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Abstract—Formal methods, such as Event-B provide a means 
for system-level specification and verification supported by 
correctness proofs. However, the formal Event-B specification 
of a system requires background knowledge, which prevents a 
fruitful communication between the developer and the 
customer. In addition, scalability and reusability are limiting 
factors in using formal methods, such as Event-B in complex 
system development. This paper presents an approach to 
facilitate scalability of formal development in Event-B. Our 
aim is to build a formal library of parameterized visual 
components that can be reused whenever needed. Each 
component is formally developed and proved correct by 
utilizing the advantages of Event-B. Furthermore, each 
component has a unique graphical representation that eases 
the rigorous development by applying the “drag-and-drop” 
approach and enhances the communication between a 
developer and a customer. We present a subset of components 
from the digital hydraulics domain and outline the 
compositionality mechanism. 

Keywords-Components Library; Visual Design; Event-B; 
Formal Components. 

I.  INTRODUCTION 
Event-B [1] is a formal method that allows designers to 

build systems in such a manner that the correctness of the 
development process is supported by mathematical proofs. 
The specification (or the model) of a system in Event-B 
captures the functional behaviour, as well as the essential 
properties that must hold (invariants). The development 
process proceeds in a top-down fashion starting from an 
abstract (usually non-deterministic) specification. This 
specification is then stepwise refined by adding the details 
about the system until the implementable level is reached. 
The process of transforming an abstract specification into an 
implementable one via a number of correctness preserving 
steps is known as refinement [2]. It helps the designers to 
deal with the system requirements in a stepwise manner, 
which makes the correctness proof along the development 
easier. However, as more details are added to the system 
specification, it becomes complex and hard to handle. This 
limits the scalability and reusability of this approach. 
Moreover, as more details are added to the specification 
through refinement, it is harder to convince the stake holders 
about the fact that the system specification embodies all the 
necessary requirements. 

This paper proposes an approach to visual system design 
whose aim is to enhance scalability and reusability, as well 
as to facilitate the communication between a developer and a 
customer. In addition, the visual design is aimed at making 
the rigorous development process easier. The idea behind our 
approach is to build a formal library of parameterized visual 
components. Each component is formally developed and 
proved correct by utilizing the Event-B engine. Moreover, 
each component is tied to a unique graphical representation. 
The development process then proceeds according to the 
“drag-and-drop” approach, where the developer picks the 
necessary components from the library and instantiates them. 
Since the components are parameterized and are in the 
library, they can be reused in various application domains 
depending on the requirements. The specification of a system 
is then twofold: a visual model whose correctness is 
supported by the underlying Event-B language. We present a 
pattern for the development of formal components and create 
a subset of components from the digital hydraulics domain. 
We also outline the compositionality mechanism. 

The paper remainder is as follows. Section II outlines the 
Event-B notation and outlines proof obligations that provide 
the correctness proof. Section III presents the formal library 
of parameterized visual components. Section IV outlines the 
compositionality mechanism. Section V gives an overview 
of the existing approaches. Finally, Section VI concludes the 
paper and summarizes the directions of our future work. 

II. PRELIMINARIES: EVENT-B 
Event-B [1] is a state-based formalism that offers several 

advantages. First, it allows us to build system level models. 
Second, the development follows the top-down refinement 
approach, where each step is shown correct by mathematical 
proofs. Finally, it has a mature tool support extensible with 
plug-ins, namely the Rodin platform [3]. Currently, Event-B 
is limited to modelling discrete time, but the work on its 
extension to continuous models is on-going [4]. 

An Event-B specification consists of contexts and 
machines. A context can be extended by another context 
whereas a machine can be refined by another machine. 
Moreover, a machine can refer to the contents of the context 
via “sees” (see Figure 1). 

A context specifies static structures, such as data types in 
terms of sets, constants and properties given as a set of 
axioms. One can also postulate and prove theorems that ease 
proving effort during the model development. 
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Figure 1.  Event-B contexts, machines and relationship [1]. 

A machine models the behaviour of a system. The 
machine includes state variables, theorems, invariants and 
events. The invariants represent constraining predicates that 
define types of the state variables, as well as essential 
properties of the system. The overall system invariant is 
defined as the conjunction of these predicates. An event 
describes a transition from a state to a state. The syntax of 
the event is as follows: 

E = ANY x WHERE g THEN a END 

where x is a list of event local variables. The guard g stands 
for a conjunction of predicates over the state variables and 
the local variables. The action a describes a collection of 
assignments to the state variables. 

