
Visualizing Execution Models and Testing Results

Bernard Stepien, Liam Peyton
School of Engineering and Computer Science

University of Ottawa
Ottawa, Canada

Email: (Bernard | lpeyton)@uottawa.ca

Mohamed Alhaj
Computer Engineering Department

Al-Ahliyya Amman University
Amman, Jordan

Email: m.alhaj@ammanu.edu.jo

Abstract—Software engineering models typically support some
form of graphic visualization. Similarly, testing results are
shown as execution traces that testing tools, such as TTCN-3
can display as message sequence charts. However, all TTCN-3
tools avoid presenting data directly in the message sequence
chart because some of it may be complex structured data.
Instead, they simply display the data types used. The real data
is made available through detailed message inspection
representations when the datatype shown is clicked on. Thus,
validation of test results requires a tedious message by message
inspection especially for large tests involving sequences of
several hundred test events. We propose the capability to
specify which data can be displayed in the test results message
sequence chart. This provides overview capabilities and
improves the navigation of test results. The approach is
illustrated with an example of SIP protocol testing and an
example of testing an avionics flight management system.

Keywords-sofware modelling; testing; TTCN-3.

I. MOTIVATION

Modeling and testing of software applications are
intricately linked. The first describes the expected behavior
while the second describes a trace of real behavior of a
system. The first preoccupation of a software engineer is to
ensure that both expected and actual behaviors do indeed
match. While formal modelling techniques abound (Unified
Modeling Language (UML), [1], Specification and
Description Language (SDL)[2], Use Case Maps (UCM)[3]),
testing is often performed with ad hoc coded tests using
frameworks such as JUnit [5]. There is very little code reuse
between tests and displaying the results often accounts for
50% of the code written to define tests.

Formal models frequently use Message Sequence Charts
(MSCs) [4] (Figure 1) (Pragmadev studio) to enable the
software engineer to visualize the behavior of a system even
before it has been implemented giving them the possibility to
detect design flaws early and thus avoid costly testing
iterations [6][7].

The formal test specification language Testing and Test
Control Notation (TTCN-3) [8] provides advantages over
frameworks like Junit, with strong typing, a powerful
matching mechanism, and a separation of concerns between
the abstract test specification layer and the concrete layer

that handles coding/decoding data which can result in
significant code reuse [16].

Figure 1. basic MSC

Especially interesting is the support of MSCs to display
test results that is provided by commercially available
TTCN-3 execution tools like TTworkbench, [9], Testcast
[10], PragmaDev Studio [11], Titan [12]. All of these tools
use MSCs to display test results which is especially efficient
when the system is composed of multiple components that
interact with each other as shown in Figure 2.

Figure 2. Test results as MSC

However, all of these tools are confronted with the same
problem of displaying complex structured data in the limited
space provided by MSCs. Thus, they avoid the display
problem altogether by showing only the data type of the
message (Figure 2 shows TTworkbench) and show the
content of the message in a separate table (Figure 3 for
TTworkbench) when clicking on one of the arrows of the
MSC. This requires a tedious message by message inspection
of the MSC. However, this feature is critical in order to
allow to spot errors efficiently. The TTworkbench tool is

1Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

particularly interesting because it is the only one that shows
the test oracle, the expected message against the data
received from the SUT and flags any mismatches in red.

Figure 3. Detailed message content display

II. TTCN-3 CONCEPT OF TEMPLATE

The central concept of TTCN-3 is the template language
construct that enables describing both test stimuli and test
oracles as structured data in a single template. This in turn is
used by the TTCN-3 tools internal matching mechanism that
compare the values of a template to the actual values
contained in the response message both on message based
and procedure based communication. More important is that
the template has a precise name and is a building block that
can be re-used using its name to specify the value of an
individual field or another template that itself can be re-used
by specifying a modification to its values. This is a concept
of inheritance. For example, one may specify the templates
for the sender and the receiver entities separately:

template charstring entityA_Template
:= “abcd@xyz.com”;

template charstring entityB_Template
:= “pqr@uvw.com”;

