
Developing a Repository for Component-Based
Energy-Efficient Software Development

Doohwan Kim Jang-Eui Hong
Dept. of Computer Science

Chungbuk National University
Cheongju, Rep. of Korea

email: dhkim@selab.cbnu.ac.kr, jehong@chungbuk.ac.kr

Abstract— Software components are one reusable asset which
can contain other kinds of software assets like requirement
specifications, design patterns, source codes, documents, and so
on. It can be used for designing software architecture or
implementing a software system as an element like a building
block. Therefore, software can be developed easily and quickly
by assembling those building blocks. Focused on this nature of
component-based development, energy-efficient software
development can also be achieved with reusable software
components. In particular, low-energy software has become a
critical component for embedded and mobile software systems.
Therefore, we have to consider energy efficiency to develop
embedded software when developing the software based on
reusable components. This paper, firstly, proposes how to
represent the energy characteristics of the components and
how to select a component for energy-efficient software
development. We developed a component repository, ECoReS
to support the selection of low-energy software components.

Keywords-reusable software assets; component repository;
energy-efficient software; component selection.

I. INTRODUCTION
Software reuse has become one of the general processes

to develop software systems because reuse can provide huge
benefits of error prevention, cost and time reduction, and
even quality improvement [1]. The representative paradigm
based on the reuse approach is known as CBSD
(Component-based Software Development). CBSD can
effectively support embedded software development because
this kind of software frequently includes the same functions
as other embedded software, which are in the product family.
Therefore, the software can be developed faster and more
reliable than developing it from scratch [2].

To elevate the benefits of software reuse, a repository
that manages reusable assets on an organizational level is
required. The purpose of a software component repository is
to support the reuse of the components that have been
acquired at the organization level. The repository also has to
provide the functions of component registration, component
retrieval, and component selection to software engineers for
systematic reuse [3]. Therefore, many component repository
systems have been developed that focus on managing and
retrieving components to satisfy the functional requirements
of developing software. However, embedded software

development has to consider not only the functional
requirements, but also various non-functional requirements
because of limited resources and operational environments
[4]. Therefore, these limitations must be considered as one of
the characteristics, also known as the quality factors, of the
software through the entire development process [5][6][7].
Low-energy consumption, as one of the characteristics of
embedded software, has become a very important quality
factor in portable or mobile systems like smart phones, MP3
players, and tablet PCs, because those systems are powered
from limited energy sources such as a battery. However,
there are just a few studies on the development of
component-based low-energy software.

The major profits of component-based energy analysis
can be considered from two sides: the first one is the
reduction of feedback costs by early-phase estimation of
energy consumption, and the second is the provision of high
reliability of the estimation result. The higher abstraction
level tends to lead to less accurate or coarse-grained analysis
results [8]. However, reusable components have their own
developed code which is managed in a component repository.
Because the components can be used as the computational
units of software architectural components, they make
possible architecture-level analysis for requirements
verification, which is a high abstraction level of software.
Moreover, the component code will improve the accuracy of
the analysis result. Therefore, if there is any method to
support the energy analysis based on components in
embedded software development, we can take the two
advantages which conflict with each other, i.e., early phase
estimation and its high reliable result. For these reasons, a
component repository supporting low-energy software can
be considered as one of the important infrastructures in the
CBSD paradigm. Therefore, we developed a component
repository, named Energy-based Component Retrieval
System (ECoReS), which manages software components
with their energy characteristics. The ECoReS can support
fast and efficient embedded software development from the
perspective of low-energy consumption, by providing the
component selection based on energy characteristics.

The rest of this paper is organized as follows: the
analysis of related work is explained in Section 2. The
strategies to develop an energy-considered component
repository will be discussed in Section 3. Section 4 describes

78Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

the implementation of our proposed component repository,
ECoReS. Section 5 describes conclusions and future research.

