
Analysing the Need for Training in Program Design Patterns

An empirical exploration of two social worlds

Viggo Holmstedt
University College of South-East Norway

School of Business, Department of Business and IT
Horten, Norway

email: vh@usn.no

Shegaw A. Mengiste
University College of South-East Norway

School of Business, Department of Business and IT
Horten, Norway

email: sme@usn.no

Abstract- This paper addresses the implications of design
patterns knowledge in the social worlds of practitioners and
managers from the context of Norwegian software
companies. Although there are diverse perspectives on the
role and importance of design patterns for object-oriented
systems, many academic institutions believe in their
relevance, particularly in improving software quality
through reusable design. However, when invoking the topic
of the relevance of Design Patterns (DP) in a software
development process, the engagement varies from no interest
to enthusiasm. It was this diverse perspective on the
relevance of design patterns that drive us to explore this
topic. The paper analyzed practitioners and managers
perspectives and our findings revealed a convincing evidence
for practitioners’ confidence in pattern knowledge and its
positive influence on their coding abilities. Our findings are
relevant to software design and production, as it addresses
methodological issues in software development.

Keywords-design patterns; object oriented system;practitioner;
perspective; manager.

I. INTRODUCTION

The success rate of global systems development was
29% in the year 2015 [41]. Such low rate of success
indicates that systems development is a complex process
and needs to be addressed with proper planning and
guiding. In systems development, earlier design decisions
can have a significant impact on software quality; they can
also be the most costly to revoke [1]. Design Patterns
(hereafter DP, used in plural form) constitute an important
tool for improving software quality by providing reusable
solutions for recurring design problems.

Design patterns are best practices of specifying and
allocating responsibilities to program elements, like
classes, packages and components. DP also support the
construction of mechanisms based on patterns of class
cooperation. Industrial usage and success over a long time
typically establishes and confirms a specific design
pattern, accepted as a guide to construct mechanisms in
complicated systems development contexts.

As Shlezinger et al. [2] indicated, design patterns have
over the years provided solutions to design problems with
the goal of assuring reusable and maintainable solutions.

As a result, DP now exist for a wide range of software
development topics, from process patterns to code pattern
at various levels of abstraction to maintenance patterns [3].
In the context of object-oriented programming, design
patterns are used as building blocks of the architecture and
to allow change to evolve in a way that prevents an erosion
of the software design [4]. From a software
implementation perspective, the value of a design pattern
comes from the codification of its specification [5-6].
Regarding usage of DP, Subburaj [13] described the
importance of aspects of searching, finding and applying
specific patterns, and also convey how an incorrectly
applied pattern poses disadvantages.

DP also transfer industrial experience about
performing creation and allocating behavior to the
internals of classes [7]. Separation of concerns, as between
data, logic and presentation, is a success condition in
almost all types of systems development [8-11]. Naming is
an important characteristic of DP, enabling precise
communication and query based search [12]. DP must be
constructed and instantiated by developers with experience
and ability to realize abstractions with success, including
creating and customizing the DP instances.

In terms of usability of DP, a research conducted by
Manolescu [14] also indicates that only half of the
developers and architects in a software organization tend
to use design patterns. The cost of finding and proving the
right pattern for a specific mechanism can simply be too
high. Despite the fact that there are successful and durable
industrial experiences in using DP, as Subburaj [13]
clearly noted, DP could be applied in wrong instances and
contexts. This alone is a good reason to discuss possible
impacts of DP [15], and the importance of training DP
skills and knowledge.

Subburaj (ibid) refers to Rising [16], for a debate on
formal DP training. Much work is done to construct and
establish searchable libraries of DP, reducing the need for
formal training. But, pattern catalogs have become too
abstract to use for untrained practitioners. We assume that
the formal training of classical DP and GRASP (General
Responsibility Assignment Software Patterns), which is a
methodological approach to learning basic object design
[5], would give the practitioner necessary background to
assess new in-house patterns, utilize pattern catalogs and

51Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

correctly instantiate patterns from the practitioner’s own
knowledge base whenever needed. Formal training would
reduce the impact of the abstraction level of pattern
catalogs. The debate on the merits of formal training is
minimal, and, in this paper, we would like to contribute to
this research void.

