
A Tree-Based Approach to Support Refactoring
in Multi-Language Software Applications

Hagen Schink, David Broneske∗, Reimar Schröter∗, and Wolfram Fenske∗
University of Magdeburg, Germany

Email: hagen.schink@gmail.com, ∗{ david.broneske, reimar.schroeter, wolfram.fenske}@ovgu.de

Abstract—Developers build software applications using different
programming languages, so they can benefit from the program-
ming languages’ specific advantages. To allow an interaction of
different programming languages, each programming language
offers Application Programming Interfaces (API) to be called.
However, such interactions pose challenges for source-code refac-
toring across programming languages. To this end, we present a
generalized approach to refactoring in multi-language software
applications based on graphs of trees. To illustrate the broad
application of our approach, we implement a library that builds
the foundation for two tools that support the refactoring of
database applications implemented in Java and Java applications
that invoke code of the functional programming language Clojure.

Keywords–refactoring; multi-language software application;
Java, Clojure, Relational Database

I. INTRODUCTION

Programming languages provide different language con-
structs for the description of algorithms. Depending on the
language constructs, a developer’s effort to implement an
algorithm may differ between programming languages. Hence,
if a developer is able to choose another programming language
for each problem in a single system, she can describe the
solution with a minimum of effort. Consequently, developers
use different programming languages in concert to imple-
ment software applications [1]–[8]. We call such a software
application implemented by means of different programming
languages a multi-language software application (MLSA) [5].

Irrespective of the programming language at hand, refac-
toring is a common technique to modify a source-code’s
structure while preserving the source-code’s semantics [9].
Refactorings are used to improve the maintainability and
extensibility of a code base. A number of refactoring transfor-
mations exist for different programming languages and pro-
gramming paradigms, such as object-oriented programming-
languages [9][10], functional programming-languages [11],
and relational schemata [12].

However, refactoring transformations are defined for single
programming languages and do not consider the interaction of
languages in an MLSA. Thus, applying a refactoring on source
code of one language can break the interaction of languages
within an MLSA. For instance, in a database application,
renaming a table breaks the application code that depends
on the original table name [13]. Since compilers do not
check language interaction at compile time, developers need
a sufficient test coverage to detect the broken interaction or,
otherwise, the broken system goes into production.

In this paper, we present a generally applicable concept
based on graphs of trees that supports developers in checking

and preserving language interaction within an MLSA. To show
the practical applicability of our concept, we present two
prototypes that support refactoring in applications that use (1)
Java and a relational database and (2) Java and the functional
programming language Clojure [14]. Additionally, we provide
a brief discussion of the concept’s performance and discuss
the concept’s generality in respect to different MLSA setups.

The paper is structured as follows: In Section II, we
introduce different realizations of MLSAs and give examples
of how refactoring affects language interaction in MLSAs.
In Section III, we describe and justify our concept for sup-
porting refactoring in MLSAs. In Section IV, we present two
tools, sql-schema-comparer and clojure-java-interface-checker,
which implement our concept for two different language
combinations. We discuss different aspects of the concept in
Section V. Finally, we present related work in Section VI
before we conclude the paper in Section VII.

II. BACKGROUND

In this section, we first describe different approaches to
implement language interaction in MSLAs. Then, we describe
how refactoring can break language interaction in MLSAs by
means of a database application.

A. Implementations of Language Interaction in MLSAs
In general, a software application contains source code

written in one programming language that initializes that
application. In an MLSA, we call the programming language
in which the application’s initialization code is written the
application’s host language. From the code of the host lan-
guage, developers invoke source code implemented in other
languages. We call the invoked languages guest languages.
Based on this definition, we distinguish three realizations of
language interaction:

1) Foreign Function Interface (FFI) [15]
2) Host and guest language share the same platform
3) Guest language is implemented in the host language

