
Visual Component-based Development of Formal Models

Sergey Ostroumov, Marina Waldén
Faculty of Science and Engineering

Åbo Akademi University
Turku, Finland

E-Mail: {Sergey.Ostroumov, Marina.Walden}@abo.fi

Abstract—Formal methods, such as Event-B provide a means
for system-level specification and verification supported by
correctness proofs. However, the formal Event-B specification
of a system requires background knowledge, which prevents a
fruitful communication between the developer and the
customer. In addition, scalability and reusability are limiting
factors in using formal methods, such as Event-B in complex
system development. This paper presents an approach to
facilitate scalability of formal development in Event-B. Our
aim is to build a formal library of parameterized visual
components that can be reused whenever needed. Each
component is formally developed and proved correct by
utilizing the advantages of Event-B. Furthermore, each
component has a unique graphical representation that eases
the rigorous development by applying the “drag-and-drop”
approach and enhances the communication between a
developer and a customer. We present a subset of components
from the digital hydraulics domain and outline the
compositionality mechanism.

Keywords-Components Library; Visual Design; Event-B;
Formal Components.

I. INTRODUCTION
Event-B [1] is a formal method that allows designers to

build systems in such a manner that the correctness of the
development process is supported by mathematical proofs.
The specification (or the model) of a system in Event-B
captures the functional behaviour, as well as the essential
properties that must hold (invariants). The development
process proceeds in a top-down fashion starting from an
abstract (usually non-deterministic) specification. This
specification is then stepwise refined by adding the details
about the system until the implementable level is reached.
The process of transforming an abstract specification into an
implementable one via a number of correctness preserving
steps is known as refinement [2]. It helps the designers to
deal with the system requirements in a stepwise manner,
which makes the correctness proof along the development
easier. However, as more details are added to the system
specification, it becomes complex and hard to handle. This
limits the scalability and reusability of this approach.
Moreover, as more details are added to the specification
through refinement, it is harder to convince the stake holders
about the fact that the system specification embodies all the
necessary requirements.

This paper proposes an approach to visual system design
whose aim is to enhance scalability and reusability, as well
as to facilitate the communication between a developer and a
customer. In addition, the visual design is aimed at making
the rigorous development process easier. The idea behind our
approach is to build a formal library of parameterized visual
components. Each component is formally developed and
proved correct by utilizing the Event-B engine. Moreover,
each component is tied to a unique graphical representation.
The development process then proceeds according to the
“drag-and-drop” approach, where the developer picks the
necessary components from the library and instantiates them.
Since the components are parameterized and are in the
library, they can be reused in various application domains
depending on the requirements. The specification of a system
is then twofold: a visual model whose correctness is
supported by the underlying Event-B language. We present a
pattern for the development of formal components and create
a subset of components from the digital hydraulics domain.
We also outline the compositionality mechanism.

The paper remainder is as follows. Section II outlines the
Event-B notation and outlines proof obligations that provide
the correctness proof. Section III presents the formal library
of parameterized visual components. Section IV outlines the
compositionality mechanism. Section V gives an overview
of the existing approaches. Finally, Section VI concludes the
paper and summarizes the directions of our future work.

II. PRELIMINARIES: EVENT-B
Event-B [1] is a state-based formalism that offers several

advantages. First, it allows us to build system level models.
Second, the development follows the top-down refinement
approach, where each step is shown correct by mathematical
proofs. Finally, it has a mature tool support extensible with
plug-ins, namely the Rodin platform [3]. Currently, Event-B
is limited to modelling discrete time, but the work on its
extension to continuous models is on-going [4].

An Event-B specification consists of contexts and
machines. A context can be extended by another context
whereas a machine can be refined by another machine.
Moreover, a machine can refer to the contents of the context
via “sees” (see Figure 1).

A context specifies static structures, such as data types in
terms of sets, constants and properties given as a set of
axioms. One can also postulate and prove theorems that ease
proving effort during the model development.

43Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

extends refines

sees machine
variables invariants theorems variant events

context
sets constants axioms theorems

machine
variables invariants theorems variant events

context
sets constants axioms theorems

sees

Figure 1. Event-B contexts, machines and relationship [1].

A machine models the behaviour of a system. The
machine includes state variables, theorems, invariants and
events. The invariants represent constraining predicates that
define types of the state variables, as well as essential
properties of the system. The overall system invariant is
defined as the conjunction of these predicates. An event
describes a transition from a state to a state. The syntax of
the event is as follows:

E = ANY x WHERE g THEN a END

where x is a list of event local variables. The guard g stands
for a conjunction of predicates over the state variables and
the local variables. The action a describes a collection of
assignments to the state variables.

We can observe that an event models a guarded
transition. When the guard g holds, the transition can take
place. In case several guards hold simultaneously, any of the
enabled transitions can be chosen for execution non-
deterministically. If none of the guards holds, the system
terminates or deadlocks. Sometimes, the system should never
terminate, i.e., it has to be deadlock free. To achieve this, one
needs to postulate a machine theorem that requires the
disjunction of the guards of all the events to hold.