A stimuli message can then be specified as:

template MessageType stimuli_1 := {
sender := entityA_Template,
receiver := entityB_Template,
payload := “it was a dark and

stormy night”
}

The response template can itself reuse the above entity
addresses by merely reversing their roles (sender/receiver):

template MessageType response_1 := {
sender := entityB_Template,
receiver := entityA_Template,
payload := “nothing to fear”

}

The TTCN-3 template modification language construct
can be used to specify more stimuli or responses for the same
pairs of communicating entities:

template MessageType stimuli_2
modifies stimuli_1 := {

payload := “the sun is shining at
last”

}

Templates can then be used either in send or receive
statements to describe behaviors in the communication with
the SUT. Such behavior can be sequential, alternative or
even interleaved behavior. The TTCN-3 receive statement
does more than just receive data in the sense of traditional
general purpose languages (GPL). It compares the data
received on a communication port with the content of the
template specified. The following abstract specification
means that upon sending template stimuli_1 to the SUT, if
we receive and match the response message to the template
response_1 we decide that the test has passed. Instead, if we
receive and match alt_response we decide that the test has
failed.

myPort.send(stimuli_1);
alt {

[] myPort.receive(response_1){
Setverdict(pass)

}
[] myPort.receive(alt_response){

Setverdict(fail)
}

}

III. SELECTING DATA FIELDS TO DISPLAY

While most of the tools provide test results in form of an
XML file precisely for enabling users to use their own
proprietary test results display methodology, instead, we
decided to modify the tool’s source code. The motivation
for this approach was to avoid having to re-develop the
MSC display software and especially the message selection
mechanism that displays the detailed structured data table
but also to maintain consistency between the abstract layer
and the TTCN-3 tool. Thus, we preferred to modify the
display software source code itself to display selected data
so that the existing detailed data features when clicking on
the arrows of the MSC are preserved and don’t need to be
re-developed. Our approach is a first in TTCN-3 tools.

The central concept of our approach is to use the
standard TTCN-3 extension capabilities that can be
specified at the abstract layer using the with-statement
language construct. TTCN-3 extensions were devised in the
TTCN-3 standard to precisely allow tools to handle various
non-abstract aspects of a test such as associated codecs and
display test results in the most appropriate way the user
desires. While the language is standardized, there is no
standardization on how a tool operates and, in particular,
how it displays test results. Here, we use the template
definition itself and its associated with-statement in the
abstract layer as a way to specify the fields that will be
displayed on the MSC during test execution since the
template is used by the matching mechanism. In the
following example, we are testing some database content for
information about cities that is a well multi-layered data
structure with fields and sub-fields as follows.

2Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

template CityResponseType response_1
:= {

location := {
city := "ottawa",
district := "ontario",
country := "canada"

},
statistics := {

population := 900000,
average_temperature := 10.3,
hasUniversity := true

}
} with { extension "{display_fields

{ location {city},
statistics { population }}}"; }

The above TTCN-3 with-statement uses the standard
TTCN-3 extension keyword. It contains a user definition
that is represented as a string. The content of this string is
not covered by the TTCN-3 syntax but by syntax defined by
the user. Thus, it is the responsibility of the user to handle
syntax and semantic checking of that string’s content. First,
we have defined a keyword called display_fields to indicate
that the specification is about selecting the fields to display.
Then, we specify a list of fields and subfields to display.
The curly brackets indicate the scope of subfields. For
example, we specified that we want to see the city subfield
of the location field and the population subfield of the
statistics field. This hierarchy is necessary because various
fields may have subfields with identical names.

Figure 4. Structure of a TTCN-3 tool

We have implemented this feature on the Titan [12]
open-source TTCN-3 execution tool software since this
feature requires modifying the source code of the tool. None
of the commercial TTCN-3 tool vendors make their source
code available. Two areas of the Tool’s source code (see
Figure 4) were modified:

• the source code for the executable (GPL) code
generator that will propagate the selected fields to
display.