The first realization, FFI, describes APIs, which allow develop-
ers to use host language syntax elements for accessing syntax
elements in a guest language (cf. Figure 1a). For instance,
in Java the Java Database Connectivity (JDBC) and the Java
Persistence API (JPA) allow developers to query relational
databases via SQL or an object-relational mapping, and the
Java Native Interface (JNI) allows developers to invoke C/C++
functions. Platforms such as Java and .NET represent the
second realization, in which both, host and guest language,
share the same platform (see Figure 1b). For instance, the
programming languages C#, Visual Basic .NET, and F# can all
be compiled to the Common Intermediate Language (CIL) and

44Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

APIHost Guest

(a) FFI

Host Guest

Platform

(b) Platform

Host

Guest

(c) Language

Figure 1. Relations between host and guest language.

all languages can invoke CIL code [16]. Thus, by compiling the
source code of the guest language to the platform of the host
language, a developer can call the code implemented in the
guest language from the host language. The third realization
(see Figure 1c) describes programming languages such as Lisp
or Ruby, which provide meta-programming features that allow
developers to implement new language elements or DSLs that
represent the guest language [17]–[19].

In case a guest language is implemented in the host
language (cf. Figure 1c), the guest language’s source code
is actually valid source code of the host language. Thus,
developers can reuse existing tools for static code analysis of
the host language to check the interaction between source code
of the guest and the host language. In case the guest language’s
source code can be compiled to the host language’s platform
(cf. Figure 1b), developers can reference the compiled code of
the guest language in the host language and the host language’s
compiler can check the interaction between source code of the
guest and the host language [16]. For instance, F# source code
can be compiled to a managed DLL which a developer can
reference in C# source code. In contrast, if languages interact
by means of an FFI (cf.Figure 1a), existing tools for the host
language cannot check language interactions.

B. Refactoring of MLSAs that use FFIs

Since there is no tool support for refactoring languages that
communicate using FFIs, developers have to assure language
interaction manually. Currently, developers must provide auto-
mated tests with a reasonable test coverage to reliably detect
broken language interactions after source-code modifications
such as refactoring. In former work, we discussed problems in
the case of Java to SQL interactions [13].

For the Java programming language, there are two APIs to
interact with a relational database via SQL: JDBC and JPA.
JDBC allows developers to directly execute SQL statements.
For instance, Figure 2 shows an SQL query that selects the
values of column label of table departments that start
with M.

JPA, in turn, provides an interface for object-relational
mapping (ORM). The ORM maps Java classes to relational
tables and Java methods to table columns. An object relational
mapper can automatically create SQL statements based on the
ORM. Developers can use JPA to access a relational database
without having to write plain SQL. For instance, Figure 3
shows how a developer can map the Java class Department
to the relational table departments with its columns id
and label.

In the following, we explain how refactoring either the Java
source code or the relational schema affects the interaction
between the Java application and the relational database.

1 String stmt = "SELECT label FROM departments "
2 + "WHERE label LIKE ?";
3 PreparedStatement query = con.prepareStatement(stmt);
4
5 query.setString(1, "M%");
6 ResultSet result = query.executeQuery();

Figure 2. JDBC: Parameterized query for department names.

1 @Entity
2 @Table(name="departments")
3 public class Department implements Serializable {
4
5 private int id;
6 private String label;
7
8 public void setId(int id) { this.id = id; }
9 @Id

10 public int getId() { return id; }
11
12 public void setLabel(String label) { this.label = label; }
13 public String getLabel() { return label; }
14 }

Figure 3. JPA: Annotated class Department.

a) Host-Language Refactoring: Given that we use JPA
to access the relational database, we rename the property
label of class Department (cf. Figure 3) to name, be-
cause name is more specific than the more general label.
Consequently, to be consistent, we also rename the methods
setLabel and getLabel to setName and getName,
respectively. This refactoring breaks the application because
the ORM cannot find a matching column name for table
departments in the database schema.

b) Guest-Language Refactoring: Let us assume we
apply a Rename Column refactoring to rename the column
label of table departments to name. This refactoring
breaks the application regardless of whether we use JDBC or
JPA because neither the SQL statement (cf. Figure 2) nor the
ORM (cf. Figure 3) reference the renamed column.