We can observe that an event models a guarded 
transition. When the guard g holds, the transition can take 
place. In case several guards hold simultaneously, any of the 
enabled transitions can be chosen for execution non-
deterministically. If none of the guards holds, the system 
terminates or deadlocks. Sometimes, the system should never 
terminate, i.e., it has to be deadlock free. To achieve this, one 
needs to postulate a machine theorem that requires the 
disjunction of the guards of all the events to hold.  

When a transition takes place, the action a is performed. 
The action a is a parallel composition (||) of the assignments 
to the state variables executed simultaneously. An 
assignment can be either deterministic or non-deterministic. 
The deterministic assignment is defined as v := E(w), where 
v is a list of state variables, E is a list of expressions over 
some set of state variables w (w might include v). The non-
deterministic assignment that we use in this paper is 
specified as v :∈ Q, where Q is a set of possible values. 

These denotations allow for describing semantics of 
Event-B in terms of before-after predicates (BA) [5]. 
Essentially, a transition is a BA that establishes a relationship 
between the model state before (v) and after (v’) the 
execution of an event. This enables one to prove the model 
correctness by checking if the events preserve the invariants 
(Inv∧ gE ⇒ [BAE]Inv) and are feasible to execute in case the 
event action is non-deterministic (Inv ∧ gE ⇒ ∃ v’ . BAE). 

The refinement relation between the more abstract and 
more concrete specifications is also corroborated by the 
correctness proofs. Particularly, the more concrete events 
have to preserve the functionality of their abstract counter 
parts [6]. This paper however does not focus on this aspect. 

The Rodin platform [3], tool support for Event-B, 
automatically generates and attempts to discharge (prove) the 
necessary proof obligations (POs). The best practices 
encompass the model development in such a manner that 90-
95% of the POs are discharged automatically. Nonetheless, 

the tool sometimes requires user assistance provided via the 
interactive prover. 

III. LIBRARY OF FORMAL COMPONENTS 
Our idea is to create a formal library of visual 

components. Each component is developed formally within 
the Event-B formal framework and is tied to a unique 
graphical symbol. Moreover, the components in the library 
have to be parameterized whenever possible in order to be 
reusable during the development process. The system 
specification/development is then a process of picking, 
instantiating and connecting the needed components, so that 
the system is developed in the “drag-and-drop” fashion. 

At present, the library contains components from the 
digital hydraulics and railway domains. The library also 
includes a generic component used to create a placeholder to 
be replaced by a specific one. Although our library consists 
of generic components parameterized for reuse, one can see 
that our approach is related to the work on domain specific 
languages, where the language is aimed at a specific problem 
domain [7][8]. Despite this, the formal language behind the 
components is Event-B and not domain specific. 

Next, we present a pattern for the component 
development and overview some components from the 
digital hydraulics domain, namely an electro-valve and a 
cylinder. We focus on the crucial parts of the models whose 
details, as well as more examples can be found in our TR [9]. 

A. Component Functionality 
We start by describing the generic functionality of a 

component. A component is a reactive device that updates its 
outputs according to the input stimuli. The component 
typically consists of two parts: an interface and a body 
(Figure 2, a). The interface is comprised of the set of inputs 
and outputs that are seen by the outside world whilst the 
body performs the component functions. 

The operation of the component has to be deterministic in 
order to precisely determine the output result. That is, the 
same input stimuli must generate the same output results and 
the order of operations to compute these outputs according to 
the input stimuli is known a priori. To achieve this, we use a 
common pattern for control systems [10] in which the 
component first reads the inputs (environment) and then 
produces the outputs (control). In other words, a component 
has at least two indefinitely alternating modes: read of the 
inputs and production of the outputs (Figure 2, b)). Thus, the 
non-termination (deadlock freedom) is the main property of 
a component. 

We model components as Event-B machines that contain 
shared variables and rely on the principle of shared variables 
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a) b) 

Figure 2.  A component pattern: a) component structure, b) automaton. 
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Figure 3.  A symbolic representation of an electro-valve with the interface. 

composition within Event-B when composing the 
components [11][12]. The variables that are local to a 
machine are considered private, while the shared variables 
are shared between machines and provide communication 
facilities in form of inputs and outputs. The inputs and the 
outputs of a component also form the interface of the 
component and are distinguished by the suffixes _I and _O 
(e.g., in Event-B we could have an input variable in_I and an 
output variable out_O). 

