. Zave, “Feature interactions: The
next generation (dagstuhl seminar 14281),” vol. 4, no. 7. Dagstuhl, Ger-
many: Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, 2014, pp. 1–
24, URL: http://drops.dagstuhl.de/opus/volltexte/2014/4783/ [retrieved:
Feb, 2015].

[3] A. Nhlabatsi, R. Laney, and B. Nuseibeh, “Feature interaction: the
security threat from within software systems,” Progress in Informatics,
no. 5, 2008, pp. 75–89.

[4] V. Editors, “Feature Interactions in Software and Communication Sys-
tems,” ser. Int. Conference series.

[5] D. Coetzee, A. Bhaskar, and G. Necula, “A model and
framework for reliable build systems,” EECS Department,
University of California, Berkeley, Tech. Rep. UCB/EECS-
2012-27 arxiv.org/pdf/1203.2704.pdf, Feb 2012, URL:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2012/EECS-2012-27.html
[retrieved: Feb, 2015].

[6] M. Shehata, A. Eberlein, and A. Fapojuwo, “Using semi-formal meth-
ods for detecting interactions among smart homes policies,” Science of
Computer Programming, vol. 67, no. 2-3, 2007, pp. 125–161.

[7] D. O. Keck and P. J. Kuehn, “The feature and service interaction
problem in telecommunications systems: A survey,” IEEE Transactions
on Software Engineering, vol. 24, no. 10, Oct. 1998, pp. 779–796.

[8] N. Dunlop, J. Indulska, and K. Raymond, “Methods for conflict reso-
lution in policy-based management systems,” in Enterprise Distributed
Object Computing Conference. IEEE Computer Society, 2002, pp.
15–26.

[9] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Fea-
ture interaction: A critical review and considered forecast,” Computer
Networks, vol. 41, 2001, pp. 115–141.

[10] P. Asirelli, M. H. ter Beek, A. Fantechi, and S. Gnesi, “A compositional
framework to derive product line behavioural descriptions,” in 5th Int.
Symp. on Leveraging Applications of Formal Methods, Verification and
Validation, ser. LNCS, vol. 7609. Heraklion, Crete: Springer, 2012,
pp. 146–161.

[11] S. Reiff-Marganiec and K. J. Turner, “Feature interaction in policies,”
Comput. Networks, vol. 45, no. 5, 2004, pp. 569–584.

[12] M. Shehata, A. Eberlein, and A. Fapojuwo, “A taxonomy for identifying
requirement interactions in software systems,” Computer Networks,
vol. 51, no. 2, 2007, pp. 398–425.

[13] M. Nakamura, T. Kikuno, J. Hassine, and L. Logrippo, “Feature
interaction filtering with use case maps at requirements stage,” in [28],
May 2000, pp. 163–178.

[14] B. E. M. Weiss, A. Oreshkin, “Method for detecting functional feature
interactions of web services,” Journal of Computer Systems Science
and Engineering, vol. 21, no. 4, 2006, pp. 273–284.

[15] Q. Zhao, J. Huang, X. Chen, and G. Huang, “Feature interaction
problems in web-based service composition,” in Feature Interactions
in Software and Communication System X, S. Reiff-Marganiec and
M. Nakamura, Eds. IOS Press, 2009, pp. 234–241.

[16] M. Kolberg and E. Magill, “Managing feature interactions between
distributed sip call control services,” Computer Network, vol. 51, no. 2,
Feb. 2007, pp. 536–557.

[17] F. Siewe, A. Cau, and H. Zedan, “A compositional framework for
access control policies enforcement,” in Proceedings of the 2003 ACM
workshop on Formal Methods in Security Engineering. NY, NY, USA:
ACM Press, 2003, pp. 32–42.

[18] G. Mussbacher, J. Whittle, and D. Amyot, “Modeling and detecting
semantic-based interactions in aspect-oriented scenarios,” Requirements
Engineering, vol. 15, 2010, pp. 197–214.

[19] A. Layouni, L. Logrippo, and K. Turner, “Conflict detection in call
control using first-order logic model checking,” in Proc. 9th Int. Conf.
on Feature Interactions in Software and Communications Systems, L. du
Bousquet and J.-L. Richier, Eds. France: IMAG Laboratory, University
of Grenoble, 2007, pp. 77–92.

[20] Alloy Community, URL: alloy.mit.edu/community/ [retrieved: Feb,
2015].

[21] M. ter Beek, S. Gnesi, C. Montangero, and L. Semini, “Detecting policy
conflicts by model checking uml state machines,” in Feature Interactions
in Software and Communication Systems X, International Conference
on Feature Interactions in Software and Communication Systems, ICFI
2009, 11-12 June, 2009, Lisbon, Portugal. IOS Press, 2009, pp. 59–74.

[22] K. J. Turner, S. Reiff-Marganiec, L. Blair, J. Pang, T. Gray, P. Perry,
and J. Ireland, “Policy support for call control,” Computer Standards
and Interfaces, vol. 28, no. 6, 2006, pp. 635–649.

[23] M. ter Beek, A. Fantechi, S. Gnesi, and F. Mazzanti, “A state/event-
based model-checking approach for the analysis of abstract system
properties,” Sci. Comput. Program., vol. 76, no. 2, 2011, pp. 119–135.

[24] M. Danelutto, P. Kilpatrick, C. Montangero, and L. Semini, “Model
checking support for conflict resolution in multiple non-functional
concern management,” in Euro-Par 2011 Parallel Processing Workshop
Proc., ser. LNCS, M. A. et al., Ed., vol. 7155. Bordeaux: Springer,
2012, pp. 128–138.

[25] L. du Bousquet, F. Ouabdesselam, J.-L. Richier, and NicolasZuanon,
“Feature interaction detection using a synchronous approach and test-
ing,” Computer Networks, vol. 32, no. 4, 2000, pp. 419–431.

[26] P. Cousot and R. Cousot, “Abstract Interpretation: A Unified Lattice
Model for Static Analysis of Programs by Construction or Approxima-
tion of Fixpoints,” in Proc. 4th ACM Symp. Principles of Programming
Languages, 1977, pp. 238–252.

[27] N. Siegmund, S. S. Kolesnikov, C. Kästner, S. Apel, D. S. Batory,
M. Rosenmüller, and G. Saake, “Predicting performance via automated
feature-interaction detection,” in 34th International Conference on Soft-
ware Engineering, ICSE 2012, June 2-9, 2012, Zurich, Switzerland,
2012, pp. 167–177.

[28] M. Calder and E. Magill, Eds., Feature Interactions in Telecommunica-
tions and Software Systems VI. IOS Press (Amsterdam), May 2000.

77Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

