SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Automatic Generation of Sequence Diagrams and Updaig Domain Model from
Use Cases

Fabio Cardoso de Souza, Fernando Antonio de C@strmo

Master’'s Program in Software Engineering
Institute for Technological Research (IPT)
Séo Paulo, Brazil
e-mail: souzafc@yahoo.com, giorno@pucsp.br

Abstract—Software modeling allows for problem
decomposition in a way that facilitates analysis ah
communication of the solution to developers and otr
interested parties. Models are widely used in engéering in
general, but in Software Engineering modeling hasften been
left out due to the pressures to improve deadline®A method
and a tool that reduce the duration of this phaseauld help
furthering the modeling phase. Use Cases are commign
utilized for functional specifications in Object-Oriented
paradigm and the use of markups in Use Cases alloan
automatic partial generation of Analysis Models, reucing the
time of the modeling phase in this paradigm. This g@per
proposes a combination of rules for marking up Us€ases and
one procedure for generating partial Sequence Diagms with
analysis classes (one Sequence Diagram for each @sese) and
the updating of the Domain Model with operations. Atool was
built to prove the concept and two experiments werearried
out.

Keywords-Analysis Model; Use Case; Sequence Diagram;
Model Driven Architecture.

l. INTRODUCTION

utilization of markups in Use Cases can allow fbe t
automatic partial generation of the Analysis Modag
demonstrated in the Mason and Supsrisupachai [20k,w
where marked up Use Cases are automatic transfoimted
Sequence Diagrams.

The automatic partial generation could reduce the
duration of the modeling phase, thus stimulatirggatioption
of this phase in Object-Oriented development ptsjeas
suggested by a qualitative research [23] carrietd vaith
requirements analysts, system analysts and projacagers.
In this qualitative research, the majority of theerviewees
agreed that software modeling improves the qualftyhe
final product and most of them believe that theomatic
generation of the partial Analysis Model can helg t
adoption of the modeling phase in software devekgm
projects. Due to space limitation, details of tt@search are
omitted.

This paper presents a set of rules for marking sp U
Cases and a transformation procedure that perraitsitly
Sequence Diagrams with analysis classes from thr&eta
up Use Cases. It also permits the updating of then&in
Model with operations identified in the Sequencadbams,

Software modeling permits the analyst to break thdeading to the Class Diagram. Class Diagram andi&emp

problem to be solved into parts which can be bettatyzed.
It also allows the formal communication of a funal and

Diagrams are the main diagrams in an Object-Oriknte
analysis model. The diagrams generated do not itatke

technical solution based on the demanded requirsmen consideration details of a possible implementatiowhjch

Model is a formal specification of the structurefumction of
a system [1]. A graphic representation can be tsedovide
a visual body for the model.

Despite being widely used in many areas of enginger

must be done during the design phase. AccordirBotach
et al. [4], the analysis must yield a statemenivbft the
system does, not how. This research also presett®la
which implements the proposed procedure and witithwh

modeling has been left out in Software Engineeringthe experiments were realized.

According Rosenberg and Stephens [2], in practicere
never seems to be enough time to do modeling, sisand

The rest of this paper is organized as followstiSe@
presents concepts on which this research is babed.

design and there is always pressure from managetnent section also presents the State of the Art indp&es Model

jump to code prematurely because progress on seftwaDriven Architecture and transformation of Use Casee

projects tends to get measured by how much codstsexi Sequence Diagrams. Section 3 presents a proposal fo

leading to problems in the quality of software. marking up Use Cases and a transformation procedure
Use Cases are commonly used for functionalSection 4 presents the tool and two experiments. fifth

specification in Object-Oriented developments. Adaowg to and final section presents the conclusion and siigges for

Sommerville [3], Use Cases are an effective teakmifpr future researches.

eliciting requirements and they are increasinglgdusince

the Unified Modeling Language (UML) became a stadda

for Object-Oriented modeling. Yet according to Ruserg

and Stephens [2], the Use Cases are created dvemain

Model since this offers the use of a common voaatyullThe

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7 85

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

II. CONCEPTS ANDSTATE OF THEART

This section starts presenting concepts related Wie
Cases, Software Modeling and transforming requirgme
into software models approaches, and ends witke stathe
art on transformation subject.

A. Requirements Specification with Use Cases

Requirements Engineering provides
mechanisms for [5]: understanding what the clieaints;
analysis of her/his needs; evaluation of feasihilit
negotiation of a reasonable solution; specificatioh
requirements in a unambiguous manner; validatiorthef
specification and management of the requirementbeto
implemented.