To meet the huge challenges reported on the usability
of DP in practice, academic institutions like our own are
offering courses in DP for Object Oriented Systems.
Campus students are often impressed by the relevance DP
have to their system problems and solutions. Out of
campus, we sometimes initiate informal talks with IT
directors, developers, managers and other industry
practitioners. When invoking the topic of the relevance of
DP in a software development process, the engagement
varies from no interest to enthusiasm. These informally
observed opposites gave us motivation to explore what our
own DP students have experienced after leaving school,
and after having practiced for a while. We also approached
IT employers and other relevant stakeholders without
formal training on DP, to have their perception of the
importance and relevance of trained DP developers in their
respective companies. We acknowledge that many other
researchers have investigated the power of DP training to
improve the software produced under pattern rules. We
appreciate the works of Khomh [15] and Wydaeghe [17]
who study and evaluate DP quality attributes. The bottom-
line for our investigation is to assess the value or relevance
of DP to help software developers to produce better
software by guiding them in code production. This will
help in assessing the different perspectives on the
relevance of running courses in DP, particularly in terms
of the experience and minds of the social worlds of
practitioners (software developers) and their employers (IT
managers and other staff members). To address this
research problem, we formulated the following research
questions:

Q1: How, when and why do DP trained practitioners
perceive relevance of DP knowledge?

Q2: How mutual is practitioners’ and managers’
understanding of the relevance of DP?

It is our conviction that by answering these research
questions, we can contribute to the ongoing research
debate between research of DP as a tool to improve
software versus DP as a tool to improve thinking and the
quality of the practitioner.

The paper is organized as follows: Section II provides
an overview of the theoretical framework; and section III
presents the research approach and methods, while section
IV presents the findings. The last section presents analysis,
discussion, and concluding remarks.

II. CONCEPTUAL FRAMEWORK : THE SOCIAL WORLDS

FRAMEWORK

The social worlds framework is an analytical
framework that has been used in many Science and
Technology Studies (STS) [19], and has its roots in the
American sociological tradition of symbolic

interactionism. The framework focuses on meaning-
making among groups of actors- collectives of various
sorts – and on collective action – people doing things
together and working with shared objects [19]. Strauss
[19] citing Shibutani [20] noted that each social world is
an arena in which there is some kind of organization; and
each social world is a cultural area, where its boundaries
are set neither by territory or formal membership but only
by the limits of effective communication. The social
worlds perspective, as such, conceptualizes organizations
“…as being mutually constituted and constituting the
systemic order of organizational actions and interactions
kept together by individuals and groups commitment to
organizational life and work [22]. The notion of groups in
this description involves all collective actors (be it a
formal organization or group of people) committed to act
and interact within the specific social world [23]. In the
social world, various issues are debated, negotiated, fought
out, forced and manipulated by representatives of the
participating social worlds [20].

Huysman & Elkjær [23] argued that organizations
could be viewed as arenas where members of different
social worlds take different positions, seek different ends,
engage in contest and make or break alliances in order to
do things they wish to do (ibid, p.8). Over time, social
worlds typically segment into multiple worlds (sub-
worlds), intersect with other worlds with which they share
substantive/topical interests and commitments, and merge
[19].

The social worlds perspective has also introduced the
notion of agency as well as tension and conflict as triggers
for learning among actors in different social worlds
[23][25]. Agency is used to denote “various organizational
actions and learning and how these are enacted by
different kinds of agencies” [23]. Tension and conflict are
results of different commitments to different interests,
practices and values.

In the context of the study, we adopted the social world
perspective as our theoretical framework. We identified
two important social worlds: the social world of software
developers (practitioners), and the social world of
managers (practitioners’ superiors). The agencies of both
worlds are the production of software, including the
learning of best practices to enhance the return on
investments.