II. RELATED WORK
Each components repository can have different features

according to policies of organization, application domain,
and engineering environments [9]. The existing repositories
have been providing various retrieval methods to find
appropriate components. Therefore, each repository has its
own distinct features, and specific structure of the repository.
There are many repositories that are successfully supporting
component reuse in the CBSD process [10][11][12]. Among
them, we investigated recently proposed component
repositories.

Z. Hai-mei et al. [10] emphasized the importance of
component compositions as the issue to be managed by the
component library. The authors designed a component
library information model to improve reuse rate of managed
components. Schema of that model included basic properties,
classification information, and composition information. The
key information of this research was the composition to
enhance the reuse rate of stored and managed components in
the library. However, the information model of the
component library did not consider any information related
to non-functional properties.

The research of C. Li et al. [11] focused on semantic-
based component retrieval. They proposed an ontology-
based component repository. Therefore, a software engineer
who wants to develop component software can easily find
software component using the ontology. However, the
ontology did not include the terms of non-functional
properties of software.

X. Shoukun et al. [12] developed a component library
based on a component specification language named UCDL
(Universal Component Description Language). By using the
UCDL, the library manages the component information with
the categories of basic information, classification
information, interface specification, and feedback mark.
However, this component library does not support the
information of non-functional properties of components
either.

The above studies implemented their repositories with
different structures, and they provided distinct functions to
maximize the reuse of components. However, these
repositories can cause mistakes in the selection of suitable
software components when the software engineer has to
consider one or more non-functional requirements. Because
the missing non-functional properties can lead to the re-
development of large parts of the software [5], the engineer
must consider the properties at the first step of component
selection. Therefore, absence of the information of those
properties can lead to inappropriate selection of software
components. This incorrect selection can involve large re-
developing costs, or even critical failure of the software.

Even though these component repositories provided
convenient functions and they are well designed to support
the reuse of components, they should be able to manage and
provide information about the non-functional properties of
the software components. Because the energy efficiency of

software has become one of the most important non-
functional properties of embedded systems, the perspective
of low-energy must be considered in component-based
software development. However, the previous studies and
their repositories did not provide the distinguishing functions
to support energy characteristics of the managed components.
Our component repository provides the distinguishing
functions for managing the energy characteristics of software
components and supporting energy-efficient component
selection.

III. STRATEGIES FOR LOW-ENERGY SOFTWARE
DEVELOPMENT

As mentioned above, the component repository has to
support low-energy software development by providing the
reusable components. To support systematic reuse, we
consider and define some strategies for describing energy
characteristics of components, and for selecting a suitable
component from our component repository.

A. Desiarable Useage Overview
Like general component repositories, the ECoReS also

provides general features for component management and
reuse. Additionally, certain distinguishing features are also
provided by the ECoReS to support energy-efficient
component selection. These features are reflected in the
functions for component registration and component
searching. When an engineer of an organization enrolls a
new component in the ECoReS, it requests additional
information that is related to the energy characteristics of the
component. This information will be referred to by the
software engineer who has to develop energy-efficient
software. The availability of searching for the component
characteristics in the ECoReS is also a different feature
compared to other existing repositories. Because the
functional requirement must be satisfied first when selecting
a reusable component, the ECoReS also provides this
functional requirements-based search. After that search, the
software engineer can get a set of components which have
the same functionality. We refer to these as “candidate
components”. Given the main purpose of the ECoReS,
energy-considered component selection will be done at the
next step. The ECoReS provides the energy-comparing
feature for actual selection from candidate components.
Figure 1 shows an overview of the ECoReS including these
features.

There are four specialized features in our repository,
which are represented by the colored boxes in Figure 1. We
also designed a feature, the “Function-based Search”, to
provide easier search than just a general one. However, this
feature is not colored because it is not the main concern of
this research. As shown in the figure, the features of “add
Component”, “Delete Component” and “Edit Component”
are provided to manage components. Among them, “Add
Component” has a specialized function that specifies the
energy information. After using the “Function-based
Search,” other specialized features will be supported. The
software engineer will select the candidate components that
have the same functionality to compare their energy

79Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

efficiency. If the sequential order of searching based on
function requirements, selecting candidates, and comparing
candidate components were changed, the selection works
will be meaningless. The feature, “Select the most suitable
component” means the selection of a component that
satisfies both functional requirements and energy-efficiency.