Use Cases serves as functional
requirements in Object-Oriented paradigm and thalysis
Model is created based on them. Use Cases profiele
external behavior expected by the system with dpethe
vocabulary in a Domain Model. Rosenberg [2] stdted
Use Cases describes a way by which the users étaesdth
the system and how the system responds. Pressinaot§s
that Use Cases does not tell how a system shoalideehe
functionality. This emphasizes the importance oflelimg.

According to Larman [6], Use Cases can be essemntial
concrete. Essential Use Cases do not consider misoha
details (like User Interfaces), while Concrete USases
consider them. In this paper, only Concrete Usee€ase
contemplated.

control and entity. According to him, boundary sks
respond to information and behaviors related totesys
boundary; entity classes respond to informationt te
stored in the system and to behaviors surroundirgget
information; and control classes respond to belmavidnich
are not naturally incorporated into entities. Thdsénitions
are complemented by Bruegge and Dutoit [9], for mho
boundary classes represents interfaces betweesnsysind

appropriateciors, and control classes are in charge of ieglitse

ases.

The boundary and control classes, as well as their
behaviors (their operations) are evident duringlyeie in
Analysis Model.

In this paper, these three types of objects arptaddn a
way through which the Sequence Diagram can représen

specifications - dyfrare model with these three layers (boundaoptrol

and entities).

Sequence Diagram is the second most importantatiagr
of an Analysis Model and it is used to illustrateshobjects
interact with one another through messages, demnabimgt
the internal behavior of one system functionalijpeé Use
Case).

The sequence of messages in a Sequence Diagram can
use a pattern of communication between the objbow,
for example, the pattern presented by Heinemann and
Denham [10], where messages should follow the flow
“boundary<-> control <> entity”. This pattern is adopted
in this work.

Yet, according to Rosenberg [2], Use Cases shoeld bC. MDD and MDA

written in the objects model context, referencimgmdin

Model Driven Development (MDD) refers to the

classes and boundary classes by their names. Thigproaches based on models as the main products of

recommendation is the base for this work as theaibj
constituents of the Analysis Model are the objeetsrenced
in the Use Cases and existing in the Domain Model.

Use Cases makes explicit not only the objects iraain
the system boundary but also the actors particigati the
functionality and their actions. An actor is anytignthat
communicates with the system and is external tanit, may
be a device, a system or a person. A main actbatswhich
interacts with the system in order to produce #selt while
secondary actors only support the system [5].

B. Analysis Model

Modeling is generally done in two levels of absiat
Analysis Model and Design.

The Analysis Model - or Software Architectural Dgsi
is used to identify, in a high level of abstracticme
components of the software, describing how thensott is
decomposed and organized into components [7].drcése
of Object-Oriented software, these components arayais
Classes with their attributes and operations. is plaper, a

development [11]. According to Milicev [12], MDD iss
the level of abstraction in a development.

Model Driven Architecture (MDA) is a MDD approach
proposed by the Object Management Group (OMG) whose
objective is to alleviate the problem of rupturestween
design and code due to system migration from oatfgoin
to another [11].

MDA advocates four layers of model: Computation
Independent Model (CIM), Platform Independent Model
(PIM), Platform Specific Model (PSM) and Implemetida
Specific Model (ISM) as shown in Figure 1.

In the CIM layer there lies the process models and
requirements that are independent of computinghénPIM
layer there lies the Analysis Model which is in the
computing field, therefore totally independent ttform. In
the PSM layer there lies the lower level modelsicivitakes
into consideration the platform where the systenuldide
introduced. Finally, the ISM layer is the layer whéhe code
is generated. The development focuses, on the MDA
approach, is at a high level of abstraction, thain the CIM

partial Analysis Model is the expected result ofe th 59 PIM layers.

application of the proposed method.

The Class Diagram is the most important diagranhef
Analysis Model and it describes the static visidntiwe
system in terms of classes and relationships betwtesn.

Jacobson [8] distinguishes the following types lakses
used to give structure to Object-Oriented softwhoeindary,

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

86

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

CIM Computation Independent Model
PIM Platform Independent Model
/ PSM \ Platform Specific Model
/ ISM \ Implementation Specific Model

Figure 1. Layers of MDA.

D. Related Work

In [13] a process for generating a model on the Gijxér
from the requirements written in natural languagasw
proposed. The requirements should be represented
Language Extended Lexicon (LEL) and in a scenaranléil.
LEL is a structure that permits representationighificant
symbols in the universe of discourse, their synanyand
their behavior. The symbols can be: People, OhjStttes,
Events, among others. The process consists ofi@ssef
transformation rules over texts written in natueiguage
contained in the LEL and in the scenarios.