III. CHECKING AND PRESERVING LANGUAGE
INTERACTION

The main idea of our concept to check and preserve
language interactions is as follows. First, we extract those
syntax elements from the host and guest language that are
involved in language interaction and represent these syntax
elements in graphs of trees for the host and the guest language.
Second, by comparing the graph of the host and the graph of
guest language with each other, we are able to detect broken
language interactions. Now, we present this approach in detail.

A. Modeling Language Interaction
For the source code of a guest language CG and the source

code of a host language CH , we call the references to the guest
language’s source code extracted from the host language’s
source code RCH→CG

. Additionally, we call the syntax ele-
ments in the guest language’s source code involved in language
interaction RCG

. Based on the representation as abstract syntax
trees (AST) [20], we describe RCH→CG

and RCG
as sets of

45Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

labeled trees. Consequently, rCH→CG
∈ RCH→CG

is a tree
representing a single invocation of a guest language structure
element in the host language and rCG

∈ RCG
is a tree

representing a single structure element defined in the guest
language that is involved in language interaction.

Since guest languages do not define a uniform set of
syntax elements for language interaction, syntax elements for
language interaction can be different between guest languages.
Consequently, we cannot use a single type of tree to represent
all syntax elements involved in language interaction, because
we neither can oversee all current syntax elements, nor foresee
all future elements involved in language interaction. Thus, we
need to define specialized types of trees, which only represent
the syntax elements in the guest language that are actually
involved in language interaction. For instance, with JDBC or
JPA, the table and column identifiers defined in the relational
database are elements involved in language interaction. In
contrast, with JNI, a function’s name and parameters in C
source code are elements involved in language interaction.

B. Checking the Referential Integrity between Languages
We check the referential integrity between languages by

comparing all trees in RCH→CG
with the trees in RCG

. To
ensure the referential integrity, for all rCH→CG

∈ RCH→CG

there must be one rCG
∈ RCG

, so that the following condition
is satisfied:

rCH→CG
is a top-down subtree of rCG

(1)

However, this precondition is not sufficient because nodes
may be missing in rCH→CG

that are mandatory for language
interaction. For instance, in JDBC, if a developer defines an
INSERT statement, this statement must provide values for all
columns of the referenced tables with a Not Null constraint, or
else the statement fails. Hence, for the set of mandatory nodes
rM , we additionally have to check if

rM ⊆ rCH→CG
(2)

The set rM is defined as follows for mandatory nodes m and
the function parent(x), which returns x’s parent node:

rM = {m | m ∈ rCG
∧ parent(m) ∈ rCH→CG

} (3)

In Figure 4, we illustrate the process of checking language
interaction: First, we need to extract RCH→CG

from CH and
RCG

from CG. In accordance with (3), we compute the set of
mandatory nodes RM for RCG

and RCH→CG
. Then, we can

compare the extracted references. The comparison returns a
result which contains the possibly empty sets RCH→CG

\RCG

and RM \RCH→CG
, i.e., the elements, which were extracted

from the host language source code but are missing in the
guest language source code, as well as the mandatory elements
defined in the guest language source code that are not refer-
enced in the host language source code. Language interaction
is preserved if both sets are empty. Otherwise, the sets contain
the syntax elements, which are involved in the broken language
interaction.

IV. IMPLEMENTING A GENERAL APPROACH TO MLR
In this section, we first introduce the structure-graph li-

brary [21]. The structure-graph library implements an algo-
rithm which we use to implement the sql-schema-comparer and
the clojure-java-interface-checker. The sql-schema-comparer

H
os

t
G

ue
st

(CH)

(CG)

Code

Extract

a

eb

z

y

(RCH→CG
)

a

eb

dc

z

x

w

y

(RCG
)

References

Compare

(RCH→CG
\RCG

∪
RM \RCH→CG

)

Result

Figure 4. The process of checking language interaction.

checks the language interaction between Java source code and
a relational database schema and the clojure-java-interface-
checker checks the language interaction between Java and
Clojure source code.