Figure 1. Usage overview for the ECoReS

B. Manage Energy Characateristics by Interface
A component can have several interfaces as the initiating

entries of component behaviors. Those interfaces are the
only way to request services of the components. Thus, those
interfaces are identical to the basic units of the behavioral set
that can be provided from components. This is a very critical
notion that must be considered to manage the energy
characteristics of reusable software components, because
software never consumes energy by itself, but it consumes
energy by controlling hardware devices when it is executed
[13]. Therefore, the energy characteristics of components
have to be defined by interface, and then have to be used to
select components within the component repository.

C. Consider the Effects of Interface Parameters
Energy consumption of an interface can be changed by

circumstances such as system conditions and given
conditions of parameters. System conditions affect energy
consumption on a small scale, while parameters can make a
huge difference. For example, a specific parameter can be
used as a flag variable which decides the branch of an inside
interface. In other cases, some interfaces show exactly the
same behaviors repeatedly when a parameter is given as a
data stream or a similar one for iterative processing.

Because of these effects from the interference parameters,
energy consumption of each interface can be variable. This is
the reason why we have to define the energy characteristics
of the components with the unit of interface. Moreover, the
energy characteristics of components sometimes cannot be
expressed as simple scalar values only, but certain ones have
to be represented with a regression model. To define the
energy model, the following recommendations are delineated.

• Thoroughly investigate the parameters of interfaces to

determine if they can affect energy consumption, and
how they may affect the energy consumption. The

types of those effects are not the same for all possible
cases. Therefore, this kind of investigation has to be
done first to get an energy model.

• Collect sufficient data for the possible specific
conditions of the interface parameters (for example,
input data size, data value, etc.) to define an energy
model. As mentioned above, the system condition is
also a reason for the variance. Only a huge amount of
sampling data can include this kind of variation.
Therefore, we can define a proper energy model from
a regression analysis using the large data set. This
kind of model is already defined and used in the
research of T. K. Tan et al. [8].

D. Retrieve Components based on Facets
It is difficult to find a suitable component from the

repository that has many similar components functionally. In
particular, if software developers would like to consider non-
functional requirements as well as functional ones in
component retrievals, finding a specific component that
satisfies both requirements might be difficult.

Therefore, a component repository has to fulfill the needs
of component retrieval with featured methods. In order to
realize the methods, we provide a multi-dimensional facet-
based retrieval technique to the ECoReS repository. Our
repository provides two facets; the first is the domain facet
which is the target domain of the software being developed,
and the other is the functional facet which is responsible to
the functionality to develop the software. The facets act like
filters to show the list of components that could be selected.
Although facet-based retrieval is not the main concern of this
research, it is designed and implemented to help find a
proper component by making a set of candidate components
which have the same functionality before actual selection,
focused on energy efficiency. Software engineers can limit
the boundary of component retrieval by using these facets.
Also, how many facets will be used to find a component can
be determined with the trade-off analysis for an exact search
and plentiful candidates.

E. Compare Energy Characteristics
With the facet-based retrieval, software engineers can

find the components that are suitable for the functional
requirements. However, there is still the remaining problem
of selecting a proper component that is suitable for energy
efficiency too. Because the result of facet-based retrieval can
provide just a list of candidate components from the
repository, software engineers have to compare the energy
characteristics of the candidates.

Candidate components mean the components that are
exchangeable with each other, according to Definition 1.

[Definition 1] Candidate Components: let CS be a set of
components, and CC be a set of paired components. Then Cx
and Cy are candidate components when satisfying;

CS = {C1, C2, C3, …, Cn}, (1)
 CC = {Cx ∈ CS, Cy ∈ CS | Pre(Cx) = Pre(Cy) ∧

 Post(Cx) = Post(Cy)}, (2)

80Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Where, the Pre(Cx) means the pre-conditions (the input
of the component) of Cx and the Post(Cx) means the post-
conditions (the output of the component) of Cx. Also, 1 ≤ x ≤
n, 1 ≤ y ≤ n, and x ≠ y.