B. Hydraulic component: an electro-valve 
As an example of a parameterized visual component we 

develop and add to the library an electro-valve. Its visual 
symbol is shown in Figure 3 whereas the corresponding 
formal model is illustrated by Figure 4 and Figure 5. 

The electro-valve is a physical device that transfers a 
flow of liquid from one port to another. It contains a plunger 
controlled by an electrical signal. The application of a 
positive control signal moves the plunger, so as to open the 
valve, whilst the negative signal closes it. If no signal is 
present on the control input, the plunger and therefore the 
valve keep the current position. Moreover, the valve opens 
and closes with some rate due to physical laws. The 
specification of a valve then has the following parameters 
(context Valve_parameters in Figure 4): the minimum 
(valve_flow_min) and the maximum (valve_flow_max) flow 
the valve can let trough and the rate (valve_rate) with which 
the valve opens and closes. The rate cannot be greater than 
the difference between the maximum and the minimum flow 
(valve_rate ≤ valve_flow_max – valve_flow_min). Assuming 
that when the valve is closed, so that the outlet is fully closed 
as well (no flow can come through), the minimum flow 
equals to zero and the rate cannot be greater than the 
maximum. Moreover, if the rate equals to the maximum, the 
valve is simply open or closed. The minimum flow, the 
maximum flow and the rate parameters, as well as the set of 
control signals (valve_CONTROL) are all captured by 
constants in the context Valve_parameters (Figure 4). 

The interface of a valve consists of two inputs and one 
output, namely the control signal (valve_control_I), the input 

 
context Valve_parameters 
constants 
  valve_flow_min   valve_flow_max   valve_rate   valve_CONTROL 
axioms 
  valve_flow_min = 0 ∧  valve_flow_max ∈  ℕ1 ∧ 
  valve_CONTROL = {−1,0,1} ∧ 
  valve_rate ∈  ℕ1 ∧ valve_rate ≤ valve_flow_max – valve_flow_min 
end 

Figure 4.  Parameters of a generic valve. 

port (valve_flow_I) and the output port (valve_flow_O), 
respectively (see Figure 5). Additionally, the valve has a 
variable that shows the current position of the plunger 
(valve_position), as well as the mode variable (valve_mode) 
that models the deterministic order of the transitions between 
the inputs read and outputs production states. 

The valve has the property that the flow from the output 
port cannot be greater than the flow on the input port 
(valve_mode = 0 ⇒ valve_flow_O ≤ valve_flow_I). Moreover, 
the position of the plunge regulates the output flow, so that 
the output flow cannot be stronger than allowed 
(valve_flow_O ≤ valve_position). Additionally, the output 
flow always has to be updated when the new inputs are read 
(i.e., the non-termination property as it was stated earlier). 
The former properties are captured as invariants. The latter is 
stated as a deadlock freedom theorem (see in Figure 5, 

 
machine Valve_Behaviour sees Valve_parameters  
variables   valve_control_I   valve_flow_I   valve_flow_O 
   valve_mode   valve_position  
invariants 
  valve_control_I ∈ valve_CONTROL ∧  valve_mode ∈  0..1 ∧  
  valve_flow_I ∈ valve_flow_min..valve_flow_max ∧  
  valve_flow_O ∈ valve_flow_min..valve_flow_max ∧ 
  valve_position ∈ valve_flow_min..valve_flow_max ∧ 
// The output flow cannot be stronger than allowed nor input  
  valve_flow_O ≤ valve_position ∧ 
  (valve_mode = 0 ⇒ valve_flow_O ≤ valve_flow_I) 
// The property of non-termination 
theorem (valve_mode = 0 ∨  
  (valve_mode = 1 ∧ valve_control_I = 1 ∧ 
    valve_position + valve_rate ≤ valve_flow_max) ∨  
  (valve_mode = 1 ∧ valve_control_I = −1 ∧ 
    valve_position − valve_rate ≥ valve_flow_min) ∨  
  (valve_mode = 1 ∧ (valve_control_I = 0 ∨  
    (valve_control_I = 1 ∧  
      valve_position + valve_rate > valve_flow_max) ∨  
    (valve_control_I = −1 ∧  
      valve_position − valve_rate < valve_flow_min)))) 
events  ... 
 event valve_environment  
  where   valve_mode = 0 
  then   valve_mode := 1 || valve_control_I :∈  valve_CONTROL || 
     valve_flow_I :∈  valve_flow_min..valve_flow_max 
 end 
 
