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Email: {plau, pmaresca}@verisign.com

Abstract—On a daily basis, Internet services experience growing
amount of traffic that needs to be ingested first, and processed
subsequently. Technologies to streamline data target horizontal
distribution as design tenet, giving off maintainability and oper-
ational friendliness. The advent of the Internet of Things (IoT)
and the progressive adoption of IPv6 require a new generation
of data streamline platforms, bearing in mind easy distribution,
maintainability and deployment. Chimera is an ultra-fast and
scalable Extract Transform and Load (ETL) platform, designed
for distribution on commodity hardware, and to serve ultra-
high volumes of inbound data while processing in real-time.
It strives at putting together top performance technologies to
solve the problem of ingesting huge amount of data delivered
by geographically distributed agents. It has been conceived to
propose a novel paradigm of distribution, leveraging a shared
nothing architecture, easy to elastically scale and to maintain. It
reliably ingests and processes huge volumes of data: operating
at the line rate, it is able to distribute the processing among
stateless processors, which can join and leave the infrastructure at
any time. Experimental tests show relevant outcomes intended as
the ability to systematically saturate the I/O (network and disk),
preserving reliable computations (at-least-once delivery policy).

Keywords–Distributed computing, High performance comput-
ing, Data systems.

I. INTRODUCTION

With the gigantic growth of information-sensing devices
(Internet of Things) [1] such as mobile phones and smart
devices, the predicted quantity of data produced far exceeds the
capability of traditional information management techniques.
To accommodate the left-shift in the scale [2], [3], new
paradigms and architectures must be considered. The big data
branch of computer science defines these big volumes of data
and is concerned in applying new techniques to bring insights
to the data and turn it into valuable business assets.

Modern data ingestion platforms distribute their compu-
tations horizontally [4] to scale the overall processing ca-
pability. The problem with this approach is in the way the
distribution is accomplished: through distributed processors,
prior to vertically move the data in the pipeline (i.e., between
stages), they need coordination, generating horizontal traffic.
This coordination is primarily used to accomplish reliability
and delivery guarantees. Considering this, and taking into
account the expected growth in compound volumes of data,
it is clear that the horizontal exchanges represent a source
of high pressure both for the network and infrastructure: the
volumes of data supposed to flow vertically is amplified by
a given factor due to the coordination supporting the com-
putations, prior to any movement. Distributing computations

and reducing the number of horizontal exchanges is a complex
challenge. If one was to state the problem, it would sound like:
to reduce the multiplicative factor in volumes of data to fulfill
coherent computations, a new paradigm is necessary and such
paradigm should be able to i. provide lightweight and stateful
distributed processing, ii. preserve reliable delivery and, at the
same time, iii. reduce the overall computation overhead, which
is inherently introduced by the distributed nature.

An instance of the said problem can be identified in pre-
dictive analytics [5], [6] for monitoring purposes. Monitoring
is all about: i. actively produce synthetic data, ii. passively
observe and correlate, and iii. reactively or pro actively spot
anomalies with high accuracy. Clearly, achieving correctness
in anomaly detection needs the data to be ingested at line rate,
processed on-the-fly and streamlined to polyglot storage [7],
[8], with the minimum possible delay.

From an architectural perspective, an infrastructure en-
abling analytics must have a pipelined upstream tier able
to i. ingest data from various sources, ii. apply correlation,
aggregation and enrichment kinds of processing on the data,
and eventually iii. streamline such data to databases. The at-
tentive reader would argue about the ETL-like nature of such a
platform, where similarities in the conception and organization
are undeniable; however, ETL-like kind of processing is what
is needed to reliably streamline data from sources to sinks.
The way this is accomplished has to be revolutionary given the
context and technical challenges to alleviate the consequences
of exploding costs and maintenance complexity.