The identification of candidate components means
finding a set of components that satisfy the required
functionalities. After that, the repository has to recommend a
lower energy-consuming component among those candidate
components, because the major purpose of our repository is
selecting the most suitable component, satisfying not only
functionality but also energy efficiency.

We considered this problem with the comparison of
energy characteristics based on the interfaces, their energy
models, and their parameters. Figure 2 shows the energy
consuming patterns between two components when they are
compared.

Figure 2. Energy consumption patterns between two components

Let us consider two components "Component A” and
“Component B” that have the same function. However, they
have different energy models for that function. For example,
the energy model of the “Component A” is 2x+7, while the
model of the “Component B” is 3x+2. As shown in the
figure, the energy graphs of two components can be
classified into three types like (a), (b) and (c), where all of
energy models are linear regression models. In the case of (a)
or (b), determining the more energy-efficient component
between them is very easy. However, there is no component
that is absolutely energy-efficient on the graph (c) in Figure
2.

In this case of the graph (c), “Component A” is more
efficient in energy consumption until the input data size of A
is less than the size of the crossing point. However,
“Component B” is more efficient after exceeding the
crossing point. The comparison of energy characteristics
between candidate components from the perspectives of the
energy models and input data size makes it possible to select
a low-energy component, and also possible to develop
component-based energy-efficient software.

IV. DESIGN AND IMPLEMENTION OF ECORES
Reusable software components must be managed and

maintained on an organizational level by using a component
repository or library [3]. The component repository provides
several traditional functions such as the registration of
components along with retrieval and selection of components
to support the CBSD paradigm. The functions are basic and
intrinsic for general component repositories.

However, our component repository, called ECoReS,
provides not only the basic functions of general component
repositories, but also the functions related to the energy
efficiency of components. Those functions have to be
considered and designed in a well-organized UI structure and
seamless usage flow.

 In this section, we explain how we considered the
strategies for low-energy software development, what
development environments were used to implement our
component repository, and which functions are provided in
our repository.

A. Information for Component Specification
Specifying a component to support easy reuse requires a

lot of useful information for the components. However, there
is a set of commonly required information such as the name,
the usage, the list of interfaces, and the platform of a
component for the specification [9][10][11][12]. This set of
information is too general to examine further in component
specification. Thus we only focus on the information that is
required to describe the energy characteristics of components.

In the previous section, we discussed the energy models
that describe the energy characteristics of component
interfaces and interface parameters. However, some more
information is required to describe the energy characteristics
of components. This information is related to the platform in
which the component is deployed. As mentioned above,
software consumes energy by controlling the actions of
hardware devices. Thus, the platform information must be
covered in the component specification. These are the
important platform specifications related to the energy
characteristics:

1) Hardware resources: Hardware resources are actual

energy consuming objects. Therefore, the information of the
target (expected) platform of the component should be
itemized in the specification. Among many of hardware
resources, CPU clock speed and memory size are key
information for energy characteristics [14][15].

2) Operating System (OS): Almost no application
software can be activated without an operating system. The
main purpose of OS is to control hardware resources (e.g.,
CPU, memory, etc.) and to provide system services to the
application software like a middle layer broker. Therefore,
the actual running environments of application software are
controlled by the OS based on its scheduling policy, memory
management policy, IO control, and so on. These policies
can affect the energy consumption of software [15] and can
be differently applied to its types (Android, IOS or
something else) and versions.

81Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

3) Compiler: There are a number of available compilers.
Even if the external behaviors of compiled codes (i.e.,
executable binary) for different source codes are the same,
the compilers may have different optimization policies. An
optimization policy can be differently applied during the
code compilation process by setting different options even
though the same compiler was used. Because the different
optimization policy can generate different internal behaviors,
the energy consumption of software is also different based
on the different policies [16]. Therefore, we add the
information of the compiler to specify the energy
characteristics.