  event valve_opening 
  any valve_flow_O_new  
   where   valve_control_I = 1 ∧  valve_mode = 1 ∧  
    (valve_position + valve_rate ≤ valve_flow_max) ∧ 
    (valve_position + valve_rate < valve_flow_I ⇒ 
             valve_flow_O_new = valve_position+valve_rate) ∧ 
    (valve_position + valve_rate ≥ valve_flow_I ⇒  
            valve_flow_O_new = valve_flow_I) 
  then   valve_flow_O := valve_flow_O_new || valve_mode := 0 ||  
    valve_position := valve_position + valve_rate 
  end 
end 

Figure 5.  The excerpt of the machine of a generic valve. 
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Figure 6.  Visual representation of a cylinder. 

theorem (valve_mode = 0 ∨ ...), which evaluates to true and 
supports the fact that the component always works. 

The functionality of the valve includes: reading the 
control signal and the input flow, opening the valve, closing 
the valve and keeping the previous position (i.e., neither 
opening nor closing). Initially, the valve is idle. There might 
be some input flow, but the valve is closed. Hence, there is 
no output flow. The mode is set to reading the new inputs. 

In order for a valve to produce the intended outputs, the 
valve first needs to read the inputs. This is captured by an 
environmental event that updates the inputs of the model. 
We assume that all inputs of the valve are updated 
simultaneously as shown in event valve_environment in 
Figure 5. The input flow is read non-deterministically 
bounded to the parameters of the valve. 

Once the inputs are read (valve_mode = 1), the valve can 
perform the following operations: open with some rate, close 
with the same rate or keep the current position. These 
operations are modelled using the three events shown below. 

The valve opening event (event valve_opening) can 
clearly take place when the control signal (the command) is 
to open the valve (valve_control_I = 1). However, the valve 
cannot open more than allowed, that is, it cannot exceed the 
maximum (valve_position + valve_rate ≤ valve_flow_max). 
When the valve is opening, the output flow increases 
according to the rate and the current position of the plunge 
(valve_position + valve_rate < valve_flow_I ⇒ 
valve_flow_O_new = valve_position + valve_rate). Notice 
however that if the diameter of the valve allows a flow 
stronger than the input flow to come through, the output flow 
is simply the same as the input one (valve_position + 
valve_rate ≥ valve_flow_I ⇒ valve_flow_O_new = valve_flow_I). 

The valve closing event is specified similarly considering 
the fact that it is opposite to the opening of the valve. It can 
take place when the command is to close the valve 
(valve_control_I = −1) and proceeds as long as the valve is 
not completely closed (valve_position − valve_rate ≥ 
valve_flow_min). 
 

context Cylinder_parameters 
constants  
  cylinder_input_flow_min   cylinder_input_flow_max  
  cylinder_cap_pos   cylinder_head_pos 
axioms 
  cylinder_input_flow_min = 0 ∧ cylinder_cap_pos = 0 ∧ 
  cylinder_input_flow_max ∈ ℕ1 ∧ cylinder_head_pos ∈ ℕ1 
end 

Figure 7.  Parameters of a cylinder. 

Finally, if the command is neither open nor closed 
(valve_control_I = 0) or the valve is fully closed or open, it 
keeps its position. In other words, the valve is idle or 
stopped. Therefore, the output flow remains unchanged with 
respect to the current flow (valve_flow_I ≥ valve_flow_O ⇒ 
valve_flow_O_new = valve_flow_O) or the input flow 
(valve_flow_I < valve_flow_O ⇒ valve_flow_O_new = 
valve_flow_I). 

The visual symbol and the specification of the electro-
valve component extend the formal library of visual 
components. The specification was modelled and proved in 
the Rodin platform. The tool generated 24 POs out of which 
20 were proved automatically. 

C. Hydraulic component: a cylinder 
Another example of a hydraulic component for the 

component library is a cylinder. The cylinder reacts on liquid 
flows only and does not have any electrical inputs. 
Nonetheless, it is a reactive device whose outputs are 
updated according to the input stimuli. The visual symbol of 
a cylinder is shown in Figure 6. 