All discussed so far settled a working context for our team
to come up with a novel approach to distribute the workload
on processors, while preserving determinism and reducing
the coordination traffic to a minimum. Chimera (the name
Chimera has been used in [9]; the work presented in this
paper addresses different aspects of the data ingestion) was
born as an ultra-high-throughput processing and streamlining
system able to ingest and process time series data [10] at line
rate, preserving a delivery guarantee of at least once with an
out of the box configuration, and exactly once with a specific
and tuned setup. The key design tenets for Chimera were:
i. low-latency operations, ii. deterministic workload sharding,
iii. backpropagated snapshotting acknowledgements, and iv.
traffic persistence with on-demand replay. Experimental tests
proved the effectiveness of those tenets, showing promising
performance in the order of millions of samples processed per
second with an easy to deploy and maintain infrastructure.

The remainder of this paper is organized as follows. Section
II focuses on the state-of-the-art, with an emphasis on the
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current technologies and solutions meanwhile arguing why
those are not enough to satisfy the forecasts relative to the
advent of the IoT and the incremental adoption of IPv6.
Section III presents Chimera and its architectural internals,
with a strong focus on the enabling tiers and the most relevant
communication protocols. Section IV presents the results from
the experimental campaign conducted to validate Chimera and
its design tenets. Section V concludes this work and opens to
future developments on the same track, while sharing a few
lessons learned from the field.

II. RELATED WORK

When it comes to assessing the state of the art of streamline
platforms, a twofold classification can be approached: 1. ETL
platforms originally designed to solve the problem (used in
the industry for many years, to support data loading into
data warehouses [11]), and 2. Analytics platforms designed
to distribute the computations serving complex queries on big
data, then readapted to perform the typical tasks of ingestion
too. On top of those, there are hybrid platforms that try to
bring into play features from both categories.

The ETL paradigm [12] has been around for decades and
is simple: data from multiple sources is transformed into an
internal format, then processed with the intent to correlate,
aggregate and enrich with other sources; the data is eventually
moved into a storage. Apart of commercial solutions, plenty
of open-source frameworks have been widely adopted in the
industry; it is the case of Mozilla Heka [13], Apache Flume
and Nifi [14], [15], [16]. Heka has been used as a primary ETL
for a considerable amount of time, prior to being dismissed for
its inherent design pitfalls: the single process, multi-threaded
design based on green threads (Goroutines [17] are runtime
threads multiplexed to a small number of system threads) had
scalability bottlenecks that were impossible to fix without a re-
design. In terms of capabilities, Heka provided valid supports:
a set of customizable processors for correlation, augmentation
and enrichment. Apache Flume and Nifi are very similar in
terms of conception, but different in terms of implementation:
Nifi was designed with security and auditing in mind, as
well as enhanced control capabilities. Both Flume and Nifi
can be distributed; they implement a multi-staged architecture
common to Heka too. The design principles adopted by both
solutions are based on data serialization and stateful proces-
sors. This require a large amount of computational resources
as well as network round trips. The poor overall throughput
makes them unsuited solutions for the stated problem.

On the other hand, analytics platforms adapted to ETL-like
tasks are Apache Storm, Spark and Flink [18], [19]; all of them
have a common design tenet: a task and resource scheduler dis-
tributes computations on custom processors. The frameworks
provide smart scheduling policies that invoke, at runtime, the
processing logic wrapped into the custom processors. Such a
design brings a few drawbacks: the most important resides
in the need of heavyweight acknowledgement mechanisms or,
complex distributed snapshotting to ensure reliable and stateful
computations. This is achieved at the cost of performance and
throughput [20]. From [21], a significant measure of the mes-
sage rate can be extrapolated from the first benchmark. Storm
(best in class) is able to process approx. 250K messages/s with
a level of parallelism of eight, meaning 31K messages/s per
node with a 22% message loss in case of failure.

Figure 1. Chimera 10K feet view. Architectural sketch capturing the main
tiers, their interactions, as well as relationships.

The hybrid category consists of platforms that try to bring
the best of the two previous categories into sophisticated stacks
of technologies; exemplar of this category is Kafka Streams
[22], [23], a library for stream processing built on top of Kafka
[24], which is unfortunately complex to setup and maintain.
In distributed, Kafka heavily uses ZooKeeper [25] to maintain
the topology of brokers. Topic offset management and parallel
consumers balancing relies on ZooKeeper too; clearly, a Kafka
cluster needs at least a ZooKeeper cluster. However, Kafka
Stream provides on average interesting levels of throughput.