In addition to the energy models of component interfaces,

the above information should be managed together. However,
we can consider different tactics to manage that information
because each part of the information represents different
parts of a system. For example, the information of the
platform for software is not changed during the lifetime of
the software. Therefore, the influence of the platform on
energy consumption will be decided at compile time. On the
other hand, the information related to the real behaviors of
the software can be decided at run time, i.e., which interface
is called and how parameters are passed. The information
can always change during real operation of the software
depending on the requested user service.

We classified the information affecting the energy
consumption into two types of factors: Indirect factors that
are not changed during software operation, and direct factors
that can be changed during the software operation. In the
specification of component information, it is sufficient to
describe the indirect factors of the component only once,
since the factors have an equal effect every time on any
interface and on any parameter. Unlike indirect factors, the
direct factors (such as interfaces and their parameters) must
be described multiple times in the specification, because they
are differently affect to energy consumption based on which
interface is called and how parameter is configured. TABLE
I. shows these factors that affect energy consumption.

TABLE I. FACTORS AFFECTING ENERGY CONSUMPTION

Factors Factor Types Effecting Range

Hardware

Indirect factors Whole component OS

Compiler

Interface
Direct factors Each interface

Parameter

B. Development Environments
The ECoReS is developed to manage and retrieve

software components with consideration of energy
consumption. Ultimately, the goal of the ECoReS is to
support component-based and energy-efficient software
development. In the design of our repository, we separate it
into DB-side and client-side because it can define N:M
relationships.

Only one component repository is desirable in an
organization to support various software projects because the
centralized repository is easy to maintain and also easy to
provide consistency for stored components, while multiple
repositories are also valuable in distributed and collaborative
development environments to elevate the flexibility and the
variability of component-based development. The decision
for the operational configuration of a component repository
is dependent on the organization policy.

The client is developed by using JAVA with eclipse Rich
Client Platform (RCP), Eclipse Modeling Framework (EMF),
Java Data Base Connectivity (JDBC), as shown in TABLE II.
Therefore, our repository system is possible to operate and
use on any kinds of platforms.

TABLE II. DEVELOPING ENVIRONMENTS OF ECORES

OS MS Windows 7, 32bit
Language JAVA(JDK 1.5)
Developing Tool Eclipse 3.5(Galileo)
Platform Eclipse Rich Client Platform
Plug-in JDBC, EMF, etc.
DB MySQL Server 5.5

C. Implementation of the Strategies
The common functional features of our repository are

similar to other conventional component repository systems.
However, the ECoReS has distinguishing features to support
the strategies for energy-based component management,
which are explained in Section III. This section is
responsible for the implementation of those strategies.

The registration of components is a common and general
function of component repositories except that the
information of energy characteristics is also required. The
component registration of the ECoReS provides a different
widget to store the information about energy characteristics
as shown in Figure 3.

Figure 3. A Screen for energy characteristics of a component

The UI widget has the fields of “INTERFACES,”
“DESCRIPTION,” and “ENERGY MODELS,” which
should be filled in the “Add New Component Wizard”
function. Because the indirect factors can be also identified

82Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

as the commonly required information, we focused more on
the energy model for each interface. Figure 3 shows an
example of the “interface information” step of the
component registration.

The facet-based retrieval is implemented with the
composition of lists. Although the number of facets can be
determined according to the domain hierarchy of the
organizational business area, we define three facets such as
domains, functions, and components level in our repository,
as shown in Figure 4. This facet-based retrieval approach
provides a quick and easy search to find a proper component
in a functional manner and also helps software engineers
think in top-down and systematic ways. Moreover, this
approach can use the ontological concept to organize the
facet structure.

Figure 4. A screen for facet-based component retrieval

After searching for candidate components that satisfy the
functional requirements of the target software, then the
software engineer can select a proper component based on
energy efficiency. To compare energy efficiency, software
engineers can simply set the check-box to compare the
energy consumption with other components in the
“properties” tab of a candidate component, as shown in
Figure 5.