In [14] a use case modeling approach was propased i
way that elements of the Use Case are insertedspoific
fields of a template, but there are no fields f@mponents of
the steps (sender object for example). Under tropgsal,
the steps should be restricted by a combinatiograimar
rules and rules for key words utilization. Basedtlis, the

Case and for generating the Sequence Diagram. (thera
consider the method and the tool only as an insnirfor
learning.

In [19], it was proposed a tool for generation efjSence
Diagrams from Use Cases written in English. Thé tges a
pre-existing component (Stanford Parser) to geegyarts
of speech tagged sentences and type dependertcibenl
applies a proposed sentence structure rules
transformation rules to identify elements to geteerthe
Sequence Diagram. The approach works only for timpl8
Sentences in English.

In [20], Mason and Supsrisupachai proposed markups
indicate the primitives in a Use Case that derieenents to
{Re respective Sequence Diagram. Only main scenafio
Use Cases are analyzed and each step of a Usex&@zadseto
be marked up with an event type. A data dictionary
utilized as a reference of the Use Case elemerfte. T
marking up is made at each step of the Use Castheon
elements: object sender, message, object receietinons
and event timer. A tool was built for editing andnking up
Use Cases and for generating the correspondingeSequ
Diagram.

and

E. Consideration on Sate of the Art

In the MDA field, a lack of an official meta-model
defined by the OMG for specification of Use Casesulted
in the presented proposals not fitting exactly itite MDA

same authors [15] proposed a tool named aToucghiiosophy, which advocates, among other things utke of
(Automated Transformation of Use Case Model iNtoyML and its meta-models as the origin and targets f

Analysis Model). The tool aToucan reads the rastiicteps
of Use Cases and realizes the processing of ndamgliage
written in steps in order to obtain classes andtigiships
for the Analysis Model. The result is a generatanan

transformations.

In direct Use Cases transformation into Sequence
Diagrams, The Mason and Supsrisupachai [20] wddrafa
greater precision in the generation of a partialalfsis

intermediate Unified Modeling Language (UML) meta- \joqe| because the analyst previously identifieseleenents

model that is then transformed into a final Anadysiodel.
Only Class Models are mentioned in the obtainedlt®es

In [16][17], it was proposed a set of marking-ufesuand
a set of syntactic structures in a manner an aealgan

extract the elements in order to generate a Segquenc

Diagram. The marking-up rules aim to permit thelygstao
mark up occurrences of links, conditions and peliath.

The author names the marked-up Use Case with dintac.

restrictions by Normalized Use Case.

The analyzer utilizes a dictionary to localize atate the
elements in a catalogue applying syntactic rulebe T
catalogue is then used to obtain, in each mestag®bject
sender, object receiver, operations and arguméiats are
registered in a file. There is no diagram genematio
According to the author, the results needs to liee@ by
the analyst due to the confusion the analyzer camvidile
extracting concepts. The Use Case should be written
English natural language.

In [18] a set of transformation rules and a symtact
structure of the steps were also proposed. Thes stiepuld
be written in this syntactic structure: “Who doehaV for
Who”, being that the first ‘Who’ denotes the adfoat starts
the communication, the ‘What’ denotes the messageet
transmitted, and the second ‘Who’ denotes the veceif the
message. The proposal contemplated a tool fomegditise

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

in the Use Cases, as long as, he understandsablemrand
can deal with the imprecision of the natural largguén an
appropriate manner.

I1l. RULES FOR MARKING UPUSE CASES AND THE

TRANSFORMATION PROCEDURE

Mason and Supsrisupachai [20] work served as an
inspiration for this proposal. As was previouslyntiened,

the use of markups in Use Cases is an efficientoagp for
partial automatic generation of Sequence Diagranth w
analysis classes.

Some important differences in this work compareth&®o
Mason and Supsrisupachai [20] work are:

This work proposes the updating of Domain Modehwit
the operations identified during the method executit uses
stereotypes to represent the types of classes diegoto
their layers (boundary, control and entity). Thégogresent
a transformation procedure from Use Cases into ysiml
Model and, finally, they define markups for actimterface
and guard condition. The set of markups was defitted
allow, following the method, the generation of seqge
diagrams considering stereotypes, actors (primangd a
secondary) and messages with condition guards. Even
though this automatic generation is not enough tfer
analyst to start lower level design or code, it baruseful to

87

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

the analyst since he does not need to start thelmgdrom

scratch, thus reducing the duration of this ph@ibe. mark-
up process is considered to be made, by the apalysinst
the Domain Model and trying to use, as much asilplessll

the markups. For example, if in a specified step,ibterface
is not specified, and considering that there isaakop for
interfaces, the professional must verify the padbsibto

explicit an interface in this step.