When a transition takes place, the action a is performed.
The action a is a parallel composition (||) of the assignments
to the state variables executed simultaneously. An
assignment can be either deterministic or non-deterministic.
The deterministic assignment is defined as v := E(w), where
v is a list of state variables, E is a list of expressions over
some set of state variables w (w might include v). The non-
deterministic assignment that we use in this paper is
specified as v :∈ Q, where Q is a set of possible values.

These denotations allow for describing semantics of
Event-B in terms of before-after predicates (BA) [5].
Essentially, a transition is a BA that establishes a relationship
between the model state before (v) and after (v’) the
execution of an event. This enables one to prove the model
correctness by checking if the events preserve the invariants
(Inv∧ gE ⇒ [BAE]Inv) and are feasible to execute in case the
event action is non-deterministic (Inv ∧ gE ⇒ ∃ v’ . BAE).

The refinement relation between the more abstract and
more concrete specifications is also corroborated by the
correctness proofs. Particularly, the more concrete events
have to preserve the functionality of their abstract counter
parts [6]. This paper however does not focus on this aspect.

The Rodin platform [3], tool support for Event-B,
automatically generates and attempts to discharge (prove) the
necessary proof obligations (POs). The best practices
encompass the model development in such a manner that 90-
95% of the POs are discharged automatically. Nonetheless,

the tool sometimes requires user assistance provided via the
interactive prover.

III. LIBRARY OF FORMAL COMPONENTS
Our idea is to create a formal library of visual

components. Each component is developed formally within
the Event-B formal framework and is tied to a unique
graphical symbol. Moreover, the components in the library
have to be parameterized whenever possible in order to be
reusable during the development process. The system
specification/development is then a process of picking,
instantiating and connecting the needed components, so that
the system is developed in the “drag-and-drop” fashion.

At present, the library contains components from the
digital hydraulics and railway domains. The library also
includes a generic component used to create a placeholder to
be replaced by a specific one. Although our library consists
of generic components parameterized for reuse, one can see
that our approach is related to the work on domain specific
languages, where the language is aimed at a specific problem
domain [7][8]. Despite this, the formal language behind the
components is Event-B and not domain specific.

Next, we present a pattern for the component
development and overview some components from the
digital hydraulics domain, namely an electro-valve and a
cylinder. We focus on the crucial parts of the models whose
details, as well as more examples can be found in our TR [9].

A. Component Functionality
We start by describing the generic functionality of a

component. A component is a reactive device that updates its
outputs according to the input stimuli. The component
typically consists of two parts: an interface and a body
(Figure 2, a). The interface is comprised of the set of inputs
and outputs that are seen by the outside world whilst the
body performs the component functions.

The operation of the component has to be deterministic in
order to precisely determine the output result. That is, the
same input stimuli must generate the same output results and
the order of operations to compute these outputs according to
the input stimuli is known a priori. To achieve this, we use a
common pattern for control systems [10] in which the
component first reads the inputs (environment) and then
produces the outputs (control). In other words, a component
has at least two indefinitely alternating modes: read of the
inputs and production of the outputs (Figure 2, b)). Thus, the
non-termination (deadlock freedom) is the main property of
a component.

We model components as Event-B machines that contain
shared variables and rely on the principle of shared variables

Component
body

Component
interface

Read
inputs

Update
outputs

a) b)

Figure 2. A component pattern: a) component structure, b) automaton.

44Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Ctrl

Flow in Flow out

Electrical
signal

Figure 3. A symbolic representation of an electro-valve with the interface.

composition within Event-B when composing the
components [11][12]. The variables that are local to a
machine are considered private, while the shared variables
are shared between machines and provide communication
facilities in form of inputs and outputs. The inputs and the
outputs of a component also form the interface of the
component and are distinguished by the suffixes _I and _O
(e.g., in Event-B we could have an input variable in_I and an
output variable out_O).

B. Hydraulic component: an electro-valve
As an example of a parameterized visual component we

develop and add to the library an electro-valve. Its visual
symbol is shown in Figure 3 whereas the corresponding
formal model is illustrated by Figure 4 and Figure 5.

The electro-valve is a physical device that transfers a
flow of liquid from one port to another. It contains a plunger
controlled by an electrical signal. The application of a
positive control signal moves the plunger, so as to open the
valve, whilst the negative signal closes it. If no signal is
present on the control input, the plunger and therefore the
valve keep the current position. Moreover, the valve opens
and closes with some rate due to physical laws. The
specification of a valve then has the following parameters
(context Valve_parameters in Figure 4): the minimum
(valve_flow_min) and the maximum (valve_flow_max) flow
the valve can let trough and the rate (valve_rate) with which
the valve opens and closes. The rate cannot be greater than
the difference between the maximum and the minimum flow
(valve_rate ≤ valve_flow_max – valve_flow_min). Assuming
that when the valve is closed, so that the outlet is fully closed
as well (no flow can come through), the minimum flow
equals to zero and the rate cannot be greater than the
maximum. Moreover, if the rate equals to the maximum, the
valve is simply open or closed. The minimum flow, the
maximum flow and the rate parameters, as well as the set of
control signals (valve_CONTROL) are all captured by
constants in the context Valve_parameters (Figure 4).