Figure 5. Selecting it as a candiate component

Comparing energy characteristics is the core feature of
the ECoReS for selecting energy-efficient components. The
comparison result of the energy characteristics between
candidate components will be shown to help select the most
suitable component for the software engineers. This result is
shown in graph form to distinguish their energy efficiencies.

Selecting the specific interfaces of the components can
be done when the comparison is activated. For example,
there are two reusable components that are responsible for
providing search algorithms. Even though the functions of
two components are the same, their internal behaviors can
differ. Therefore, the ECoReS will compare their energy
efficiency based on component interfaces. Figure 6 shows
the energy consumption graph of two components,

“BinSearch” and “LinearSearch,” which implemented a
binary search algorithm and linear search algorithm,
respectively.

In Figure 6, the “binSearch” consumes more energy than
the “LinearSearch” at the first starting point. However, if the
input parameter is bigger than 500 bytes, the “binSearch” is
rather more energy-efficient than the “LinearSearch”.

Figure 6. Energy consumption graph for two components

Due to this situation, software engineers who want to
find an energy-efficient component have to consider the
expected input data that was intended for processing by the
component. In some cases in the above example, if we select
to reuse the “binSearch” component when the input data size
is always under 500 bytes, the selection will involve a worse
result when the software is operated. The component always
consumes more energy than the other component.

Therefore, we have to carefully predict and analyze the
characteristics of the target system, to maximize the
correctness of low-energy component selection.

V. CONCLUSION
CBSD has been broadly accepted as a reasonable and

systematic paradigm to develop embedded software systems
because embedded systems tend to be developed based on
the product family approach [17]. The approach of reuse-
based software development gives excellent benefits of time
and cost reduction, and accuracy and reliability improvement
as long as the approach applies well, and its infrastructure
also runs well.

In this paper, we presented the design and
implementation of a component repository, named ECoReS,
which is a major infrastructure for the CBSD approach. Our
repository specifically has focused on supporting
component-based low-energy software development.
Therefore, our proposed repository manages not only the
general information of stored components, but also the
energy characteristics of the components. It also provides
functions like facets-based component retrieval, energy
model management based on component interface, and
energy consumption comparison.

83Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

We expect our component repository to be valuable in
industrial and practical application development when a
policy of energy-efficient software development is needed on
an organizational level, or even on the subcontracting level.

In closing consideration, if any organization wants to
combine or replace their existing component repository with
the ECoReS, we expect that there will be three kinds of costs.
For the first cost, the build or rebuild cost of repository will
be needed. As mentioned, almost all component repositories
have different structures. Even though the repository of the
organization has a very similar structure with the ECoReS,
minimum changes or re-builds for the structure are
unavoidable. The second kind of cost deals with migration.
After a total change of repository structure, migration must
be followed. However, that migration can be omitted when
the ECoReS is simply adapted to as-is system. The last cost
is related to energy modeling. Because other repositories do
not support the information about energy-efficiency, the
energy modeling of the managed components should be done.
Moreover, adaptation of the ECoReS without energy
modeling is meaningless. We expect the cost related with
energy modeling will be the largest of all.

For future studies, we are planning to upgrade the facet-
based retrieval function with a powerful ontological scheme,
and to establish the process and techniques for an
architecture-based energy analysis framework, which
cooperates with the ECoReS.

ACKNOWLEDGMENT
This research was supported by Basic Science Research

Program through the NRF of Korea funded by the Ministry
of Education (NRF-2014R1A1A4A01005566) and Next-
Generation Information Computing Development Program
through the NRF funded by the Ministry of Science, ICT &
Future Planning (NRF-2014M3C4A7030503).

REFERENCES
[1] S. S. Yau, “Embedded Software in Real-time Pervasive

Computing Environments,” in Proceedings of the 28th Annual
International Computer Software and Applications
Conference, pp. 406-407, 2004.

[2] X. Cai, M. R. Lyu, and K. Wong, “Component-Based
Software Engineering: Technologies, Development
Frameworks, and Quality Assurance Schemes,” in
Proceedings of the 7th APSEC, pp. 372-379, 2000.