A. Marking up Rules

Table | below presents a set of markups proposékisn
paper.

TABLE I. USECASE MARKUPS
Markup Markup target Markup format
sdr Sender object [sdr Sender]
[rcv Receiver] or
rcv Receiver object [rcv Receiver: name on
Domain Model]
[msg Message] or
msg Message [msg Message: labt
act Internal action of the object [act Message]
(recursive message) 9
al Main actor [al Actor]
a2 Secondary actor [a2 Actor]
ifc Human—machme or machlne—[ifC Interface]
machine interface
grd Guard condition [grd condition]

The ‘msg’ markup allows an optional format with thee
of a second argument (an optional label) which teEsthat
the label should be used on the diagram in theepbddirst
argument (the event).

In the same way, “rcv’ markup permits an optional

format to specify the name of the receiver objebemthe

name used in the step does not reflect the namthen

Domain Model.

B. Transformation Process

According to Rosenberg and Stephens [2], Use Cases
must be written in the context of the Domain Model,

referencing the domain classes and boundary clagseir
names. They recommend yet that the steps shoulditien

with the structure: object — verb — object. Seqeenc

Diagrams are behavioral models that illustrate hihve
objects interact with each other. These interasti@me
considered, initially (on the partial Sequence baag), a
representation of the verbs specified on the Use£a

2.1. “Xxx [al name] xxx [msg name] xxx [ifc name]
XXX.”

2.2. "Xxx [sdr System] xxx [msg name] xxx [ifc

name] xxx."

“Xxx [sdr System] xxx [act name] xxx.”

“Xxx [sdr System] xxx [msg name] xxx [a2

namel.”

“Xxx [sdr System] xxx [msg name] xxx [rcv

name] xxx.”

Where ‘xxx’ represents free and non-obligatory $eatd
‘name’ represents the name of an actor, objectessage. A
guard condition is optional and may occur in anythuf
above configurations.

Below is presented the procedure for transformirsg U
Cases into Sequence Diagrams and for updating dineaih
Model with operations.

1. For each Use Case document:

1.1. Is created a Sequence Diagram with the same

name as the Use Case.

1.2. Is added, into the diagram, the main actor, the
«boundary» classes from ‘ifc’ markups without
repetition, a «control» class with the same name
as the Use Case, «entity» classes in the same
sequence which they occur in the Use Case
without repetition, and the secondary actors.
«entity» classes are the other objects in Use
Case which are neither actors, nor interface nor
System.

1.3. For each step in one expected configuration, the
specific rules for messages creation must be
observed. In any expected configuration, there
may be a guard condition.

1.3.1. “Xxx [al name] xxx [msg name] xxx [ifc
name] xxx.":
1.3.1.1. One message is created from the
main actor to the interface specified
in the step.
1.3.1.2. The focus is placed at the interface
specified in the step in manner that
the next message originates from it.
1.3.2.“Xxx [sdr System] xxx [msg name] xxx
[ifc name] xxx.”:
1.3.2.1. If the control object has the focus:
1.3.2.1.10ne message is created from the
control object to the interface
specified in the step.
1.3.2.1.2The focus is placed at the
interface specified in the step in
a way that the next message

2.3.
2.4,

2.5,

As mentioned above, the proposed procedure cossider
the types of object (boundary, control and entitly® actors
and the messages between them with optional conditi
guard, in order to produce a partial Analysis Modehe
following premises are considered in order to iderihese
elements in the Use Case text:

1. A Use Case step should contain only one message.

2. A step should be in one of the following

configurations:

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

originates from it, unless there is
a guard condition, because in
this case, the guard condition
may not occur, so the control
object continues originating
messages.
1.3.2.2. If an interface has the focus:

1.3.2.2.10ne message is created from the
interface that has the focus to
the interface specified in the