The interface of a valve consists of two inputs and one
output, namely the control signal (valve_control_I), the input

context Valve_parameters
constants
 valve_flow_min valve_flow_max valve_rate valve_CONTROL
axioms
 valve_flow_min = 0 ∧ valve_flow_max ∈ ℕ1 ∧
 valve_CONTROL = {−1,0,1} ∧
 valve_rate ∈ ℕ1 ∧ valve_rate ≤ valve_flow_max – valve_flow_min
end

Figure 4. Parameters of a generic valve.

port (valve_flow_I) and the output port (valve_flow_O),
respectively (see Figure 5). Additionally, the valve has a
variable that shows the current position of the plunger
(valve_position), as well as the mode variable (valve_mode)
that models the deterministic order of the transitions between
the inputs read and outputs production states.

The valve has the property that the flow from the output
port cannot be greater than the flow on the input port
(valve_mode = 0 ⇒ valve_flow_O ≤ valve_flow_I). Moreover,
the position of the plunge regulates the output flow, so that
the output flow cannot be stronger than allowed
(valve_flow_O ≤ valve_position). Additionally, the output
flow always has to be updated when the new inputs are read
(i.e., the non-termination property as it was stated earlier).
The former properties are captured as invariants. The latter is
stated as a deadlock freedom theorem (see in Figure 5,

machine Valve_Behaviour sees Valve_parameters
variables valve_control_I valve_flow_I valve_flow_O
 valve_mode valve_position
invariants
 valve_control_I ∈ valve_CONTROL ∧ valve_mode ∈ 0..1 ∧
 valve_flow_I ∈ valve_flow_min..valve_flow_max ∧
 valve_flow_O ∈ valve_flow_min..valve_flow_max ∧
 valve_position ∈ valve_flow_min..valve_flow_max ∧
// The output flow cannot be stronger than allowed nor input
 valve_flow_O ≤ valve_position ∧
 (valve_mode = 0 ⇒ valve_flow_O ≤ valve_flow_I)
// The property of non-termination
theorem (valve_mode = 0 ∨
 (valve_mode = 1 ∧ valve_control_I = 1 ∧
 valve_position + valve_rate ≤ valve_flow_max) ∨
 (valve_mode = 1 ∧ valve_control_I = −1 ∧
 valve_position − valve_rate ≥ valve_flow_min) ∨
 (valve_mode = 1 ∧ (valve_control_I = 0 ∨
 (valve_control_I = 1 ∧
 valve_position + valve_rate > valve_flow_max) ∨
 (valve_control_I = −1 ∧
 valve_position − valve_rate < valve_flow_min))))
events ...
 event valve_environment
 where valve_mode = 0
 then valve_mode := 1 || valve_control_I :∈ valve_CONTROL ||
 valve_flow_I :∈ valve_flow_min..valve_flow_max
 end

 event valve_opening
 any valve_flow_O_new
 where valve_control_I = 1 ∧ valve_mode = 1 ∧
 (valve_position + valve_rate ≤ valve_flow_max) ∧
 (valve_position + valve_rate < valve_flow_I ⇒
 valve_flow_O_new = valve_position+valve_rate) ∧
 (valve_position + valve_rate ≥ valve_flow_I ⇒
 valve_flow_O_new = valve_flow_I)
 then valve_flow_O := valve_flow_O_new || valve_mode := 0 ||
 valve_position := valve_position + valve_rate
 end
end

Figure 5. The excerpt of the machine of a generic valve.

45Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

cap
Flow in

head

Flow in

piston

Figure 6. Visual representation of a cylinder.

theorem (valve_mode = 0 ∨ ...), which evaluates to true and
supports the fact that the component always works.

The functionality of the valve includes: reading the
control signal and the input flow, opening the valve, closing
the valve and keeping the previous position (i.e., neither
opening nor closing). Initially, the valve is idle. There might
be some input flow, but the valve is closed. Hence, there is
no output flow. The mode is set to reading the new inputs.

In order for a valve to produce the intended outputs, the
valve first needs to read the inputs. This is captured by an
environmental event that updates the inputs of the model.
We assume that all inputs of the valve are updated
simultaneously as shown in event valve_environment in
Figure 5. The input flow is read non-deterministically
bounded to the parameters of the valve.

Once the inputs are read (valve_mode = 1), the valve can
perform the following operations: open with some rate, close
with the same rate or keep the current position. These
operations are modelled using the three events shown below.

The valve opening event (event valve_opening) can
clearly take place when the control signal (the command) is
to open the valve (valve_control_I = 1). However, the valve
cannot open more than allowed, that is, it cannot exceed the
maximum (valve_position + valve_rate ≤ valve_flow_max).
When the valve is opening, the output flow increases
according to the rate and the current position of the plunge
(valve_position + valve_rate < valve_flow_I ⇒
valve_flow_O_new = valve_position + valve_rate). Notice
however that if the diameter of the valve allows a flow
stronger than the input flow to come through, the output flow
is simply the same as the input one (valve_position +
valve_rate ≥ valve_flow_I ⇒ valve_flow_O_new = valve_flow_I).