The cylinder contains a piston that can move forward and 
backward in the cylinder body depending on the differences 
between the liquid flows. The liquid flows via the cap and 
the head into the cylinder and is transformed into piston 
movement. The piston moves forward (extends) if the 
pressure of the flow coming into the cap is greater than the 
liquid flow coming into the head. In the opposite case, the 
piston moves backward. Clearly, if the pressure of both input 
flows is the same, the piston keeps the position. Due to 
physical laws, the piston moves with some rate. This rate is 
also determined by the difference in the input flows. 

The cylinder specification has four parameters (Figure 7). 
Two of them define the minimum (cylinder_input_flow_min) 
and maximum (cylinder_input_flow_max) input flow of the 
liquid. We assume that both inputs are of the same size, so 
that the motion of the piston is proper. The other two 
parameters specify the limits of the piston motion 
(cylinder_head_pos and cylinder_cap_pos). The difference 
between cylinder_head_pos and cylinder_cap_pos sets the 
length that the piston can move. 

The interface of the cylinder has two inputs (flows) 
(cylinder_flow_cap_I and cylinder_flow_head_I), as well as one 
output cylinder_piston_position_O (see Figure 8). The inputs 
allow the liquid to flow into the body of the cylinder via the 
cap and the head. The output of the cylinder is the piston that 
moves according to the difference in the input flows. 
Moreover, there is a variable that specifies the modes of the 
cylinder component, cylinder_mode (Figure 8). The main 
property of the cylinder is the deadlock freedom theorem. 
The theorem evaluates to true, which supports the fact that 
the cylinder is non-terminating. 

Initially, there are no input flows, the piston is at some 
position within the cylinder body and the mode is set to read 
the inputs. In order for the piston to move, both of the inputs 
have to be updated (similar to the valve component). 

There are three possible reactions to the input flows. The 
piston can move forward (extend), if the flow coming into 
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machine Cylinder_behaviour sees Cylinder_parameters  
variables  
  cylinder_flow_cap_I 
   cylinder_flow_head_I  
  cylinder_piston_position_O  
  cylinder_mode  
invariants 
  // Current position of the piston in the cylinder 
  cylinder_piston_position_O ∈  
        cylinder_cap_pos..cylinder_head_pos ∧ 
  // Input to move the piston to the right 
  cylinder_flow_cap_I ∈  
        cylinder_input_flow_min..cylinder_input_flow_max ∧ 
  // Input to move the piston to the left 
  cylinder_flow_head_I ∈  
        cylinder_input_flow_min..cylinder_input_flow_max ∧ 
  cylinder_mode ∈  0..1 ∧ 
  // Deadlock freedom – non-termination 
theorem cylinder_mode = 0 ∨  
    (cylinder_mode = 1 ∧ 
     cylinder_flow_cap_I > cylinder_flow_head_I ∧   
     cylinder_flow_cap_I > cylinder_input_flow_min ∧  
     cylinder_piston_position_O + cylinder_flow_cap_I – 
     cylinder_flow_head_I ≤ cylinder_head_pos) ∨ 
     …  // Guards of other events 

Figure 8.  Variables and properties of a cylinder. 

the cap is larger than the flow coming into the head 
(cylinder_flow_cap_I > cylinder_flow_head_I). Moreover, the 
flow must be present on the cap input (cylinder_flow_cap_I > 
cylinder_input_flow_min) and there has to be space for the 
piston to extend (cylinder_piston_position_O + cylinder_rate ≤ 
cylinder_head_pos). If these conditions are met, the piston 
extends with a rate equal to the difference between the input 
flows (Figure 9). The piston retracting is modelled in a 
corresponding manner. 

Finally, if the flows are the same (cylinder_flow_head_I = 
cylinder_flow_cap_I) or there is no space for the piston to 
extend (cylinder_piston_position_O + cylinder_rate > 
cylinder_head_pos) nor to retract (cylinder_piston_position_O 
+ cylinder_rate < cylinder_cap_pos), the piston keeps its 
position. In other words, the piston is stopped (Figure 10. ). 
The complete formal model of a cylinder can be found in [9]. 

 
event cylinder_extending  
  any cylinder_rate  
  where 
    cylinder_rate = cylinder_flow_cap_I − cylinder_flow_head_I ∧  
    cylinder_mode = 1 ∧  
    cylinder_flow_cap_I > cylinder_flow_head_I ∧   
    cylinder_flow_cap_I > cylinder_input_flow_min ∧  
    cylinder_piston_position_O + cylinder_rate ≤  

     cylinder_head_pos 
    then 
      cylinder_mode := 0 || cylinder_piston_position_O :=  
        cylinder_piston_position_O + cylinder_rate 
  end 