88

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

step. This represents a hyperlink 1.3.5. “Xxx [sdr System] xxx [msg name] Xxx
from the first interface to the [rcv name] xxx.”:
second, and such type of 1.3.5.1. If the control object has the focus:
operation does not need to pass 1.3.5.1.10ne message is created from the
through the control object. control object to the receiver
1.3.2.2.2The focus is placed at the object.
interface specified in the step in 1.3.5.1.2The focus remains on the control
a manner that the next message object because it is not expected
originates from it, unless there is that a receiver object (an entity
a guard condition, because in by exclusion) can originates a
this case, the guard condition message on the next step (Use
may not occur, so the first Case do not explain the internal
interface continues originating behavior of the functionality).
messages. 1.3.5.2. If an interface has the focus:
1.3.3. “Xxx [sdr System] xxx [act name] xxx.”: 1.3.5.2.10ne message is created from the
1.3.3.1. If the control object has the focus: interface that has the focus to
1.3.3.1.10ne recursive message is created the control object.
in the control object. 1.3.5.2.20ther message is created from
1.3.3.1.2The focus remains at the control the control object to the receiver
object. object.
1.3.3.2. If an interface has the focus: 1.3.5.2.3The focus is placed on the
1.3.3.2.10ne message is created from the control object because it is not
interface that has the focus to expected that a receiver object
the control object. (an entity by exclusion) can
1.3.3.2.20ne recursive message is created originate a message on the next
in the control object. step (Use Case do not explain
1.3.3.2.3The focus is placed at the control the internal behavior of the
object. functionality) and the control
1.3.4. “Xxx [sdr System] xxx [msg name] xxx object originated the last
[a2 name] xxx.”: message.
1.3.4.1. If the control object has the focus: 2. The Domain Model is updated with operations
1.3.4.1.10ne message is created from the identified in «entity» objects.
control object to the secondary o
actor. C. Limitations

1.3.4.1.2The focus remains on the control The set of marking-up rules and the transformation
object because it is not expected procedure has the following limitations:
that a secondary actor can * Only main scenarios of Use Cases are considered,;
originate a message on the next ¢ There is not treatment for inclusion and extension
step (secondary actors only relationships at Use Cases;
supports the system and any « Only synchronous messages are considered;
activity that it can do is outside ~ « Message parameters are not considered:;

of the functionality scope). « Loops and parallelism (concurrent processes) are no
1.3.4.2. If an interface has the focus: considered:;

interface that has the focus to These [imitations imply needs for adjustments and
the control object. complements at the Analysis Model generated bytdiob
1.3.4.2.20ther message is created from ynat implements the procedure, in order for the ehdd be

the control object to the ysefyl for the next phases of the project (desigasp and
secondary actor. coding).

1.3.4.2.3The focus is placed at the control
object because it is not expected IV. TooL AND EXPERIMENTS
that a secondary actor can
originate a message on the next
step (secondary actors only
support the system and any A. Tool
activity that it can do is outside
of the functionality scope) and de
the control object originated the D
last message.

Below, we present the tool that implements the gsep
procedure and two experiments.

A tool that automates the proposed procedure was
veloped using Java language and the Netbeargdtad
evelopment Environment (IDE). The tool is execussda

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7 89

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

Netbeans plug-in and it is presented as a tab, evhitre the
path to the Use Cases and Domain Model to be medes
should be informed. Furthermore in this paper, fillenats
expected by the tool are presented. Figure 2 shamws
overview of the transformation process.

Tool
Use Cases Partial Sequence
Diagrams
Method;
PlantUML component;
Netbeans IDE
Domain Model Updated Domain

Model with operations

Figure 2. Transformation process overview.

Figure 3 presents an example of a marked-up past USB.

Case. For each generated diagram by the tool, ataievs
opened in the Netbeans IDE, containing the imag¢hef
diagram, as shown in Figures 4 and 5.

Use Case: Rent a Car.

Description: This Use Case describes the steps a@enma car
reservation on the Vehicle Rental web page.

Main Actor: [al Client]

Main Scenario:

1)The [a1Client] [msgrequest a reservation doReservationat the
[ifc VehicleRentalPagé

2)The [sdr Systen] [msgrequest identification nhumber] at the [ifc
VehicleRentalPagé

3)The [a1 Client] [msg inform the identification number:
inputldentificationNumberét the [ifc VehicleRentalPagé

Figure 3. Example of a marked-up part Use Case.

UlPar tialAnalysis Window 5|

Configuration | run | Reserve a vehide.segm | Vehide Rental.domm

L&

@ Rentallocsticn

@ AogrardProgram

natilize

@ Rezervation

@ WehicleInventotry

storelnformations(]

‘ @ ProtectionProduct ‘ @ Wehicle

Figure 4. Class Diagram tab (partial view).