The valve closing event is specified similarly considering
the fact that it is opposite to the opening of the valve. It can
take place when the command is to close the valve
(valve_control_I = −1) and proceeds as long as the valve is
not completely closed (valve_position − valve_rate ≥
valve_flow_min).

context Cylinder_parameters
constants
 cylinder_input_flow_min cylinder_input_flow_max
 cylinder_cap_pos cylinder_head_pos
axioms
 cylinder_input_flow_min = 0 ∧ cylinder_cap_pos = 0 ∧
 cylinder_input_flow_max ∈ ℕ1 ∧ cylinder_head_pos ∈ ℕ1
end

Figure 7. Parameters of a cylinder.

Finally, if the command is neither open nor closed
(valve_control_I = 0) or the valve is fully closed or open, it
keeps its position. In other words, the valve is idle or
stopped. Therefore, the output flow remains unchanged with
respect to the current flow (valve_flow_I ≥ valve_flow_O ⇒
valve_flow_O_new = valve_flow_O) or the input flow
(valve_flow_I < valve_flow_O ⇒ valve_flow_O_new =
valve_flow_I).

The visual symbol and the specification of the electro-
valve component extend the formal library of visual
components. The specification was modelled and proved in
the Rodin platform. The tool generated 24 POs out of which
20 were proved automatically.

C. Hydraulic component: a cylinder
Another example of a hydraulic component for the

component library is a cylinder. The cylinder reacts on liquid
flows only and does not have any electrical inputs.
Nonetheless, it is a reactive device whose outputs are
updated according to the input stimuli. The visual symbol of
a cylinder is shown in Figure 6.

The cylinder contains a piston that can move forward and
backward in the cylinder body depending on the differences
between the liquid flows. The liquid flows via the cap and
the head into the cylinder and is transformed into piston
movement. The piston moves forward (extends) if the
pressure of the flow coming into the cap is greater than the
liquid flow coming into the head. In the opposite case, the
piston moves backward. Clearly, if the pressure of both input
flows is the same, the piston keeps the position. Due to
physical laws, the piston moves with some rate. This rate is
also determined by the difference in the input flows.

The cylinder specification has four parameters (Figure 7).
Two of them define the minimum (cylinder_input_flow_min)
and maximum (cylinder_input_flow_max) input flow of the
liquid. We assume that both inputs are of the same size, so
that the motion of the piston is proper. The other two
parameters specify the limits of the piston motion
(cylinder_head_pos and cylinder_cap_pos). The difference
between cylinder_head_pos and cylinder_cap_pos sets the
length that the piston can move.

The interface of the cylinder has two inputs (flows)
(cylinder_flow_cap_I and cylinder_flow_head_I), as well as one
output cylinder_piston_position_O (see Figure 8). The inputs
allow the liquid to flow into the body of the cylinder via the
cap and the head. The output of the cylinder is the piston that
moves according to the difference in the input flows.
Moreover, there is a variable that specifies the modes of the
cylinder component, cylinder_mode (Figure 8). The main
property of the cylinder is the deadlock freedom theorem.
The theorem evaluates to true, which supports the fact that
the cylinder is non-terminating.

Initially, there are no input flows, the piston is at some
position within the cylinder body and the mode is set to read
the inputs. In order for the piston to move, both of the inputs
have to be updated (similar to the valve component).

There are three possible reactions to the input flows. The
piston can move forward (extend), if the flow coming into

46Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

machine Cylinder_behaviour sees Cylinder_parameters
variables
 cylinder_flow_cap_I
 cylinder_flow_head_I
 cylinder_piston_position_O
 cylinder_mode
invariants
 // Current position of the piston in the cylinder
 cylinder_piston_position_O ∈
 cylinder_cap_pos..cylinder_head_pos ∧
 // Input to move the piston to the right
 cylinder_flow_cap_I ∈
 cylinder_input_flow_min..cylinder_input_flow_max ∧
 // Input to move the piston to the left
 cylinder_flow_head_I ∈
 cylinder_input_flow_min..cylinder_input_flow_max ∧
 cylinder_mode ∈ 0..1 ∧
 // Deadlock freedom – non-termination
theorem cylinder_mode = 0 ∨
 (cylinder_mode = 1 ∧
 cylinder_flow_cap_I > cylinder_flow_head_I ∧
 cylinder_flow_cap_I > cylinder_input_flow_min ∧
 cylinder_piston_position_O + cylinder_flow_cap_I –
 cylinder_flow_head_I ≤ cylinder_head_pos) ∨
 … // Guards of other events

Figure 8. Variables and properties of a cylinder.

the cap is larger than the flow coming into the head
(cylinder_flow_cap_I > cylinder_flow_head_I). Moreover, the
flow must be present on the cap input (cylinder_flow_cap_I >
cylinder_input_flow_min) and there has to be space for the
piston to extend (cylinder_piston_position_O + cylinder_rate ≤
cylinder_head_pos). If these conditions are met, the piston
extends with a rate equal to the difference between the input
flows (Figure 9). The piston retracting is modelled in a
corresponding manner.