As shown, three categories of platforms exist, and several
authoritative implementations are provided to the community
by as many open-source projects. Unfortunately, none of them
is suitable to the given context and inherent needs.

III. ANATOMY OF CHIMERA

Clearly, a novel approach able to tackle and solve the
weaknesses highlighted by each of the categories described
in Section II is needed. Chimera is an attempt to remedy
those weaknesses by providing a shared nothing processing
architecture, moving the data vertically with the minimum
amount of horizontal coordination and targeting at-least-once
delivery guarantee. The remainder of this section presents
Chimera and its anatomy, intended as the specification of its
key internals.

A. High Level Overview

Figure 1 presents Chimera by its component tiers. Chimera
isolates three layers: i. queuing, ii. processing and iii. persis-
tence. To have Chimera working, we would therefore need at
least three nodes, each of which assigned to one of the three
layers. Each node is focused on a specific task and only excels
at that task. Multiple reasons drive such a decision. First, the
separation of concerns simplifies the overall system. Second,
it was a requirement to have something easy to scale out
(by distributing the tasks into independent nodes, scaling out
only requires the addition of new nodes). Finally, reliability:
avoiding a single point of failure was a key design aspect.
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B. Fundamental Queuing Tier
The fundamental queuing layer plays the central role of

consistently sharding the inbound traffic to the processors.
Consistency is achieved through a cycle-based algorithm,
allowing dynamic join(s) and leave(s) of both queue nodes
and processors. To maintain statelessness of each component,
a coordinator ensures coordination between queue nodes and
processors. Figure 2 gives a high-level view of a queue node.

Let X = {X1, X2, . . . , XN} be the inbound traffic, where
N is the current total number of queue nodes. Xn denotes
the traffic queue node n is responsible to shard. Let Y =
{y11, y12, . . . , y1M , y21, . . . y2M , . . . , yNM}, with M the cur-
rent total number of processors, be the data moving from queue
node to processors. It follows that Xn = {yn1, yn2, . . . , ynM},
where ynm, n ∈ [1, N ] and m ∈ [1,M ], is the traffic directed
at processor m from queue node n. Note that Ym is all the traf-
fic directed at processor m, i.e., Ym = {y1m, y2m, . . . , yNm}.

As suggested above, the sharding operates at two levels.
The first one operates at the queue nodes. Each node n only
accounts for a subset Xn of the inbound data, reducing the
traffic over the network by avoiding sending duplicate data.
Xn is determined using a hash function on the data d (data
here means a sample, a message, or any unit of information
that needs to be processed), i.e., d ∈ Xn ⇐⇒ hash(d)
mod N = n. The second sharding operates at the processor
level, where ∀d ∈ Xn, d ∈ Ym ⇐⇒ hash(d) mod M = m.
See Algorithm 1.

N and M are variables maintained by the coordinator, and
each queue node keeps a local copy of these variables (to adapt
the range of the hash functions). The coordinator updates N
and M whenever a queue node joins/leaves, respectively a
processor joins/leaves. This triggers a watch: the coordinator
sends a notification to all the queue nodes, with the updated
values for N and/or M . However, the local values in each
queue node is not immediately updated, rather it waits for the
end of the current cycle. A cycle can be defined as a batch
of messages. This means that each ynm belongs to a cycle.
Let us denote ynmc

the traffic directed to processor m by
queue node n during cycle c. Under normal circumstances (no
failure), all the traffic directed at processor m during cycle
c (i.e., Ymc

) will be received. Queue node n will advertise
the coordinator that it has completed cycle c (see Algorithm
2). Upon receiving all the data and successfully flushing it,
processor m will also advertise that cycle c has been properly
processed and stored. As soon as all the processors advertise
that they have successfully processed cycle c, the queue nodes
move to cycle c+ 1 and start over.