• the TTCN-3 test case management code that
handles the MSC display

This did not require modification of the parser since the
content of the with-statement is user defined, thus not
modifying the grammar of the TTCN-3 language. However,
the user definition turns up in the parse tree that is used for
test execution code generation. It is during this code
generation that we take into account this extension for the
display specification. Most TTCN-3 execution software is
based on execution code generated in a general purpose
language (GPL) like Java for TTworkbench or C++ for
Titan and PragmaDev studio and multiple strategies for
TestCast. The general principle of these GPL generated
code is to transform the abstract TTCN-3 definitions into
executable GPL code, for example, in the TITAN tool, the
abstract TTCN-3 template definition response_1 shown
previously becomes a series of C++ definitions, one for
defining constants and the other to define the template
matching mechanism as follows:

static const CHARSTRING cs_7(2, "75"),
cs_2(6, "canada"),
cs_8(6, "france"),
cs_4(8, "new york"),
cs_3(13, "new york city"),
cs_1(7, "ontario"),
cs_0(6, "ottawa"),
cs_6(5, "paris"),
…

The above definitions are in turn used to generate the
C++ source code for the template definition as follows:

static void post_init_module()
{
TTCN_Location
current_location("../src/NewLoggingStudy
Struct.ttcn3", 0,
TTCN_Location::LOCATION_UNKNOWN,
"NewLoggingStudyStruct");
current_location.update_lineno(42);
#line 42
"../src/NewLoggingStudyStruct.ttcn3"
template_request__1.city() = cs_0;
template_request__1.district() = cs_1;
template_request__1.country() = cs_2;
current_location.update_lineno(48);
#line 48
"../src/NewLoggingStudyStruct.ttcn3"
{
LocationType_template& tmp_0 =
template_response__1.location();
tmp_0.city() = cs_0;
tmp_0.district() = cs_1;
tmp_0.country() = cs_2;
}

3Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Thus, we had to use the same technique of C++ variable
definitions to pass on our field display definitions since at
run-time, the parse tree is no longer available. The test
result MSC is considered as logging activity. Here this is
illustrated by calling TITAN function log_event_str() that
actually writes the template in the source code because this
is the test oracle as follows:

alt_status
AtlasPortType_BASE::receive(const
CityRequestType_template&
value_template, CityRequestType
*value_ptr, const COMPONENT_template&
sender_template, COMPONENT *sender_ptr)
{
…
TTCN_Logger::log_event_str(": extension
{display_fields { location {city},
statistics { population, temperature}}}
@NewLoggingStudyStruct.CityRequestType :
"),
my_head->message_0->log(),
TTCN_Logger::end_event_log2str()),
msg_head_count+1);
…

Using the above source code, during the test execution,
the Titan tool writes a log file that contains the matching
mechanism results, i.e. the field names and instantiated
values of the TTCN-3 template but also after the code
modifications, the display_fields specifications as follows:

09:33:49.443373 Receive operation on
port atlasPort succeeded, message from
SUT(3): extension { display_fields {
location {city}, statistics {
population, temperature}}}
@NewLoggingStudy.CityResponseType : {
city := "ottawa", district := "ontario",
country := "canada", population :=
900000, average_temperature :=
10.300000, hasUniversity := true } id 1

The above data is used by the MSC display tool (on
Eclipse) and shows two different kinds of information. The
first is the content of our display_fields definition and the
second is the full data that was received and matched. In
fact all we had to do was to prepend the field selection logic
to the actual log data that remained unchanged. The first
will enable the MSC display software to display only the
data requested like on Figure 9 while the second one is used
for the detailed message content table that is obtained
traditionally by clicking on the selected arrow of the MSC
like on Figure 3.

While in open source Titan the execution code is written
in C++, the actual Eclipse based MSC display is written in
Java. Thus we had to modify the Java code that displays the
MSC as well. Now, this is the implementation that is valid
for Titan tool only. Each tool vendor has different coding
approaches and would require different code generation
strategies. Unfortunately since they do not make their source
code available, all we can do is to strongly encourage these
tool vendors to implement our MSC display approach.