Finally, if the flows are the same (cylinder_flow_head_I =
cylinder_flow_cap_I) or there is no space for the piston to
extend (cylinder_piston_position_O + cylinder_rate >
cylinder_head_pos) nor to retract (cylinder_piston_position_O
+ cylinder_rate < cylinder_cap_pos), the piston keeps its
position. In other words, the piston is stopped (Figure 10.).
The complete formal model of a cylinder can be found in [9].

event cylinder_extending
 any cylinder_rate
 where
 cylinder_rate = cylinder_flow_cap_I − cylinder_flow_head_I ∧
 cylinder_mode = 1 ∧
 cylinder_flow_cap_I > cylinder_flow_head_I ∧
 cylinder_flow_cap_I > cylinder_input_flow_min ∧
 cylinder_piston_position_O + cylinder_rate ≤

 cylinder_head_pos
 then
 cylinder_mode := 0 || cylinder_piston_position_O :=
 cylinder_piston_position_O + cylinder_rate
 end

Figure 9. Forward motion of the piston (extend).

event cylinder_stop
 any cylinder_rate
 where
 cylinder_rate = cylinder_flow_cap_I−cylinder_flow_head_I ∧
 cylinder_mode = 1 ∧
 (cylinder_flow_head_I = cylinder_flow_cap_I ∨
 cylinder_piston_position_O + cylinder_rate >
 cylinder_head_pos ∨
 cylinder_piston_position_O + cylinder_rate <
 cylinder_cap_pos)
 then cylinder_mode := 0
 end

Figure 10. Keep the position of the piston (stop).

IV. RIGOROUS DESIGN USING THE LIBRARY
Once the components are developed and added to the

library, one can (re)use/instantiate them while designing a
system. The idea behind rigorous design with the library is
the use of the “drag-and-drop” approach. Specifically, the
developer picks and instantiates the necessary components
by providing specific values for the parameters, a component
name and adds them to the system model (Figure 11).

A. Composition of decomposed machines
The components can be seen as sub-unit machines which

can be composed via parallel composition (||) [11][13]. For
example, the machines A and B are composed into the
(system) machine A || B, where the variables, invariants and
events of A and B are merged. Overlapping variable and
event names are renamed before composition. Note that
composition is associative and commutative, but it cannot be
reversed.

A way of refining a system is to superpose a new feature
on its existing model (specification). The existing model is
left unchanged while new variables and events modifying
them are added to the model. The superposed feature and the
existing model can be seen as components that can be
composed. All these components in form of features or
existing models are here considered to form library
components. In addition, the composed models can form
new library components.

The library components to be composed are connected
via a connector. A connector is represented as a shared
variable of a system machine whose mission is to promote
the value of the output from one component to the input of
the other one. Figure 12 illustrates a generic composition of
two machines Component_n and Component_m into a single
system machine System_M. The system model embodies the
parameters of the components, their interfaces (environment
events) and the connections between them. The functional
events of the components are stored in separate machines
and are included in the system.

B. Composition of library components
To show the connectivity mechanism, we will use a part

of the Landing Gear (LG) case study whose details and
formal model are described in [14]. Here, we will only show
the connectivity of the valve and cylinder components as

47Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Formal library of parameterized
visual components

VisualisationSpecification

...

Parameters

System specification

Visual
layer

Formal
layer

Instantiated

...

Parameters

Instantiated

“Drag-and-
drop" of

component
symbol

Automated
“drag-and-
drop” for

component
specification

context
…
end
machine sees
context
…
end

context
…
end
machine sees
context
…
end

Connector
context
…
end
machine sees
context
…
end

context
…
end
machine sees
context
…
end

Figure 11. “Drag-and-drop” approach for visual system design in Event-B.

context SystemC
constants SYSTEM_CONTROL
 // Component n constants
 // Component m constants
axioms SYSTEM_CONTROL = {0,1,2}
 // Component n axioms
 // Component m axioms
end
machine System_M sees System_C
includes Component_n Component_m
variables Control connection_Comp_n_Comp_m
 // Shared variables of Component n
 // Shared variables of Component m
invariants Control ∈ SYSTEM_CONTROL ∧
 connection_Comp_n_Comp_m ∈ <COMPONENT_n_OUTPUT_TYPE>
 // Component n invariants
 // Component m invariants
variant max(SYSTEM_CONTROL) – Control
events
 event INITIALISATION extends INITIALISATION then
 Control := 0 || connection_Comp_n_Comp_m := <INIT_VALUE>
 end

 event Comp_n_environment refines Comp_n_environment
 where … // Guards derived from component n
 ∧ Control = 0
 then … // Actions derived from component n
 || Control := 1
 end

 convergent event system_connection_Component_i_Component_k
 where Control = 1 ∧ <Component_n_mode> = 0
 // Ensure that the component n has updated its outputs
 then Control := 2 ||
 connection_Comp_n_Comp_m:= <Comp_n_Out>
 end

 event Comp_m_environment refines Comp_m_environment
 where … // Guards derived from the component m
 ∧ Control = 2
 then … // Actions derived from the component m
 || Control := 0
 end
end

Figure 12. Composition of Component n and Component m machines.

visually depicted in Figure 11. More details about various
components, connectivity mechanisms and refinement
patterns, can be found in the technical reports [9][14].