Let us now consider a scenario with a failure. First, the
failure is detected by the coordinator, which keeps track of
live nodes by the mean of heartbeats. Let us assume the case
of a processor m failing. By detecting it, the coordinator adapts
M = M − 1, and advertises this new value to all the queue
nodes. The latter do not react immediately, but wait for the
end of the current cycle c. At cycle c + 1, the data that has
been lost during cycle c (∀d ∈ Ymc ) are resharded and sent
over again to the new set of live processors. This is possible
because all the data has been persisted by the journaler. This
generalizes easily to more processors failing. See Algorithm
3.

Secondly, let us consider the case where a queue node

Figure 2. Fundamental queuing internals. A ring buffer disciplines the
low-latency interactions between producers and consumers, respectively the

sourcers that pull data from the sources, and the channels and journalers that
perform the I/O for fundamental persistence and forwarding for processing.

fails during cycle c. A similar process occurs: the coordinator
notices that a queue node is not responsive anymore, and
therefore adapts N = N−1, before advertising this new value
to the remaining queue nodes. At cycle c = c+ 1, ∀d ∈ Xnc

are resharded among the set of live queue nodes, and the data
sent over again. Similarly, this generalizes to multiple queue
nodes failing. The case of queue node(s) / processor(s) joining
is trivial and will therefore not be discussed here.

Note that the approach described above ensures that the
data is guaranteed to be delivered at least once. It however does
not ensure exactly-once delivery. Section III-E3 complements
the above explanations.

Byzantine failures [26] are out of scope and will there-
fore not be treated. It is worth emphasizing that introducing
resiliency to such failures would require a stateful protocol,
which is exactly what Chimera avoids. Below, details about
the three main components of the fundamental queuing tier
are given.

1) Ring Buffer: The ring buffer is based on a multi-
producers and multi-consumers scheme. As such, its design
resolves around coping with high concurrency. It is an imple-
mentation of a lock-free circular buffer [27] which is able to
guarantee sub-microsecond operations and, on average, ultra-
high-throughput.

2) Journaler: The journaler is a component dealing with
disk I/O for durable persistence. In general, I/O is a known
bottleneck in high performance applications. To mitigate per-
formance hit, the journaler uses memory-mapped file (MMFs)
[28].

3) Channel: Communications between fundamental queu-
ing and processors is implemented via the channel module,
which is a custom implementation of a push-based client/server
raw bytes asynchronous channel, able to work at line rate. It is
a point to point application link and serves as an unidirectional
pipe (queuing tier to one instance of processor). Despite the
efforts in designing the serialization and deserialization from
scratch, the extraction module in the processor will prove to
be the major bottleneck (refer to Section IV).
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Figure 3. Processor internals. A ring buffer disciplines the interactions
between producers and consumers, respectively the inbound channels

receiving the data samples to process, and the staging and flushing sub-stages
that store the data either for further processing or for durable persistence.

C. Shared-nothing Processing Tier
A processor is a shared-nothing process, able to perform

a set of diversified computations. It is composed of three
major components, which are the extractor, the stager and the
flusher, as depicted on Figure 3. A processor only needs to
advertise itself to the coordinator in order to start receiving
traffic at the next cycle. Being stateless, it allows indefinite
horizontal scaling. Details about the two main components of
the processing tier are given below.

1) Extractor: The extractor module is the component that
asynchronously rebuilds the data received from the queue
nodes into Chimera’s internal model. It is the downstream of
the channel (as per Section III-B3).

2) Staging: The warehouse is the implementation of the
staging area in Figure 3. It is an abstraction of an associative
data structure in which the data is staged for the duration of a
cycle; it is pluggable and has an on-heap and off-heap imple-
mentation. It supports various kinds of stateful processing, i.e.,
computations for which the output is function of a previously
stored computation. As an example, the processor used for
benchmarking Chimera has the inbound data aggregated on-
the-fly for maximum efficiency; at the end of the cycle, all
the data currently sitting in the warehouse gets flushed to the
database. However, partial data is not committed, meaning that
unless all the data from a cycle c is received (i.e., Ymc

), the
warehouse will not flush.