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

UlPartialAnalysis Window &
Configuration | run | Reserve a Vehide.seqm | vehicle Rental.domm

P

“Reserve a\

<<boundary>> <<controf>>
VehicleRentalPage ReserveAVehi

T S

Client
|

| doAResenation

»
]

i requestldentificationMumber

| inputldentificationNumber

:‘requestLocaIe,Date‘HourAndVehcheCategory i

Figure 5. Sequence Diagram tab (partial view).

PlantUML component and configurations

The tool uses a pre-existing component known as
PlantUML that permits generation of diagrams froioresd
commands in text formats. The tool creates PlantUML
command files for each Sequence Diagrams to bergede
from marked-up Use Cases and update with operathans
PlantUML file related to the Domain Model. For thike
tool handles files with the following extensions:

¢ Files with “ucs” extension: File to be read andttha
contains a marked-up Use Case.

* File with “domm” extension: File to be read and
updated and that contains PlantUML commands for
Domain Model diagram generation.

« File with “segm” extension: File to be created and
that contains PlantUML commands for Sequence
Diagram generation corresponding to Use Case
with the same file name.

As soon as one file with PlantUML commands
generated or updated by the tool, immediately,
PlantUML component is activated for creating thepeztive
diagram in the “png” format.

The tool, when in execution, alerts the analystases of
unidentified classes in the Domain Model, which beer do
not hinder generation of diagrams. The tool alsertsl
identified operations in Use Cases that alreadgt&xn the
Domain Model. In this case, the tool does not ideluhe
operation in the Domain Model again.

The tool also transforms the names of objects in a
manner by which words that compose it have théfrala
unified and transformed into capital letters. Thattern is
known as “Camel Case”.

is
the

C. Experiments

The experiments were designed to verify if the
application of the markups, associated with an raated
method, could generate sequence diagrams withsamable
margin of correctness, so that the adjustment® tméde on

90

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

the model, after its generation, would not cost enitran it
would if the Analysis Model was made from scratch.

For the experiments, one looked for materials Goimg
Use Cases with the respective Sequence DiagranCkass
Diagram or Domain Models. The first material isutotial
[21] about analysis with Use Cases. The secondriaki® a
training example [22] about Analysis Model.

One problem found during the experiments is that th
Use Cases of both materials did not explicitly fyethe
interfaces, and this would lead to a poor initiahafysis
Model. To try and solve this problem, we define the
interfaces in the steps during the markup process.

The evaluation of the results was done by lookiog f
missing messages and objects in the diagrams geddrg
the tool/method (generated diagrams) compared & th
diagrams presented in the materials (original diec).
During the evaluation, other types of differencee a
detected, and they are listed in the Table Il witleir
respective quantity of occurrences. One importéférénce
that occurs in both experiments is that an operatio the
control object, gets an inadequate name when thesfis on
an interface and a system realizes two or moreesjuient
steps. In this case, the name given to the operaitiothe
control object, is the name related to the firspsibf
subsequent steps, and then, it does not reflechéaming of
all messages involved. This type of problem sholoid
corrected after the diagram is generated, becabse
method/tool does not possess the mechanism tq, liabah
adequate manner and in this situation, control abbje
operations.

One threat to external validity is about the skillthe
analysts to specify the Use Cases considering t&ups.
This job must be done in a manner that the Use SCas
represent, as complete as possible, all importajects and
interfaces that must be present in the partial Secp
Diagrams. If this does not occur, the generatedrdias will

i

TABLE II. TYPES OF DIFFERENCES BETWEEN ORIGINAL DIAGRAMS
AND GENERATED DIAGRAMS BY THE TOOL AND QUANTITY OF
OCCURRENCES IN EXPERIMENTS

Description of difference

The behavior allocation (the obje
where an operation is placed) in tl
original diagram is different from wha
was explicited in the step, and so,
different from the alocation in th
generated diagram. This differen
configures a modeling decision of th
analyst and cannot be inferred by t
tool, so needs to be adjusted in f{
generated diagram after generation.
There are behavior details in origin
diagrams that does not appear in t
generated diagram. This difference
acceptable because is part of
analysis work to go beyond th
interaction between the actor and t
System and the generated diagram
only partial.

Non-utilization, in original diagrams, o
the boundary-control-entity patter
This difference is acceptable becay
the tool applies this flow pattern an
the difference does not necessal
configure mistake.

Message omission in original diagram
This difference is not a problem but
omission of the analyst in the origin
diagram.