Figure 9.  Forward motion of the piston (extend). 

event cylinder_stop    
    any cylinder_rate  
    where 
      cylinder_rate = cylinder_flow_cap_I−cylinder_flow_head_I ∧  
      cylinder_mode = 1 ∧ 
      (cylinder_flow_head_I = cylinder_flow_cap_I ∨ 
       cylinder_piston_position_O + cylinder_rate >  
         cylinder_head_pos ∨ 
       cylinder_piston_position_O + cylinder_rate < 
         cylinder_cap_pos) 
    then   cylinder_mode := 0 
  end 

Figure 10.  Keep the position of the piston (stop). 

IV. RIGOROUS DESIGN USING THE LIBRARY 
Once the components are developed and added to the 

library, one can (re)use/instantiate them while designing a 
system. The idea behind rigorous design with the library is 
the use of the “drag-and-drop” approach. Specifically, the 
developer picks and instantiates the necessary components 
by providing specific values for the parameters, a component 
name and adds them to the system model (Figure 11). 

A. Composition of decomposed machines 
The components can be seen as sub-unit machines which 

can be composed via parallel composition (||) [11][13]. For 
example, the machines A and B are composed into the 
(system) machine A || B, where the variables, invariants and 
events of A and B are merged. Overlapping variable and 
event names are renamed before composition. Note that 
composition is associative and commutative, but it cannot be 
reversed. 

A way of refining a system is to superpose a new feature 
on its existing model (specification). The existing model is 
left unchanged while new variables and events modifying 
them are added to the model. The superposed feature and the 
existing model can be seen as components that can be 
composed. All these components in form of features or 
existing models are here considered to form library 
components. In addition, the composed models can form 
new library components. 

The library components to be composed are connected 
via a connector. A connector is represented as a shared 
variable of a system machine whose mission is to promote 
the value of the output from one component to the input of 
the other one. Figure 12 illustrates a generic composition of 
two machines Component_n and Component_m into a single 
system machine System_M. The system model embodies the 
parameters of the components, their interfaces (environment 
events) and the connections between them. The functional 
events of the components are stored in separate machines 
and are included in the system. 

B. Composition of library components 
To show the connectivity mechanism, we will use a part 

of the Landing Gear (LG) case study whose details and 
formal model are described in [14]. Here, we will only show 
the connectivity of the valve and cylinder components as  
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Figure 11.  “Drag-and-drop” approach for visual system design in Event-B. 

context SystemC 
constants   SYSTEM_CONTROL 
  // Component n constants 
  // Component m constants 
axioms   SYSTEM_CONTROL = {0,1,2} 
  // Component n axioms 
  // Component m axioms 
end 
machine System_M sees System_C 
includes   Component_n   Component_m 
variables   Control   connection_Comp_n_Comp_m 
  // Shared variables of Component n 
  // Shared variables of Component m  
invariants   Control ∈  SYSTEM_CONTROL ∧ 
  connection_Comp_n_Comp_m ∈ <COMPONENT_n_OUTPUT_TYPE> 
  // Component n invariants 
  // Component m invariants 
variant   max(SYSTEM_CONTROL) – Control 
events 
  event INITIALISATION extends INITIALISATION then 
      Control := 0 || connection_Comp_n_Comp_m := <INIT_VALUE> 
  end 
 
  event Comp_n_environment refines Comp_n_environment  
    where   … // Guards derived from component n 
      ∧  Control = 0 
    then   … // Actions derived from component n 
      || Control := 1 
  end 
 
  convergent event system_connection_Component_i_Component_k 
    where   Control = 1 ∧ <Component_n_mode> = 0 
       // Ensure that the component n has updated its outputs 
    then   Control := 2 ||  
      connection_Comp_n_Comp_m:= <Comp_n_Out> 
  end 
 
  event Comp_m_environment refines Comp_m_environment 
    where   … // Guards derived from the component m 
      ∧ Control = 2 
    then   … // Actions derived from the component m 
      || Control := 0 
  end 
end 

Figure 12.  Composition of Component n and Component m machines. 

visually depicted in Figure 11. More details about various 
components, connectivity mechanisms and refinement 
patterns, can be found in the technical reports [9][14]. 