A. The Structure-Graph Library
The structure-graph library provides a prototypical im-

plementation of a comparison algorithm for trees of syntax
elements as defined in Section III-A. The library takes two
arguments: a source graph GS and a target graph GT . Both
graphs represent sets of trees. Each node v of a tree has a name
and a path. A node is uniquely identified by its name and path;
thus, name and path represent the node’s id. The comparison
of GS and GT returns a list of modified nodes. The library
distinguishes two node modifications: Added and Deleted. A
node v is added if id(v) ∈ GT ∧ id(v) /∈ GS . Conversely, a
node v is removed if id(v) /∈ GT ∧ id(v) ∈ GS . For checking
language interaction, we pass RCH→CG

as GS and RCG
as

GT to the library. Consequently, RCH→CG
\RCG

is the set of
added nodes and RM \RCH→CG

is the set of removed nodes
that are marked as mandatory, respectively.

B. Java to Relational Database Interaction
In [22], we presented the sql-schema-comparer (SSC)

library that applies the structure-graph library to detect mis-
matches between a relational database schema and a schema
expected by the interacting Java source code. To this end, SSC
extracts the expected schema RCH→CG

from SQL statements
and JPA entities defined in the Java source code and the actual
schema RCG

from a relational database. The representation
of RCG

contains a tree for each table. Each tree contains a
root that holds the table’s name. The root has child nodes for
each table column, and each column has child nodes for each
column constraint (cf. Figure 5). Since SSC marks a column
as mandatory if a Not Null constraint is specified on that
column, SSC is able to check if all columns required for an
insertion are referenced by an SQL statement or JPA entity.
The representation of RCH→CG

contains a tree for each SQL
statement and JPA entity defined in the interacting Java source
code. The trees of the expected schema only contain nodes for
the referenced table names and columns, because constraints
are not referenced in the Java source code. For brevity, we do
not discuss column type information here.

C. Java to Clojure Language Interaction
Now, we introduce the Clojure programming language and

describe how the clojure-java-interface-checker preserves the
interaction between Java and Clojure source code.

46Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

Table

Columnn

Conn...Con1

...Column1

Consn...Con1

Figure 5. Database Schema Graph.

1) The Clojure Programming Language: Clojure is a func-
tional programming language that runs on the Java Virtual
Machine (JVM). Syntactically, Clojure is a Lisp dialect. Since
Clojure runs on the JVM, developers can directly use libraries
available for the programming language Java.

Since Clojure and Java share the same platform (cf. Fig-
ure 1b), developers do not need additional means to invoke
Clojure source code from Java and vice versa. However,
invoking Clojure functions in Java without additional means
works only for compiled Clojure source code. Additionally, the
Clojure library provides an FFI (cf. Figure 1a), which allows
developers to dynamically load and invoke Clojure source code
directly from Java source code.

For dynamically invoking Clojure functions from Java
source code, developers must provide the namespace and the
name of the function to be called. For instance, to call the
function add2 in namespace i.o.c.Test (see Figure 6),
developers use the class RT shown in Figure 7. Since version
1.6, the preferred way of calling a Clojure function is to
use class Clojure that returns an instance of class IFn.
Nevertheless, the basic principle has not changed.

1 (ns o.i.c.Test)
2
3 (defn add2 [x]
4 (+ x 2))

Figure 6. Definition of a namespace and a function in Clojure.

1 Var f = RT.var("o.i.c.Test", "add2");
2
3 f.invoke(2);

Figure 7. Invocation of Clojure function in Java.

2) The Clojure-Java-Interface-Checker Library: We used
the structure-graph library to implement the clojure-java-
interface-checker [23]. The clojure-java-interface-checker is a
library that checks the dynamic invocation of Clojure functions
in Java source code. To this end, the library creates a graph
for the function invocations in the Java source code and for
the actual function definitions in the Clojure source code.
The graph contains a tree for each namespace defined in the
Clojure source code. Each namespace has a child node for
each function defined in that namespace. Additionally, each
node representing a function has a child node for each function
parameter. Having a node for each parameter allows to check
that the function invocation in the Java source code contains the

correct number of parameters. Figure 8 shows the generalized
structure of a tree for a Clojure namespace.