Inadequate name of an operation
crontrol object. This occurs when th
focus is on an interface and the Syst
perform two or more operations. In th
case, the first message will give t
name of the operation in the contr
object, but it will not reflect the
meaning of the operation that does
more things than the first message
suggest.

Exp.#1
ct
he
t
is

)

ce
e
he
he

Type Exp.#2

al
he
is
an
e

he
is

n

f
.
se
d

ily

S.

=

Al

in
e

&m
is
ne
ol

be poor. We consider that it is an important comaerd it
can be mitigated by training the analysts on thekops
elements orienting them to try to use the markigpsiach as
possible on the Use Cases. A future research auatliate
this supposition accordingly.

Other threat to external validity is about the lamk
Domain Model during the Use Cases specificatiossity
leading to ambiguous objects while writing Use Gaard
precluding part of the method (the update of thenBio
Model with operations). We consider that the metheed to
have their use restricted to cases where de Domaitel is
available during the requirements specificatione Quture
research could evaluate the impact of the absehdbeo
Domain Model during the Use Case specification gishis
method.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7

Considering only the types of differences that dese
adjustments (types 1 and 5), we have 5 differentdsoth
generated diagrams compared to the original diagram
Considering yet that the two generated diagramse 8%/
messages, there is 83 percent of similarities mtveeiginal
and generated diagrams. Therefore, generated Asalys
Model should be revised by the analyst after gdiwerdor
behavior allocations and for operation’s hame @dbntrol
object. Beyond this, the generated Analysis Motdelukd be
complemented, given that the generation is onlyiglaand
because of the limitations of the method, citedvabo

V. CONCLUSION

This paper presented a set of markups for Use Gamks
a transformation procedure for automatic partialegation
of an Analysis Model. The Mason and Supsrisupaf2@i
work was the basis for this work once it definednso
markups for primitives in a Use Case in order tginate a
Sequence Diagram. This work defines some more rparku
(markups for guard-condition, actors and interfaeed
defines a procedure to create a partial Sequenagrémn

91

SOFTENG 2015 : The First International Conference on Advances and Trends in Software Engineering

with Analysis Classes, as well as complementingtbmain [7] |EEE. “Software Design,” in Guide to the Software

Model with the operations identified during the hust 5882”%9”5%9 Body of Knowledge. Los Alamitos, CA:1$,
execution. S
. . . [8] I. Jacobson, M. Christerson, P. Jonsson and G.daaed,

The _generated Anal)_/SIS Model is cqmposed of agarti Object-Oriented Software Engineering: A Use Cas&ddr
Class Diagram and partial Sequence Diagrams (on&ge Approach, 1st ed.. Edimburgh, UK: Addison-Wesle394.
Case). The Class Diagram is the pre-existing Doiv®del o1 B, Bruegge and A. H. Dutoit, “Analysis,” in ObjeGiented
updated with the operations identified during thesj&nce Software Engineering Using UML, Patterns and Jaigper
diagrams generation. Saddle River, NJ: Pearson Prentice Hall, 20047@. 1

A tool was constructed based on the set of markimgs [10] G. Heineman and J. Denham, “Entity, Boudary, Conas
the procedure in order to automate the generafi@npartial Modularity Force Multiplier,” in Proc. 3rd Workshopn
Analysis Model. Assessment of Contemporary Modularization Techrdque

(ACOM.09), Orlando, FL, 2009, p. 42-47.

11] L. Favre, Model Driven Architecture for Reverse Eregring
Technologies: Strategic Directions and System Bimiy 1st

The realized experiment demonstrated that th
method/tool generates partial models with 83% o

correctness, excluding differences that are notttwaf ed.. Hershey, PA: IGI Global, 2010.
adjustment. Considering this percentage, we belietthe [12) p. Milicev, Model-Driven Development with Executabl
implemented method could be used as a starting fuwithe UML, 1sted.. Indianapolis, IN: Wiley Publishing, 2009.
Analysis Model since some improvements of the psapo [13] N. Debnath, M. C. Leonard, M. V. Mauco, G. Monte&jand
can be made, as suggested below. D. Riesco, “Improving Model Driven Architecture Wit
A a proposal to improve the fool the model o Cedutemens Modet n Froc, S nteratoneGeerce
%ﬁfrtateld in XMI format, in a way that could bermgekin a Las Vegas, NV, 2008, p. 21-26.
0Ol . . . [14] T. Yue, L. C. Briand and Y. Labiche, “A Use Caseddbing
Another proposal to improve the tool is the creatid a Approache to Facilitate the Transition Towards Asi
tab for writing the marked-up Use Cases with aroopfor Model: Concepts and Empirical Evaluation,” in Priwodel
presenting texts with or without the markups, ftating Driven Engineering Languages and Systems (MoDELS
reading Use Cases when markups are hidden. 2009), Denver, CO, 2009, p. 484-498.