The main purpose of the LG system is to extend the
landing wheels (connected to the hydraulic cylinders) when
an airplane is to be landed and to retract them during the
flight. The extension/retraction of the cylinders is controlled
by the valves. Thus, the valves are connected to the cylinders
sequentially (see Figure 11, visual layer).

The formal layer of the visual representation of Figure 11
is shown in Figure 13 and Figure 14. The context machine
contains the constants and axioms of the valve and the
cylinder. The theorem supports the connectivity between the
components. It shows that the output of the source
component is compatible with the input of the target
component. Generally, the maximum diameter of the valve
output should be the same as the maximum input flow of the
cylinder connected to it.

The system machine LG_System_M includes the library
components valve (Valve_Behaviour) and cylinder
(Cylinder_Behaviour) (see Figure 14). The connectivity
between these components is represented by the variable
connection_Valve_Cylinder_head. When the valve updates its

context LG_System_C
constants CONTROL__HEAD
 valve_0_flow_min valve_0_flow_max valve_0_CONTROL
 valve_0_rate cylinder_0_cap_pos cylinder_0_input_flow_min
 cylinder_0_input_flow_max cylinder_0_head_pos
axioms
 // valve_0
 valve_0_flow_min = 0 ∧ valve_0_flow_max = 10 ∧
 valve_0_CONTROL = {−1,0,1} ∧ valve_0_rate = valve_0_flow_max ∧
 // cylinder_0
 cylinder_0_input_flow_min = 0 ∧ cylinder_0_input_flow_max=10 ∧
 cylinder_0_cap_pos = 0 ∧ cylinder_0_head_pos ∈ ℕ1 ∧
 // system_1
 CONTROL_HEAD = {0,1,2}
 theorem // system_1
 cylinder_0_input_flow_max = valve_0_flow_max
end

Figure 13. The parameters of the LG system: a valve, a cylinder and
system parameters.

48Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

output value (i.e., when its mode is 0), this value is then used
to update the value of the connector
(connection_valve_cylinder_head := valve_0_flow_O in
convergent event Connection_Valve_Cylinder). This value is
in turn used as the input to the cylinder
(cylinder_0_flow_head_I := connection_valve_cylinder_head in
event cylinder_0_environment). Hence, the overall scheme is
as follows. First, the valve inputs are updated, so that the
valve component can update its output. Then, the value of
the connector is updated according to the valve output.
Finally, the inputs of the cylinder are updated according to
the value of the connector.

Several connectors can be added in one refinement step
following the same pattern. The proof of the connectivity
mechanism relies on the superposition refinement rule,
where the machine of the composed system refines the
machine of each component.

machine LG_System_M sees LG_System_C
includes Valve_Behaviour Cylinder_Behaviour
variables Control_head connection_valve_cylinder_head
 valve_0_control_I valve_0_flow_I valve_0_flow_O
 valve_0_mode valve_0_position
 cylinder_0_piston_position_O cylinder_0_flow_cap_I
 cylinder_0_flow_head_I cylinder_0_mode
invariants
 … // Valve_0 type definitions and main invariants
 … // Cylinder_0 type definitions and main invariants
 control_head ∈ CONTROL_HEAD ∧
 connection_Valve_Cylinder_head ∈
 cylinder_0_input_flow_min .. cylinder_0_input_flow_max
variant max(CONTROL_HEAD) - control_head

events
 ...
 event valve_0_environment refines valve_0_environment
 where
 mode = 0 ∧ control_head = 0
 then
 valve_0_mode := 1 || valve_0_control_I :∈ valve_0_CONTROL ||
 valve_0_flow_I := <INPUT> || control_head := 1
 end

 convergent event Connection_Valve_Cylinder
 where
 valve_0_mode = 0 ∧ control_head = 1
 then
 control_head := 2 ||
 connection_valve_cylinder_head := valve_0_flow_O
 end

 event cylinder_0_environment
 where
 cylinder_0_mode = 0 ∧ control_head = 2
 then
 cylinder_0_mode := 1 || cylinder_0_flow_cap_I := <NEW_VALUE>
 || cylinder_0_flow_head_I := connection_valve_cylinder_head
 || control_head := 2
 end
end

Figure 14. An instantiated valve connected with an instantiated cylinder.

V. RELATED WORK
BMotionStudio has been proposed as an approach to

visual simulation of the Event-B models [15][16]. The idea
behind BMotionStudio is that the designer creates a domain
specific image and links it to the model using a “gluing”
code written in JavaScript. The simulation is based on the
ProB animator and model checker [17], so that whenever the
model is executed the corresponding graphical element
reacts is updated. The BMotionStudio tool also supports
interaction with a user – the user can provide an input via
visual elements instead of manipulating the model directly.