Namespace

Functionn

Paran...Para1

...Function1

Paran...Para1

Figure 8. Clojure Function Graph.

For the function definition in Figure 6 and the function
invocation in Figure 7, the library creates two different trees
(see Figure 9): The only difference between the two trees is
that in Java, we have no information about the called parameter
but its position. Therefore, in Figure 9b the parameter x is
represented by the parameter’s position 0. Accordingly, before
we can compare these graphs, we need to replace the parameter
name in Figure 9a by its position in the function definition.

V. DISCUSSION

In Section III, we discussed an algorithm for checking the
interaction between a host and guest language. We presented
two tools that show the practicability of our approach. In the
following, we discuss the theoretical performance with respect
to the complexity of checking the Conditions (1) and (2) from
Section III-B and the generality of our approach. Furthermore,
we describe the necessary implementation effort and other
areas of application for our approach.

A. Performance
For Condition (1), we check that for each node in RCH→CG

a node exists in RCG
. In a tree structure, each node has a

unique path, thus, we need to check at most hG nodes in RCG

for each node in RCH→CG
where hG is the height of RCG

.
Hence, we get each missing node in O(nHhG) where nH is
the number of nodes in RCH→CG

.
For Condition (2), we check that for each mandatory node

in RM a node exists in RCH→CG
. Again, we need to check at

most hH nodes in RCH→CG
for each node in RM where hH is

the height of RCH→CG
. Hence, we get each missing mandatory

node in O(nMhH) where nM is the number of nodes in RM .
Since the maximum height of the trees is constant, we get a
complexity of O(nH + nM) for checking all conditions.

o.i.c.Test

add2

x

(a) RCG
of Figure 6.

o.i.c.Test

add2

0

(b) RCH→CG
of Figure 7.

Figure 9. Function graphs.

47Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

(CH)

(CG;1)
...

(CG;n)

(a) Single host and multiple guest
programming languages.

(CG)

(CH;1)
...

(CH;n)

(b) Multiple host and single guest
programming languages.

(CH;2)(CH;1) (CG)

(c) A host is also a guest programming language.

Figure 10. MLSA setups.

B. Generality of the Approach
Until now, we discussed an MLSA consisting of one host

and one guest programming language. However, MLSAs can
consist of more than two programming languages. Thus, we
need to discuss our approach in the context of generalized
MLSA setups to justify the generality of our approach.

1) Multiple Guest and Single Host Programming Lan-
guages: The single host programming language uses different
interfaces to interact with multiple guest languages (cf. Fig-
ure 10a). To check the referential integrity of the language
interaction, we need to compute and compare RCG;n

and
RCH→CG;n

with n being the nth guest language of the MLSA.
2) Single Guest and Multiple Host Programming Lan-

guages: The host programming languages use the same el-
ements of the guest programming language for language inter-
action (cf. Figure 10b). Thus, to check the referential integrity
of the language interaction, we need to compute and compare
RCH;n→CG

and RCG
with n being the nth host language of

the MLSA.
3) A Host is also a Guest Programming Language:

Given code of three programming languages CG, CH;1, CH;2

involved in an MLSA where CG is accessed by CH;2 and
CH;2 is accessed by CH;1 (cf. Figure 10c). Hence, this MLSA
contains code of two guest programming languages (CG and
CH;2) and code of two host programming languages (CH;1 and
CH;2). In other words, we have multiple guest and multiple
host programming languages. However, having multiple guest
and multiple host programming languages corresponds to a
combination of the preceding cases.

Apart from the three MLSA setups shown in Figure 10a
to 10c, to the best of our knowledge, no other generalized
MLSA setup exists. Since our approach supports all three
MLSA setups, we conclude that our approach supports the
refactoring of arbitrary MLSAs.