As a suggestion for future research, the procealnggthe [15] T. Yue, L. C. Briand and Y. Labiche, “Automatically

; ; Py Deriving a UML Analysis Model from a Use Case Maqtel
set of markups could ponSIder alternatl_/e scenanbich Simula Research Laboratory, Oslo, Norway, Tech.. Rem0-
will be transformed into fragments in the Sequence 15 QOct. 2010.

Diagrams. Extensions and Inclusions of Use Caseddco [16] L. Liwu, “A Semi-Automatic Approach to Translatingse

also be considered. . Cases to Sequence Diagrams,” in Proc. Technolo@bgect-
Also, as a suggestion for future research, the Oriented Languages and Systems (TOOLS'99), Nancy,
transformation procedure and the set of markupsdcbe France, 1999, p. 184-193.

extended to consider business rules written in Cases. A [17] ||5- LiWUi;Ir:angtliEnglUtse gasfes to SeAqlienCPE lgia%réan

H T - roc. nt. ont. on utomate oftware
rule C(_Juld be mcorpo_rgted as an operation desco:lnlmhe_n Engineering (ASE'00), Grenable, France, 2000, 3-296.
associated to a specific step or be incorporatea mste in

. . . [18] L. Mendez, R. Romero and Y. P. Herrara, “UML Seaeéen
the generated diagram when associated with Use &ase Diagram Generator System from Use Case Descrijting

whole. Natural Language,” in Proc. 4th Electronics, Rotmtand
Automotive Mechanics Conf. (CERMA'07), Cuernavaca,
REFERENCES Mexico, 2007, p. 360-363.

[19] J. S. Thakur, A. Gupta, “Automatic Generation ofj&ence

“ Diagram from Use Case Specification,” in Proc. Tidia

1] J.T. Grose, G. D. Doney, and A. A. Brodsky, “Mo@elven h ; . .
= Architecture (MDA) ang XMI,” in Masterir):g XMI. [S) Software Engineering Conference (ISEC '14), 201erai,

John Wiley & Sons, 2002, p. 329. India.

[20] P. A. J. Mason and S. Supsrisupachai, “Paraphrasiagase

[21 D. Rosenberg and M. Stephens, “Introduction to IQON descriptions and Sequence Diagrams: An approadh tat

Process,” in Use Case Driven Object Modeling withLL

; . support,” in Proc. 6th International ConferenceHlactrical
Theory and Eractlce. [S.1] Apregs, 2097' Engineering/Electronics, Computer, Telecommunicetiand

[38]1 1. Sommerville, Software Engineering, 9th ed.. [S.| Information Technology (ECTI-CON 2009), 2009, Patay
Addison-Wesley, 2011, p. 108. Thailand, p. 722-725.

[4] G.Booch, R. A. Maksimchuk, M. W. Engle, B. J. Youd. [21] G. Evans. “Getting from use cases to code, Pask Case
Conallen and K. A. Houston, Object-Oriented Anayand Analysis.” Internet:
Design with Applications, 3th ed.. Boston, MA: Addn- http://www.ibm.com/developerworks/rational/libracghtent/
Wesley, 2007, p.274. RationalEdge/jul04/TheRationalEdge_July2004.pdfl. 18,

[5] R. Pressman, “Requirements Engineering (RE) Tasks,” 2004 [Feb. 22, 2015].

Software Engineering: A Practitioner's Approachh @d.. 221 J. White. “The Forgotten Step — Use Case Realizétio
[S.L]: McGraw-Hill, 2004, p. 118. Internet: http://www.intertech.com/Blog/post/Ther§otten-

[6] C. Larman, Applying UML and Patterns: An Introdactito Step-Use-Case-Realization.aspx, Jan. 25, 2010 [R&h.
Object-Oriented Analysis and Design and the Iteeati 2015].

Development, 3th ed.. Upper Saddle River, NJ: Adtiis 23] F. C. Souza. “Geragdo Automatica de Diagramas de
Wesley, 2004, p. 145-146. Sequéncia e Atualizacio do Modelo de Dominio airpaet

Casos de Uso.” M.S. thesis, Institute for Technialalg
Research, Sdo Paulo, Brazil, 2011.

Copyright (c) IARIA, 2015. ISBN: 978-1-61208-449-7 92