The main purpose of the LG system is to extend the 
landing wheels (connected to the hydraulic cylinders) when 
an airplane is to be landed and to retract them during the 
flight. The extension/retraction of the cylinders is controlled 
by the valves. Thus, the valves are connected to the cylinders 
sequentially (see Figure 11, visual layer). 

The formal layer of the visual representation of Figure 11 
is shown in Figure 13 and Figure 14. The context machine 
contains the constants and axioms of the valve and the 
cylinder. The theorem supports the connectivity between the 
components. It shows that the output of the source 
component is compatible with the input of the target 
component. Generally, the maximum diameter of the valve 
output should be the same as the maximum input flow of the 
cylinder connected to it. 

The system machine LG_System_M includes the library 
components valve (Valve_Behaviour) and cylinder 
(Cylinder_Behaviour) (see Figure 14). The connectivity 
between these components is represented by the variable 
connection_Valve_Cylinder_head. When the valve updates its 

 
context LG_System_C 
constants   CONTROL__HEAD 
  valve_0_flow_min   valve_0_flow_max   valve_0_CONTROL 
  valve_0_rate   cylinder_0_cap_pos   cylinder_0_input_flow_min 
  cylinder_0_input_flow_max   cylinder_0_head_pos    
axioms 
  // valve_0 
  valve_0_flow_min = 0 ∧  valve_0_flow_max = 10 ∧  
  valve_0_CONTROL = {−1,0,1} ∧ valve_0_rate = valve_0_flow_max ∧ 
  // cylinder_0   
  cylinder_0_input_flow_min = 0 ∧ cylinder_0_input_flow_max=10 ∧ 
  cylinder_0_cap_pos = 0 ∧ cylinder_0_head_pos ∈ ℕ1 ∧ 
   // system_1   
   CONTROL_HEAD = {0,1,2} 
  theorem // system_1   
    cylinder_0_input_flow_max = valve_0_flow_max 
end 

Figure 13.  The parameters of the LG system: a valve, a cylinder and 
system parameters. 
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output value (i.e., when its mode is 0), this value is then used 
to update the value of the connector 
(connection_valve_cylinder_head := valve_0_flow_O in 
convergent event Connection_Valve_Cylinder). This value is 
in turn used as the input to the cylinder 
(cylinder_0_flow_head_I := connection_valve_cylinder_head in 
event cylinder_0_environment). Hence, the overall scheme is 
as follows. First, the valve inputs are updated, so that the 
valve component can update its output. Then, the value of 
the connector is updated according to the valve output. 
Finally, the inputs of the cylinder are updated according to 
the value of the connector. 

Several connectors can be added in one refinement step 
following the same pattern. The proof of the connectivity 
mechanism relies on the superposition refinement rule, 
where the machine of the composed system refines the 
machine of each component.  
 
machine LG_System_M sees LG_System_C 
includes   Valve_Behaviour   Cylinder_Behaviour 
variables   Control_head   connection_valve_cylinder_head 
  valve_0_control_I    valve_0_flow_I    valve_0_flow_O    
  valve_0_mode   valve_0_position  
  cylinder_0_piston_position_O   cylinder_0_flow_cap_I 
   cylinder_0_flow_head_I   cylinder_0_mode  
invariants 
  … // Valve_0 type definitions and main invariants 
  … // Cylinder_0 type definitions and main invariants 
  control_head ∈  CONTROL_HEAD  ∧ 
  connection_Valve_Cylinder_head ∈ 
    cylinder_0_input_flow_min .. cylinder_0_input_flow_max 
variant   max(CONTROL_HEAD) - control_head 
 
events 
  ... 
  event valve_0_environment refines valve_0_environment  
    where 
      mode = 0 ∧ control_head = 0 
    then 
      valve_0_mode := 1 || valve_0_control_I :∈ valve_0_CONTROL || 
      valve_0_flow_I := <INPUT> || control_head := 1 
  end 
 
  convergent event Connection_Valve_Cylinder  
    where 
      valve_0_mode = 0 ∧ control_head = 1 
    then 
      control_head := 2 ||  
      connection_valve_cylinder_head := valve_0_flow_O 
  end 
 
  event cylinder_0_environment 
    where 
      cylinder_0_mode = 0 ∧ control_head = 2 
    then 
      cylinder_0_mode := 1 || cylinder_0_flow_cap_I := <NEW_VALUE> 
    ||  cylinder_0_flow_head_I := connection_valve_cylinder_head 
    ||  control_head := 2 
  end 
end 

Figure 14.  An instantiated valve connected with an instantiated cylinder. 