D. Persistence Tier
The persistence tier is a node of the ingestion pipeline that

runs a database. This is the sole task of such kind of nodes.
Chimera makes use of a time series database (TSDB) [29] built
on top of Apache Cassandra. At design time, the choice was
made considering the expected throughput and the possibility
to horizontally scale this tier too.

E. Core Protocols
The focus of this section is on the core protocols, in-

tended as the main algorithms implemented at the fundamental
queuing and processor components; their design targeted the

Algorithm 1: Cyclic ingestion and continuous forward-
ing in the fundamental queuing tier.

Data: queueNodeId, N, M
Result: continuous ingestion and sharding.
while alive do

curr = buffer.next();
n = hash(current) mod N;
if n == queueNodeId then

m = hash(curr) mod M;
send(curr, m);

end
if endOfCycle then

c = c+1;
advertise(queueNodeId, c);

end
end

Algorithm 2: Cyclic reception, processing and flushing.
Data: processorId, data
Result: continuous processing and cyclic flushing.
initialization;
while alive do

extracted = extract(data);
processed = process(extracted);
if to be staged then

stage(processed);
else

flush();
c = c+1;
advertise(processorId, c);

end
end

distributed and shared nothing paradigm: coordination traffic is
backpropagated and produced individually by every processor.
The backpropagation of acknowledgements refers to the com-
mit of the traffic shard emitted by the target processor upon
completion of a flush operations. This commit is addressed to
the coordinator only. To make sense of these protocols, the key
concepts to be taken into consideration are: ingestion cycle and
ingestion group, as per their definitions.

1) Cyclic Operations: The ingestion pipeline works on
ingestion cycles, which are configurable batching units; the
overall functioning is independent of the cycle length, which
may be an adaptive time window or any batch policy, ranging
from a single unit to any number of units fitting the needs,
context and type of data. Algorithm 1 presents the pseudo-
code for the cyclic operations of Chimera on the fundamental
queuing tier, and Algorithm 2 presents the pseudo-code for the
processing tier.

2) On-demand Replay: On-demand replay needs to be
implemented in case of any disruptive events occurring in the
ingestion group, e.g., a failed processor or queue node. In order
to reinforce reliable processing, the shard of data originally
processed by the faulty member needs to be replayed, and this
has to happen on the next ingestion cycle. The design of the
cyclic ingestion with replay mechanism allows to mitigate the
effect of dynamic join and leave: the online readaptation only
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Algorithm 3: Data samples on-demand replay, upon
failures (processor(s) not able to commit the cycle).

Data: cycleOfFailure, queueNodeId, prevM, M,
failedProcessorId

Result: replay traffic according to the missing
processor(s) commit(s).

initialization;
while alive do

data = retrieve(cycleOfFailure);
while data.hasNext() do

current = data.next();
if hash(current) mod N == queueNodeId then

if (hash(current) mod prevM) ==
failedProcessorId then

m = hash(current) mod M;
send(curr, m);

end
end

end
end

happens in the next cycle, without any impact on the actual
one.

Algorithm 3 presents the main flow of operations needed
to make sure that any non committed shard of traffic is first
re-processed consistently, and then properly flushed onto the
storage. Note that this process of replaying can be nested in
case of successive failures. It provides eventual consistency in
the sense that the data will eventually be processed.

3) Dynamic Join/Leave: Any dynamic join(s) and leave(s)
are automatically managed with the group membership and
the distribution protocol. Join means any event related to a
processor/queue node advertising itself to the cluster manager
(or coordinator); instead, leave means any event related to
a processor leaving the ingestion group and stop advertising
itself to the cluster manager. Upon the arrival of a new pro-
cessor, nothing happens immediately. Instead at the beginning
of the next cycle, it is targeted with its shard of traffic;
whenever a processor leaves the cluster (e.g., a failure), a
missing commit for the cycle is detected and the on-demand
replay is triggered to have the shard of traffic re-processed and
eventually persisted by one of the live processors.

IV. EXPERIMENTAL CAMPAIGN

In order to assess Chimera performance with a focus to
validate its design, a test campaign has been carried out. In
this section, the performance figures are presented, notes are
systematically added to give context to the figures and to
share with the reader the observations from the implemented
campaign.