C. Implementation Effort
Our approach requires developers to provide language-

specific components: parsers and the evaluation logic. Parsers
extract the source code of the interacting host and guest
languages and create the graphs for RCG;n

and RCH→CG;n
.

For the creation of graphs, SSC includes the Java graph library
JGraphT [24]. The evaluation logic interprets the results of
SSC and gives language-specific feedback to the user.

D. Fields of Application
Apart from refactoring, another use case for our approach

is content assistance. That is, we can use RCG
to provide

developers with a list of elements with which the developers
can interact with. However, especially in respect to legacy
or undocumented source code, we have to note that our
approach does not consider the guest language’s semantics.
Thus, developers still need to know the behavior of CG.

VI. RELATED WORK

TexMo [25] and XLL [7][26] are tools for linking and
refactoring MLSAs. TexMo uses GenDeMoG [27] which im-
plements a dependency graph and XLL implements a linking
model to link artifacts of interacting languages. Links are
resolved by dependency patterns in GenDeMoG and binding
resolvers in XLL. Thus, in TexMo and XLL, the artifacts
involved in language interaction between two languages are
hidden in dependency patterns or binding resolvers. How-
ever, based on our experience with other language combina-
tions [13], we developed our graph-based approach that makes
the structures involved in language interaction transparent. We
argue that this transparency is crucial because language inter-
action is not only affected by renames of interacting elements.
Yet, TexMo and XLL solely support rename refactorings.

Language composition comprises approaches to extend
a programming language’s syntax and semantics [28]. For
instance, SugarJ [29] and TSL Wyvern [30] allow developers
to embed different languages as first-class citizens in Java and
Wyvern [31], respectively. As a first-class citizen, an embedded
language’s syntax is validated at compile-time. Compile-time
validation allows developers to fix syntax errors in the code of
the embedded language before run-time. Our approach com-
plements language composition because, additionally, it allows
to check the interaction introduced by embedded languages.
For instance, embedding SQL by language composition can
only ensure syntactical correctness, but not that SQL state-
ments reference elements that are available in the database
schema. Thus, language composition cannot ensure language
interaction in general.

UMLDiff detects differences between two UML class
models and reports added, removed, renamed, and moved
UML elements [32]. UMLDiff is part of the Eclipse plug-in
JDEvAn [33]. JDEvAn allows to retrieve UML representations
from Java source code but is extensible to retrieve UML
representations from other languages. JDEvAn and UMLDiff
may be used to retrieve information about the changes that led
to a broken language interaction and, thus, complement our
check of the referential integrity for language interaction.

Orthographic Software Modeling (OSM) introduces views
as first-class entities in software development [34]. In OSM,
all information about a software application is represented in
a single underlying model (SUM). All other models, such as
UML or source code, are generated from the SUM. Since
all changes to a view must be propagated to the SUM, all
views are kept consistent automatically. For instance, in a
database application using JPA, changing the relational model
results in the adaption of the relational schema as well as the

48Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

JPA entities. However, the OSM approach requires a SUM
and a developer, called methodologist, who implements and
maintains the SUM. In general, we cannot presume these
requirements to be fulfilled. Furthermore, the methodologist
needs to model language interaction in the SUM, which
requires intimate knowledge of implementation details.

VII. CONCLUSION AND FUTURE WORK

Language interaction in a multi-language software applica-
tion (MLSA) can be diverse and, thus, complicates the refac-
toring of involved languages. In our approach, we use graphs
of trees to represent syntax elements of different programming
languages that are involved in language interaction. Based on
these graphs, we can check if the source code of one language
correctly interacts with the source code of another language.

Based on our approach, we presented two tools, sql-
schema-comparer and clojure-java-interface-checker, which
check the interaction within a database application and be-
tween source code of the programming languages Java and
Clojure, respectively. We presented performance considera-
tions which suggest that graphs of trees are a viable basis for
checking the interaction of source code of different languages.
We also discussed transferability of our approach to arbitrary
MLSA setups.