V. RELATED WORK 
BMotionStudio has been proposed as an approach to 

visual simulation of the Event-B models [15][16]. The idea 
behind BMotionStudio is that the designer creates a domain 
specific image and links it to the model using a “gluing” 
code written in JavaScript. The simulation is based on the 
ProB animator and model checker [17], so that whenever the 
model is executed the corresponding graphical element 
reacts is updated. The BMotionStudio tool also supports 
interaction with a user – the user can provide an input via 
visual elements instead of manipulating the model directly. 

In contrast to the BMotionStudio approach, we aim for 
creating visual descriptions of models via a library of 
predefined components that have a formal, as well as a visual 
representation. The development of the specification is then 
a process of the instantiation of the necessary components 
and the connection of them into a system. That is, the 
developer does not need to redraw the graphical 
representation of the components, but simply to reuse them. 
Eventually, the designer obtains a graphical representation of 
the system whereas its specification is in fact written in 
Event-B and supported by correctness proofs. Certainly, our 
approach can be complemented by BMotionStudio in order 
to obtain visualisation of the model execution. 

Snook and Butler [18] proposed an approach to merge 
visual UML [19] with B [20]. The latter is supposed to give a 
formal precise semantics to the former at the same time as 
the former is aimed at reducing the effort in training to 
overcome the mathematical barrier. This approach has then 
been extended to Event-B and is called iUML-B [21]. The 
authors define semantics of UML by translating it to Event-
B. The use of the UML-B profile provides specialisation of 
UML entities to support refinement. The authors also present 
tools that generate an Event-B model from UML. 

A component based reuse methodology for Event-B was 
presented by Edmunds et al. [22], where the composition is 
based on the shared events principle. Their idea is to have a 
library of Event-B components where the component 
instances and the relationships between them are represented 
diagrammatically using an approach based on iUML-B. 

Instead of using UML as a visualisation tool as in both 
the above cases, we aim to create a formal library of 
parameterised components, each of which has its own 
graphical representation. The system specification is then a 
visual model that represents a composition of the instantiated 
versions of these components. Nevertheless, we target 
automated generation of the necessary data structures and 
Event-B elements whenever our approach is applied. 

An approach to a component-based formal design within 
Event-B has been proposed by Ostroumov, Tsiopoulos, 
Plosila and Sere [23]. The aim of this work is the generation 
of a structural VHDL [24] description from a formal Event-B 
model. The authors present a one-to-one mapping between 
formal functions defined in an Event-B context and VHDL 
library components. The authors rely on an additional 
refinement step where regular operations are replaced with 
function calls. This allows for automated generation of 
structural VHDL descriptions. 
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Instead of focusing on code generation, we propose an 
approach to systems development in Event-B in a visual 
manner. This approach is not limited to VHDL descriptions 
and allows the designers to utilize various components from 
different application domains. Our goal is to create a formal 
library of parameterized Event-B specifications that capture 
the generic behaviour of these components. Our approach is 
to facilitate component reuse, where the developers can 
specify systems in a “drag-and-drop” manner. 

VI. CONCLUSION AND FUTURE WORK 
We have proposed an approach to the development of 

rigorous components augmented with unique graphical 
symbols. It is based on the pattern that allows seamless 
integration of components into a system. We have illustrated 
the proposed approach using components from the digital 
hydraulics domain, where each component has been formally 
developed and proved correct within Event-B. The 
components constitute the library, which captures the 
graphical representations, formal specifications and a one-to-
one relation between them. The library enables components 
reuse and instantiation in various applications depending on 
the requirements. In addition, visual design structures the 
specifications and facilitates scalability of the rigorous 
development. Moreover, it is useful in the communication 
between developer and customer. This will need an 
evaluation via empirical studies comparing our approach to 
the traditional formal development. We believe that the 
proposed approach is applicable to other than Event-B 
formalisms as well considering their syntactical specifics.  

The components connectivity outlined in this paper is an 
important element of systems development. We are currently 
extending this mechanism considering various types of 
connections and stepwise refinement. Moreover, the tool 
support is one of the key factors for facilitating an easy 
access to the proposed approach. Thus, our future work also 
includes providing the tool support, which will include an 
interface to “drag-and-drop” components, maintenance and 
extension of the library, as well as automated application of 
the connectivity patterns through instantiation in order to 
derive a composed system. The proofs will be conducted via 
the tool support for Event-B. 
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