A. Testbench

Performance testing has been conducted on a small cluster
of three bare metal machines, each of which runs on CentOS
v7. Machines were equipped with two CPUs of six cores each,
48 GB of DDR3 and a HDD; they were connected by the mean
of a 1 Gbit switched network.

Figure 4. Graphical representation of the experimental methodology used to
assess the performance of Chimera, tier by tier.

B. Experiments

The synthetic workloads were generated randomly. The
data was formatted to reflect the expected traffic in a pro-
duction environment. For each test scenario, twenty iterations
were run; the results for each iteration were then averaged and
summarized.

Figure 4 presents the testbench organization: probes were
put in points A, B and C to capture relevant performance
figures. As evident, the experiments were carried out with a
strong focus on assessing the performance of each one of the
composing tiers, in terms of inbound and outbound aggregated
traffic.

The processor used for the tests performs a statistical
aggregation of the received data points on per cycle basis;
this was to alleviate the load on the database, which was not
able to keep up with Chimera’s average throughput.

The remainder of this section presents the results with
reference to this methodology.

C. Results

1) Fundamental Queuing Inbound Throughput:

a) Parsing: At the very entrance of any pipeline sits the
parsing submodule, which is currently implemented following
a basic scheme. This is mostly because the parsing logic highly
relates to the kind of data that would be ingested by the system.
As such, parsing optimization can only be carried out when
actual data is pumped into Chimera. Nevertheless, stress testing
has been conducted to assess the performance of a general
purpose parser. The test flow is as follow: synthetic workloads
is created and loaded up in memory, before being pumped
into the parsing module, which in turns pushes its output to
the ring buffer. The results summarized in Table I are fairly
good: a single threaded parsing submodule was able to parse
712K messages per second, on average. Clearly, as soon as the
submodule makes use of multiple threads, the parser was able
to saturate the ring buffer capacity.

b) Ring Buffer: The synthetic workload generator sim-
ulated many different sources pushing messages of 500 byte
(with a slight variance due to randomness) on a multi-threaded
parsing module. In order to push the limits of the actual
implementation, the traffic was entirely loaded in memory and
offloaded to the ring buffer. The results were fair, the ring
buffer was always able to go over 4M data samples ingested
per second; a summary of the results as a function of the input
bulks is provided in 5(a);
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TABLE I. Summary of the experienced throughputs in millions per second. This table provides a quantitative characterization of Chimera as composed by its
two main stages and inherent submodules. Parsing and Extraction were multi-threaded, using a variable pool of cached workers (up to the limit of (N ∗ 2 + 1)
where N was the number of CPUs available). Tests were repeated with a local processor to overcome the 1 Gbit network link saturation problem. The results

involving the network are shown in the light gray shaded rows.

Queuing [M/s] Processing [M/s]

Direction Parsing Ring Buffer Journaler Channel Extraction Staging

Inbound 6 4.3 4.3 0.2 0.2 0.2
Outbound 4.3 4.3 3.7 0.2 0.2 0.2

Inbound 6 4.3 4.3 4.3 0.9 0.9
Outbound 4.3 4.3 3.7 4.2 0.9 0.9

(a) Ring buffer stress test results. Synthetic traffic was generated as
messages of average size 500 Byte.

(b) Journaler stress test results. Synthetic traffic was as per ring buffer.

Figure 5. Performance of the ring buffer and journaler.

c) Journaler: As specified in Section IV, the testbench
machines were equipped with HDDs, clearly the disk was a
bottleneck, which systematically induced backpressure to the
ring buffer. Preliminary tests using the HDD were confirmed
the hypothesis: the maximum I/O throughput possible was
about 115 MByte/s. That was far too slow considering the
performance Chimera strives to achieve. As no machine with
a Solid State Drive (SSD) was available, the testing was carried
out on the temporary file system (tmpfs, which is backed by
the memory) to emulate the performance of an SSD. Running
the same stress tests, a write throughput of around 1.6 GByte/s
has been registered. By the time of writing, the latter is a
number achieved by a good SSD [30], and which is perfectly
in line with ring buffer experienced throughput (approx. 2
GByte/s of brokered traffic data). Figure 5(b) gives a graphical
representation of the results.