In contrast to the BMotionStudio approach, we aim for
creating visual descriptions of models via a library of
predefined components that have a formal, as well as a visual
representation. The development of the specification is then
a process of the instantiation of the necessary components
and the connection of them into a system. That is, the
developer does not need to redraw the graphical
representation of the components, but simply to reuse them.
Eventually, the designer obtains a graphical representation of
the system whereas its specification is in fact written in
Event-B and supported by correctness proofs. Certainly, our
approach can be complemented by BMotionStudio in order
to obtain visualisation of the model execution.

Snook and Butler [18] proposed an approach to merge
visual UML [19] with B [20]. The latter is supposed to give a
formal precise semantics to the former at the same time as
the former is aimed at reducing the effort in training to
overcome the mathematical barrier. This approach has then
been extended to Event-B and is called iUML-B [21]. The
authors define semantics of UML by translating it to Event-
B. The use of the UML-B profile provides specialisation of
UML entities to support refinement. The authors also present
tools that generate an Event-B model from UML.

A component based reuse methodology for Event-B was
presented by Edmunds et al. [22], where the composition is
based on the shared events principle. Their idea is to have a
library of Event-B components where the component
instances and the relationships between them are represented
diagrammatically using an approach based on iUML-B.

Instead of using UML as a visualisation tool as in both
the above cases, we aim to create a formal library of
parameterised components, each of which has its own
graphical representation. The system specification is then a
visual model that represents a composition of the instantiated
versions of these components. Nevertheless, we target
automated generation of the necessary data structures and
Event-B elements whenever our approach is applied.

An approach to a component-based formal design within
Event-B has been proposed by Ostroumov, Tsiopoulos,
Plosila and Sere [23]. The aim of this work is the generation
of a structural VHDL [24] description from a formal Event-B
model. The authors present a one-to-one mapping between
formal functions defined in an Event-B context and VHDL
library components. The authors rely on an additional
refinement step where regular operations are replaced with
function calls. This allows for automated generation of
structural VHDL descriptions.

49Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Instead of focusing on code generation, we propose an
approach to systems development in Event-B in a visual
manner. This approach is not limited to VHDL descriptions
and allows the designers to utilize various components from
different application domains. Our goal is to create a formal
library of parameterized Event-B specifications that capture
the generic behaviour of these components. Our approach is
to facilitate component reuse, where the developers can
specify systems in a “drag-and-drop” manner.

VI. CONCLUSION AND FUTURE WORK
We have proposed an approach to the development of

rigorous components augmented with unique graphical
symbols. It is based on the pattern that allows seamless
integration of components into a system. We have illustrated
the proposed approach using components from the digital
hydraulics domain, where each component has been formally
developed and proved correct within Event-B. The
components constitute the library, which captures the
graphical representations, formal specifications and a one-to-
one relation between them. The library enables components
reuse and instantiation in various applications depending on
the requirements. In addition, visual design structures the
specifications and facilitates scalability of the rigorous
development. Moreover, it is useful in the communication
between developer and customer. This will need an
evaluation via empirical studies comparing our approach to
the traditional formal development. We believe that the
proposed approach is applicable to other than Event-B
formalisms as well considering their syntactical specifics.

The components connectivity outlined in this paper is an
important element of systems development. We are currently
extending this mechanism considering various types of
connections and stepwise refinement. Moreover, the tool
support is one of the key factors for facilitating an easy
access to the proposed approach. Thus, our future work also
includes providing the tool support, which will include an
interface to “drag-and-drop” components, maintenance and
extension of the library, as well as automated application of
the connectivity patterns through instantiation in order to
derive a composed system. The proofs will be conducted via
the tool support for Event-B.

ACKNOWLEDGMENT
The authors would like to thank Dr. Marta Olszewska

and Dr. Andrew Edmunds for the fruitful discussions. The
work was done within the project ADVICeS funded by the
Academy of Finland, grant No. 266373.

REFERENCES
[1] J.-R. Abrial, Modeling in Event-B: System and Software

Engineering, Cambridge: Cambridge University Press, 2010.
[2] R. J. Back and J. Wright, Refinement Calculus: A Systematic

Introduction, New York: Springer-Verlag, 1998.
[3] RODIN IDE. [Online]. Available from: http://sourceforge.net/

projects/rodin-b-sharp/, February 2017.
[4] R. Banacha, M. Butler, S. Qinc, N. Vermad, and H. Zhue,

“Core Hybrid Event-B I: Single Hybrid Event-B machines”,

Science of Computer Programming, vol. 105, Elsivier, pp. 92-
123, 2015.

[5] C. Métayer, J.-R. Abrial, and L. Voisin, Event B language,
vol. 3.2, RODIN Deliverables. [Online]. Available from:
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf, May 2005.

[6] K. Robinson, System Modelling & Designing using Event-B.
[Online]. Available from: http://wiki.event-b.org/images/
SM%26D-KAR.pdf, October 2010.

[7] A. van Deursen, P. Klint, and J. Visser, “Domain-specific
languages: An annotated bibliography”, vol. 35(6), SIGPLAN
Notices, pp. 26–36, 2000.

[8] P. Boström, Formal Verification and Design of Systems using
Domain Specific Languages, TUCS Dissertations 110, 2008.

[9] S. Ostroumov and M. Waldén, Formal Library of Visual
Components, TUCS TR, vol. 1147. [Online]. Available: http:
//tucs.fi/publications/view/?pub_id=tOsWa15a, May 2015.