In our future work, we want to integrate the sql-schema-
comparer and clojure-java-interface-verifier in the Eclipse
IDE [35] to simplify their usage for daily software develop-
ment. Furthermore, we want to re-use graphs of trees extracted
from the guest language for detecting source-code modifi-
cations, such as refactorings, that led to a broken language
interaction. We assume that the information about source-
code modifications can support developers in fixing language
interaction.

ACKNOWLEDGMENTS

The work of Reimar Schröter is funded by BMBF, grant
number 01IS14017B.

REFERENCES
[1] B. Kullbach, A. Winter, P. Dahm, and J. Ebert, “Program Compre-

hension in Multi-Language Systems,” Working Conference on Reverse
Engineering, 1998, pp. 135–143.

[2] T. C. Jones, Estimating Software Costs. Hightstown, NJ, USA:
McGraw-Hill, Inc., 1998.

[3] M. Grechanik, D. Batory, and D. E. Perry, “Design of Large-Scale
Polylingual Systems,” International Conference on Software Engineer-
ing, 2004, pp. 357–366.

[4] D. Strein, H. Kratz, and W. Lowe, “Cross-Language Program Anal-
ysis and Refactoring,” IEEE International Workshop on Source Code
Analysis and Manipulation, 2006, pp. 207–216.

[5] P. K. Linos, W. Lucas, S. Myers, and E. Maier, “A Metrics Tool
for Multi-Language Software,” International Conference on Software
Engineering and Applications, 2006, pp. 324–329.

[6] N. Chen and R. Johnson, “Toward Refactoring in a Polyglot World:
Extending Automated Refactoring Support across Java and XML,”
Workshop on Refactoring Tools, 2008, pp. 1–4.

[7] P. Mayer and A. Schroeder, “Cross-Language Code Analysis and Refac-
toring,” International Working Conference on Source Code Analysis and
Manipulation, 2012, pp. 94–103.

[8] N. Ford, The Productive Programmer. O’Reilly, 2008.
[9] W. F. Opdyke, “Refactoring Object-Oriented Frameworks,” Ph.D. dis-

sertation, University of Illinois at Urbana-Champaign, USA, 1992.
[10] M. Fowler, Refactoring: Improving the Design of existing Code.

Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1999.

[11] H. Li and S. Thompson, “Tool Support for Refactoring Functional
Programs,” ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based Program Manipulation, 2008, pp. 199–203.

[12] S. Ambler, Agile Database Techniques: Effective Strategies for the
Agile Software Developer. John Wiley & Sons, Inc., 2003.

[13] H. Schink, M. Kuhlemann, G. Saake, and R. Lämmel, “Hurdles in
Multi-Language Refactoring of Hibernate Applications,” International
Conference on Software and Database Technologies, 2011, pp. 129–
134.

[14] Clojure homepage. [Online]. Available: http://www.clojure.org/ (visited
on Dec. 3, 2015).

[15] M. Furr and J. S. Foster, “Checking Type Safety of Foreign Function
Calls,” ACM Transactions on Programming Languages and Systems,
vol. 30, no. 4, 2008, pp. 1–63.

[16] J. Hamilton, “Language Integration in the Common Language Run-
time,” ACM SIGPLAN Notices, vol. 38, no. 2, 2003, p. 19.

[17] M. Mernik, J. Heering, and A. M. Sloane, “When and how to Develop
Domain-Specific Languages,” ACM Computing Surveys, vol. 37, no. 4,
2005, pp. 316–344.

[18] L. Tratt, “Compile-Time Meta-Programming in a Dynamically Typed
OO Language,” Symposium on Dynamic Languages, 2005, pp. 49–63.

[19] S. Günther, “Multi-DSL Applications with Ruby,” IEEE Software,
vol. 27, no. 5, 2010, pp. 25–30.

[20] J. Jones, “Abstract Syntax Tree Implementation Idioms,” Conference
on Pattern Languages of Programs, 2003, pp. 1–10.

[21] Structure graph. [Online]. Available: https://github.com/hschink/
structure-graph (visited on Dec. 3, 2015).