2) Fundamental Queuing Outbound Throughput:

a) Channel: Results from channel stress testing are
shown in Figure 6(a). The testbench works on bare metal
machines on a 1 Gbit switched network, which is, as for the
case of the HDD, a considerable bottleneck for Chimera. Over
the network, 220K data points per second were transferred
(approx. 0.9 Gbit/s), maxing out the network bandwidth.
Stress tests were repeated with a local setup, approaching the
same reasoning as per the case of journaler. The results are
reported in Figure 6(b), which demonstrate the ultra high-level
of throughput achievable by the outbound submodule of the
fundamental queuing tier: the channel keeps up with the ring
buffer, being able to push up to 4M data points per second.

3) Processor Inbound Throughput:
a) Channel: The channel is a common component,

which acts as sender on the queuing side, and as receiver
on the processor side. The performance to expect has already
been assessed, so for the inbound throughput of the processor
the focus would be on the warehouse, which is a fundamental
component for stateful processing. Note that processors operate
in a stateless way, meaning that they can join and leave dy-
namically, but, of course, they can perform stateful processing
by staging the data as needed and as by design of the custom
processing logic.

b) Staging Area: Assessing the performance of this
component was critical to shape the expected performance
curve for a typical processor. The configuration under test
made use of an on-heap warehouse (see Section III-C2), which
guarantees a throughput of 3.5M operations per second, as
shown on Figure 7(a). Figure 7(b) shows the result obtained
from a similar test, but under concurrent writes; going off-
heap was proven to be overkilling as further serialization and
deserialization were needed, clearly slowing down the entire
inbound stage of the processor to 440K operations per second.

c) Extractor: This module was proven to be the bot-
tleneck of Chimera. It has to deserialize the byte stream and
unmarshal it into a domain object. The multi-threaded imple-
mentation was able to go up to 0.9M data points rebuilt per
second: a high backpressure was experienced on the channels
pushing data at the line rate, producing high GC overhead on
long runs.

4) Processor Outbound Throughput:
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(a) Channel stress test results. Synthetic traffic was pulled from the
ring buffer and pushed on the network, targeting the designated
processor.

(b) Channel stress test results. Synthetic traffic was pulled from the ring
buffer and pushed on the network, targeting the designated localhost
processor.

Figure 6. Performance of the channel.

(a) Warehouse (i.e., staging area) stress test results. Scenario with
non-concurrent writes.

(b) Warehouse (i.e., staging area) stress test results. Scenario with
concurrent writes.

Figure 7. Performance of the staging area.

a) Flusher: It was very related to the specific aggregat-
ing processor and it was assessed to be approx. 85 MByte/s,
which is reasonable considered the aggregation performed on
the data falling into a batching on the cycle. The characteristic
of this tier may variate with the support used for the storage.

D. Discussion

The test campaign was aimed at pushing the limits of each
single module of the staged architecture. The setup put in
place was single process both for the fundamental queuing
and processor tiers, so the performance figures showed in the
previous sections were referring to such setup.

The experimental campaign has confirmed the ideas around
the design of Chimera. As per Table I, Chimera is a platform
able to handle millions of data samples flowing vertically in
the pipeline, with a basic setup consisting of single queuing
and processing tiers. No test have been performed with scaled
setups (i.e., several queuing components and many processors),
but considered the almost shared nothing architecture targeted
for the processing tier (slowest stage in the pipe having the
bottleneck in the extraction module), a linear scalability is

expected, as well as a linear increase of the overall throughput
as the number of processors grows up.

During the test campaign, resource thrashing phenomenon
was observed [31]. The journaler pushed the write limits of the
HDD, inducing the exhaustion of the kernel direct memory
pages. The HDD was only able to write at a rate of 115
MByte/s, and therefore, during normal runs, the memory gets
filled up within a few seconds, inducing the operating system
into a continuous swapping loop, bringing in and out virtual
memory pages.