[3] J. Guo and Luqui, “A Survey of Software Reuse
Repositories”, 7th IEEE International Conference and
Workshop on the Engineering of Computer Based Systems,
pp. 92-100, 2000.

[4] M. Daneva, M. Kassab, M. L. Ponisio, R. J. Wieringa, and O.
Ormandjieva, “Exploiting a Goal-Decomposition Technique

to Prioritize Non-functional Requirements,” In Proc. Of WER
2007, 10th International Workshop on Requirements
Engineering, pp. 190-196, 2007.

[5] N. Siegmund, M. Kuhlemann, M. Pukall, and S. Apel,
“Optimizing Non-functional Properties of Software Product
Lines by means of Refactorings,” in Proc. Fourth
International Workshop on Variability Modelling of
Software-Intensive Systems (VaMoS'10), Vol. 37 (27-29
January 2010), pp. 115-122, 2010.

[6] M. Marzolla, “Simulation-based Performance Modeling of
UML Software Architecture,” Ph.D Thesis, Ca’Foscari
University, Italy, 2004.

[7] D. Kim, J. Kim and J. Hong, “A Power Consumption
Analysis Technique Using UML-Based Design Models in
Embedded Software Development”, Lecture Notes in
Computer Science Volume 6543, pp. 320-331, 2011.

[8] T. K. Tan, A. Raghunathan, G. Lakshminarayana, and N. K.
Jha, “ High-Level Energy Macromodeling of Embedded
Software”, IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, Vol. 21, No. 9, pp. 1937-
1050, Sep. 2002.

[9] G. Jones and R. Prieto-Diaz, “Building and Managing
Software Libraries,” in Proc. on COMSAC 1988, pp. 228-236,
1998.

[10] Z. Hai-mei and G. Min, “A Component Library Information
Model Supporting Component Composition”, in Porc, 2012
IEEE International Conference on Mechatronics and
Automation, pp. 475-479, 2012.

[11] C. Li, X. Liu, and J. Kennedy, “Semantics-Based Component
Repository: Current State Of Art and a CalCuation Rating
Factor-based Framework,” in Proc. 32nd Annual IEEE
International Computer Softare and Applications(COMSAC
2008), pp. 751-756, 2008.

[12] X. Shoukun, C. Xiaomei, and M. Zhenghua, “A Study of
Local Component Library Based on UCDL,” in Proc.
ICCSE ’09, pp. 904-907, 2009.

[13] K. Naik and D. S. L. Wei, "Software Implementation
Strategies for Power-Conscious Systems", Mobile Networks
and Applications, Vol. 6, Issue 3, pp. 291-305, 2001.

[14] C. L. Su, C. Y. Tsui, and A. M. Despain, “Low Power
architecture design and compilation techniques for
highperformance processors,” in Proceeding on IEEE
COMPCON’04, pp. 489-498, 1994.

[15] D. Sarta, D. Trifone, and G. Ascia, “A Data Dependent
Approach to Instruction Level Power Estimation,” IEEE
Alessandro Volta Memorial Workshop on Low Power Design,
pp. 182-190, 1999.

[16] M. E. A. Ibrahim, M Rupp, and S. E.-D. Habib, “Compiler-
based optimizations impact on embedded software power
consumption,” in Proceedings of the Conference NEWCAS,
pp. 1-4, 2009.

[17] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented
Product Line Engineering", IEEE Software, vol.19, no. 4, pp.
58-65, July/August 2002.

84Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

	I. Introduction
	II. Related work
	III. Strategies for Low-Energy Software Development
	A. Desiarable Useage Overview
	B. Manage Energy Characateristics by Interface
	C. Consider the Effects of Interface Parameters
	D. Retrieve Components based on Facets
	E. Compare Energy Characteristics

	IV. Design and Implemention of ECoReS
	A. Information for Component Specification
	B. Development Environments
	C. Implementation of the Strategies

	V. Conclusion
	Acknowledgment
	References