[22] H. Schink, “sql-schema-comparer: Support of Multi-Language Refac-
toring with Relational Databases,” International Working Conference on
Source Code Analysis and Manipulation, 2013, pp. 164–169.

[23] Clojure java interface checker. [Online]. Available: https://github.com/
hschink/clojure-java-interface-checker (visited on Dec. 3, 2015).

[24] Jgrapht. [Online]. Available: http://jgrapht.org/ (visited on Dec. 3,
2015).

[25] R. H. Pfeiffer and A. Wąsowski, “TexMo: A Multi-Language Develop-
ment Environment,” European Conference Modelling Foundations and
Applications, 2012, pp. 178–193.

[26] P. Mayer and A. Schroeder, “Automated Multi-Language Artifact
Binding and Rename Refactoring between Java and DSLs used by
Java Frameworks,” European Conference Object-Oriented Program-
ming, 2014, pp. 437–462.

[27] R. H. Pfeiffer and A. Wąsowski, “Taming the Confusion of Languages,”
European Conference on Modelling Foundations and Applications,
2011, pp. 312–328.

[28] S. Erdweg, P. G. Giarrusso, and T. Rendel, “Language Composition Un-
tangled,” Workshop on Language Descriptions, Tools, and Applications,
2012, pp. 1–8.

[29] S. Erdweg, T. Rendel, C. Kästner, and K. Ostermann, “SugarJ: Library-
Based Syntactic Language Extensibility,” ACM SIGPLAN Notices,
2011, pp. 391–406.

[30] C. Omar, D. Kurilova, L. Nistor, and B. Chung, “Safely Composable
Type-Specific Languages,” European Conference on Object-Oriented
Programming, 2014, pp. 105–130.

[31] L. Nistor, D. Kurilova, and S. Balzer, “Wyvern: A Simple, Typed,
and Pure Object-Oriented Language,” Workshop on MechAnisms for
SPEcialization, Generalization and inHerItance, 2013, pp. 9–16.

[32] Z. Xing and E. Stroulia, “UMLDiff: An Algorithm for Object-Oriented
Design Differencing,” IEEE/ACM International Conference on Auto-
mated Software Engineering, 2005, pp. 54–65.

[33] Z. Xing and E. Stroulia, “The JDEvAn Tool Suite in Support of Object-
Oriented Evolutionary Development,” Companion of the International
Conference on Software Engineering, 2008, p. 951.

[34] C. Atkinson, D. Stoll, and P. Bostan, “Orthographic Software Modeling:
A Practical Approach to View-Based Development,” in Evaluation of
Novel Approaches to Software Engineering, ser. Communications in
Computer and Information Science. Springer Berlin Heidelberg, 2010,
vol. 69, pp. 206–219.

[35] Eclipse. [Online]. Available: http://www.eclipse.org/ (visited on Dec.
3, 2015).

49Copyright (c) IARIA, 2016. ISBN: 978-1-61208-458-9

SOFTENG 2016 : The Second International Conference on Advances and Trends in Software Engineering

http://www.clojure.org/
https://github.com/hschink/structure-graph
https://github.com/hschink/structure-graph
https://github.com/hschink/clojure-java-interface-checker
https://github.com/hschink/clojure-java-interface-checker
http://jgrapht.org/
http://www.eclipse.org/

	Introduction
	Background
	Implementations of Language Interaction in MLSAs
	Refactoring of MLSAs that use FFIs

	Checking and Preserving Language Interaction
	Modeling Language Interaction
	Checking the Referential Integrity between Languages

	Implementing a General Approach to MLR
	The Structure-Graph Library
	Java to Relational Database Interaction
	Java to Clojure Language Interaction
	The Clojure Programming Language
	The Clojure-Java-Interface-Checker Library

	Discussion
	Performance
	Generality of the Approach
	Multiple Guest and Single Host Programming Languages
	Single Guest and Multiple Host Programming Languages
	A Host is also a Guest Programming Language

	Implementation Effort
	Fields of Application

	Related Work
	Conclusion and Future Work
	References