[10] M. Butler, E. Sekerinski, and K. Sere, “An Action System
Approach to the Steam Boiler Problem”, Formal Methods For
Industrial Applications, vol. 1165, LNCS: Springer-Verlag,
pp. 129-148, 1996.

[11] J.-R. Abrial, Event Model Decomposition, ETH Zurich TR,
vol. 626. [Online]. Available from: http://wiki.event-b.org/
images/Event_Model_Decomposition-1.3.pdf, April 2009.

[12] T. S. Hoang, A. Iliasov, R. A. Silva, and W. Wei, “A Survey
on Event-B Decomposition”, Workshop on Automated
Verification of Critical Systems, vol. 46, Electonic
Communication of the EASST, pp. 1-15, 2011.

[13] R. J. Back, “Refinement calculus, part II: Parallel and reactive
programs”, Stepwise Refinement of Distributed Systems:
Models, Formalisms, Correctness, vol. 430, LNCS: Springer-
Verlag, pp. 67–93, 1990.

[14] S. Ostroumov and M. Waldén, Facilitating Formal Event-B
Development by Visual Component-based Design, TUCS TR,
vol. 1148. [Online]. Available from: http://tucs.fi/
publications/view/?pub_id=tOsWa15b, September 2015.

[15] L. Ladenberger, J. Bendisposto, and M. Leuschel,
“Visualising Event-B Models with B-Motion Studio”,
Workshop on Formal Methods for Industrial Critical Systems,
vol. 5825, LNCS: Springer-Verlag, pp. 202-204, 2009.

[16] BMotion Studio for ProB Handbook. [Online]. Available
from: https://www3.hhu.de/stups/handbook/bmotion/current/
html/index.html, April 2015.

[17] M. Leuschel and M. Butler, “ProB: A Model Checker for B”,
Symposium of Formal Methods Europe, vol. 2805, LNCS:
Springer-Verlag, pp. 855-874, 2003.

[18] C. Snook and M. Butler, “UML-B: Formal Modeling and
Design Aided by UML”, ACM Transactions on Software
Engineering and Methodology, Vol. 15(1), pp. 92–122, 2006.

[19] G. Booch, I. Jacobson, and J. Rumbaugh, Unified modeling
language Reference Manual, The (2nd edition), USA: Pearson
Higher Education, 2004.

[20] S. Schneider, The B-method: An Introduction, Basingstoke:
Palgrave, 2001.

[21] C. Snook and M. Butler, “UML-B and Event-B: an
integration of languages and tools”, IASTED Conference on
Software Engineering, pp. 12-17, 2008.

[22] A. Edmunds, C. Snook, and M. Walden, “On Component-
Based Reuse for Event-B”, ABZ Conference on ASM, Alloy,
B, TLA, VDM, and Z, vol. 9675, LNCS: Springer-Verlag,
pp. 151-166, 2016.

[23] S. Ostroumov, L. Tsiopoulos, J. Plosila, and K. Sere,
“Generation of Structural VHDL Code with Library
Components From Formal Event-B Models”, DSD Euromicro
Conference, IEEE, pp. 111-118, 2013.

[24] IEEE Standard: VHDL Language Reference Manual, IEEE
1076, 2008.

50Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

http://sourceforge.net/%20projects/rodin-b-sharp/
http://sourceforge.net/%20projects/rodin-b-sharp/
http://sourceforge.net/%20projects/rodin-b-sharp/
http://rodin.cs.ncl.ac.uk/deliverables/D7.pdf
http://wiki.event-b.org/images/%20SM%26D-KAR.pdf
http://wiki.event-b.org/images/%20SM%26D-KAR.pdf
http://tucs.fi/publications/view/?pub_id=tOsWa15a
http://tucs.fi/publications/view/?pub_id=tOsWa15a
http://tucs.fi/publications/view/?pub_id=tOsWa15a
http://wiki.event-b.org/%20images/Event_Model_Decomposition-1.3.pdf
http://wiki.event-b.org/%20images/Event_Model_Decomposition-1.3.pdf
http://tucs.fi/%20publications/view/?pub_id=tOsWa15b
http://tucs.fi/%20publications/view/?pub_id=tOsWa15b
http://tucs.fi/%20publications/view/?pub_id=tOsWa15b
http://link.springer.com/book/10.1007/978-3-642-04570-7
https://www3.hhu.de/stups/handbook/bmotion/current/%20html/index.html
https://www3.hhu.de/stups/handbook/bmotion/current/%20html/index.html
https://www3.hhu.de/stups/handbook/bmotion/current/%20html/index.html
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=4772740&contentType=Standards&sortType%3Dasc_p_Sequence%26filter%3DAND%28p_Publication_Number%3A4772738%29

	Introduction
	Preliminaries: Event-B
	Library of Formal Components
	Component Functionality
	Hydraulic component: an electro-valve
	Hydraulic component: a cylinder

	Rigorous Design using the Library
	Composition of decomposed machines
	Composition of library components

	Related Work
	Conclusion and future work
	Acknowledgment
	References