IV. THE SIP PROTOCOL TESTING EXAMPLE

The SIP protocol (Session Initiation protocol) [13] is a
very complex protocol using complex structured data
including a substantial proportion of optional fields. The
SIP protocol TTCN-3 test suites are available from ETSI
[14] Traditional TTCN-3 tools will display all the fields in
the detailed message content table. The user must click on
some fields of interest to see the structured content.
However, most real application messages make use of only
a fraction of all the available fields. Thus, our approach can
easily display this fraction of available fields in the MSC.

Figure 5. SIP protocol example model MSC

The ETSI definitions for the SIP protocol have used a
strategy to try to alleviate the data type display problem in
test result MSCs. The approach consists of redefining
several times the same structured data type giving different
names like in the following excerpt where there is a type for
an INVITE method and the BYE request that are absolutely
identical from a field definition point of view but they will
display differently on the MSC using data types only:

type record INVITE_Request {
RequestLine requestLine,
MessageHeader msgHeader,
MessageBody messageBody optional,
Payload payload optional

}
type record BYE_Request {

RequestLine requestLine,
MessageHeader msgHeader,
MessageBody messageBody optional,
Payload payload optional

}
Where the main field is defined as:

4Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

type record RequestLine {
Method method,
SipUrl requestUri,
charstring sipVersion

}
And the method type is an enumerated type:

type enumerated Method {
ACK_E,
BYE_E,
CANCEL_E,
INVITE_E,
…

}
All of this can be used to specify a template that has all

its fields set to any value except for the method as follows:

template INVITE_Request
INVITE_Request_r_1 := {

requestLine := {
method := INVITE_E,
requestUri := ?,
sipVersion := SIP_NAME_VERSION },

msgHeader := {
callId := {

fieldName := CALL_ID_E,
callid := ?

},
contact := ?,
cSeq := {
fieldName := CSEQ_E,
seqNumber := ?,
method := "INVITE" },
fromField := ?,
toField := ?,
…

}

We can select the field for the SIP method to display in
the test results MSC by adding the with-statement to the
above template as follows:

with { extension "{display_fields
{ requestLine { msgHeader {cSeq

{method} }} }}"; }

This will produce exactly the test results MSC that will
be identical to the model MSC shown on Figure 5.

V. AN AVIONICS TESTING EXAMPLE

The whole idea of selecting data to display on a test
results MSC originated specifically in an industrial
application that we have worked on for testing the Esterline
Flight Management System (FMS) [15]. The FMS shown on
Figure 6 enables pilots to enter flight plans and display the

flight plan on the FMS screen. A flight plan can be modified
as a flight progresses. Flight plans and modifications are
entered by typing the information using the alphanumeric
key pad that consist of letters of the alphabet, numbers and
function keys. For test automation purposes, key presses can
be simulated by sending messages to a TCP/IP
communication port. The content of a screen can be retrieved
anytime with a special function invocation that will return a
response message on the TCP/IP connection. Thus, we have
the behavior of a typical telecommunication system sending
and receiving messages with the difference that the response
message must be requested explicitly, it is not coming back
spontaneously and is subject to response delays that must be
handled carefully in case of time outs.

Figure 6. Flight Management System

In this case, stimuli messages are simple characters or
names of function keys. These messages are by definition
very short and can easily be displayed in full on the test
results MSC. For such short messages, we have devised a
default display option where if there is no with-statement
with a display field specification for a given template, the
MSC will display all data of this message. This is
particularly optimal for short message content like the FMS
key presses. The original test results MSC provided by Titan
was displayed using useless message type names as shown
on Figure 7 .

Figure 7 Original TITAN test results MSC display

5Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

It is clear from looking at Figure 7 that this MSC is not
useful from an overview point of view while our approach
on Figure 9 shows the messages values which allows the
user to explore rapidly the test results before deciding to go
for a fully detailed view of the results when for example the
matching of the test oracle with the resulting response
shows a failure. This is where the comparison with a model
such as UCM is particularly easy to achieve as shown on
Figure 8.