Figure 8 presents a plot of specific measurements to
confirm the resource thrashing hypothesis. The tests consisted
in writing over several ingestion cycles a given amount of
Chimera data points to disk, namely one and three millions
per cycle. The case of one million data points per batch shows
resource thrashing after seven cycles: write times to HDD
bump up considerably, the virtual memory stats confirmed
pages being continuously swapped in and out; the case of three
millions data points per batch shows resource thrashing after
only two cycles, which is expected. High response times were
caused by the cost of flushing the data currently in memory to
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Figure 8. Experimented HDD-induced thrashing phenomenon. The I/O
bottleneck put backpressure on the kernel, inducing high thrashing, which

was impacting the overall functioning of the machine.

the slow disk, meanwhile the virtual direct memory was filled
up and swapped in and out by the kernel to create room for
new data, as confirmed in [32].

V. CONCLUSION

Chimera is a prototype solution implementing the proposed
ingestion paradigm, which is able to distribute the queuing
(intended as traffic persistence and replay) and processing
tiers into a vertical pipeline, horizontally scaled, and shar-
ing nothing among the processors (control flow is vertical,
from queuing to processors, and from processors to queuing).
The innovative distribution protocols allow to implement the
backpropagated incremental acknowledgement, which is a key
aspect for the delivery guarantee of the overall infrastructure:
in case of failure, a targeted replay can redistribute the data
on the live processors and any newly joining one(s). This
same mechanism allows to redistribute the load, in case of
backpressure, on newly joining members with a structured
approach: the redistribution is implemented on a cyclic basis,
meaning that a newly joined processor, once bootstrapped, start
receiving traffic only during the next useful ingestion cycle.
This innovative approach solves the problems highlighted with
the solutions currently adopted in the industry, keeping the
level of complexity of the overall infrastructure very low: the
decoupled nature of the queuing and processing tiers, as well
as the backpropagation mechanism are as many design tenets
that enable easy distribution and guarantee reliability despite
the very high level of overall throughput.

From a performance standpoint, experimental evidences
demonstrate that Chimera is able to work at line rate, maxing
out the bandwidth. The queuing tier outperforms the process-
ing tier: on average a far less number of CPU cycles is needed
to first transform and second persist the inbound traffic, and
this is clear if compared to the kind of processing described
as example from the experimental campaign.

A. Lessons Learned
The journey to design, implement and validate experimen-

tally the platform was long and arduous. A few lessons have
been learned by engineering for low-latency (to strive for the
best from the single process on the single node) and distribut-
ing by sharing almost nothing (coordinate the computations on
distributed nodes, by clearly separating the tasks and trusting
deterministic load sharding). First lesson might be summarized
as: serialization is a key aspect in I/O (disk and network), a
slow serialization framework can compromise the throughput

of an entire infrastructure. Second lesson might summarized
as:memory allocation and deallocation are the evil in managed
languages, when operating at line rate, the backpressure from
the automated garbage collector can jeopardize the perfor-
mances, or worse, kill nodes (in the worst case, a process
crash can be induced). Third lesson might be summarized
as: achieving shared nothing architecture is a chimera (i.e.,
something unique) by itself, meaning that it looks almost
impossible to let machines collaborate/cooperate without any
sort of synchronization/snapshotting. Forth and last lesson
might be summarized as: tiering vertically allows to scale but
it inevitably introduces some coupling, this was experienced
with the backpropagation and the replay mechanism in the
attempt to have ensure stateless and reliable processors.

B. Future Work
The first step into improving Chimera would be to work on

a better serialization framework. Indeed, as shown in the test
campaign, bottlenecks were found whenever data serialization
comes into play. Existing open-source frameworks are avail-
able, such as Kryo [33] for Java. Secondly, in order to further
assess the performance of Chimera, it would be necessary to
run a testbench where multiple queue nodes and processors
are live. Indeed, the test campaign has only been focused on
one queue node and one processor. This would also allow to
further assess Chimera’s resiliency to failures, and recovery
mechanisms. Indeed, Byzantine failures have been excluded
from the scope of this work, but resiliency with respect to
such failures are necessary to enforce robustness and security.
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