Figure 8. FMS model as UCM

The content of the screen is mapped to a data structure
that contains fields for the various lines of the screen and
also subfields to describe the left and the right of the screen.
The FMS has 26 such fields, a title line, 6 lines structured
into 4 subfields and a scratch pad line. Normally a test is
designed to verify a given requirement which consists in
verifying that a limited number of fields have changed their
values. For example, the result of a sequence of stimuli may
have changed the field that displays the destination airport
on line 2 in the right part of the screen.

Figure 9. Modified Titan test result MSC

VI. CONCLUSION

In this research, we have shown that when using
TTCN-3, it is an advantage to display selected information
of complex structured data so as to have an overview on the

test results and be able to locate an area of interest quickly
and efficiently in test results.

ACKNOWLEDGMENT

We would like to thank CRIAQ, MITACS, ISONEO
SOLUTIONS and CMC Esterline for their financial support
on this project.

REFERENCES

[1] S. Jagadish, C. Lawrence and R.K. Shyamasunder, cmUML -
A UML based Framework for Formal Specification of
Concurrent, Reactive Systems, Journal of Object Technology
(JOT), Vol. 7, No. 8, Novmeber-December 2008, pp 188-
207.

[2] A. Ollsen, O. Færgemand and B. Møller-Pedersen, Systems
Engineering using SDL 92, Elsevier Science B.V.,
Amsterdam, The Netherlands, 1994.

[3] R.J.A. Buhr and R. S. Casselman, Use Case Maps for Object-
Oriented Systems, Prentice Hall Inc., Upper Saddle River,
New Jersey, USA, 1995. ISBN:0-13-456542-8

[4] R. Alur, and M. Yannakakis, Model checking of message
sequence charts, International Conference on Concurrency
Theory. Springer Berlin Heidelberg, 1999, pp 114-129

[5] Y. Cheon, and G. T. Leavens, A simple and practical
approach to unit testing: The JML and JUnit way. In
European Conference on Object-Oriented Programming, June
2002, pp. 231-255. Springer Berlin Heidelberg.

[6] A. Miga, D. Amyot, F. Bordeleau, C. Cameron, and M.
Woodside, Deriving Message Sequence Charts from Use Case
Maps Scenario Specifications. Tenth SDL Forum (SDL’01),
Copenhagen, Denmark, June 2001.. LNCS 2078, 268-287

[7] J. Kealey, and D. Amyot, (2007) Enhanced Use Case Map
Traversal Semantics. In: E. Gaudin, E. Najm, and R. Reed
(Eds.): 13th SDL Forum (SDL 2007), Paris, France,
September 2007. LNCS 4745, Springer, 133-149.

[8] ETSI ES 201 873-1 version 4.6.1 (2014-06) The Testing and
Test Control Notation version 3 Part 1: TTCN-3 Core
Language

[9] TTworkbench,Spirent,
https://www.spirent.com/Products/TTworkbench

[10] Testcast, Elvior: http://www.elvior.com/testcast/introduction

[11] PragmaDev Studio, http://www.pragmadev.com/

[12] Titan, https://projects.eclipse.org/proposals/titan

[13] SIP RFC 3261, https://www.ietf.org/rfc/rfc3261.txt

[14] SIP TTCN-3, ETSI http://www.ttcn-
3.org/index.php/downloads/publicts/publicts-etsi/27-publicts-sip

[15] FMS, href= http://www.esterline.com/avionicssystems/en-
us/productsservices/aviation/navigationfmsgps/flightmanagementsyst
ems.aspx

[16] B. Stepien, L.Peyton, M. Shang and T.Vassiliou-Gioles, “An
Integrated TTCN-3 Test Framework Architecture for
Interconnected Object-based Internet Applications”,
International Journal of Electronic Business, Inderscience
Publishers, Vol. 11, No. 1, pp. 1-23, 2014. DOI:
http://dx.doi.org/10.1504/IJEB.2014.057898

6Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