III. RESEARCH APPROACH AND METHODS

A. Research Approach

Our research approach is informed by the priciples of
engaged scholarship which advocates a participative form
of research to get the perspectives of key stakeholders to
understand a complex social problem [25]. One of the
main forms of the engaged scholarship research approach
is the informed basic research. In this form of research, the
researcher acts as a detached outsider of the social system
being examined, but solicits advice and feedback from key
stakeholders [25][26]. We adopted the informed basic
research mainly as our role is detached outsiders, but also

52Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

we wanted some of our informants in formulating the
questionnaire. We already have prepared some grounding
by educating a little more than half of the informants
through the years 2000 to 2015. Having run DP courses
those years, we trusted the benefits to be solid. However,
in the research context, that would be like a research lab
generated bias, as opposed to the Van de Ven’s
interactional view. In his view, both the professional and
research practices contribute to their common growth of
knowledge.

B. Data Collection Methods

We collected data from 28 informants (20 practitioners
and 8 IT managers). Both groups contain former students
and external contacts. The reason for having some of the
former students in the managers’ stakeholder group was to
assure that most respondents should have at least some
knowledge of DP. Van de Ven raises the important
question “… why organizational professionals and
executives want to participate in informed basic research”
[26]. We held this question as an important factor in
selecting our respondents. As such we approached only
managers with some knowledge of DP, to ascertain their
motivation to take part in our investigation.

Our second group of respondents is composed of
former students who are now working as system
developers in organizations in Norway. Getting the contact
information was a challenge since our institution lacks a
mechanism to trace former students. So, we relied on
technologies like LinkedIn, acquaintances, and a data tool
constructed for the purpose. We located about 110 of our
former students from courses on DP. We also got a list of
about 60 externally collected contacts. Then we used the
list and managed to talk to nine of them by phone or face
to face, to ascertain that our topic of investigation was
relevant to them. During the conversations, we discussed
the design of our questionnaire and our chances for having
the actual interlocutor as respondent. Those nine helped us
in preparing the questionnaires, by giving different
comments and sharing their insights.

NVivo [42] is a tool for qualitative research that is
specialized for coding and analyzing and for finding trends
and interesting opinions. In preparing the questionnaire,
we emphasized that all questionnaire items are open to any
formulation. This is possible, because the NVivo tool lets
us code and analyze the respondents’ contributions
independent of prior organizing. We let each respondent
know that we wanted to learn how, when and why
knowledge of design patterns had any importance on
his/her professional life after the end of training. We also
used each respondent as a possible source of contact
information to relevant managers that might have opinions
on the relevance of DP.

Finally, we distributed the questionnaire to 170
potential respondents, both managers and practitioners.
Out of the 170 emails we sent, we received a total of 28
answered questionnaires that have been analyzed and used
in this paper.

The data we got from the 28 respondents has been
analyzed using NVivo. As NVivo has huge possibilities
for automatic and semi-automatic text analyses, the tool
labeled each answer with a code in the place of the full
text instruction. The existence of tools for programming
the docx format to filter out relevant content from complex
structures, available for several programming languages,
made this content transformation possible. The transferring
of informant documents alleviated the NVivo analysis
activities a lot. The filtering of questionnaire content also
raised the analysis quality by assuring the non-existence of
irrelevant text in the sources.

IV. FINDINGS

In this section, we present our findings. As our focus
was to know the perspectives and views of the two social
worlds (practitioners and managers) on the relevance and
value of design patters in work settings, we present our
findings accordingly for the two social worlds. Then, we
make a comparison of our findings in the two stakeholder
groups.

A. Relevance of DP from the practitioner’s perspective

An important occasion for many people in their
professional career is the job interview. Therefore, we
asked our respondents to comment on what they really
think about the relevance of DP knowledge when they
apply for a new job in the IT industry. The typical
response we received was that: “I hope and believe that it
is mandatory to have a good knowledge of Software
Design Patterns (SDP). I think SDP is one of the most
important aspects of programming.” An interesting finding
was the distinction between junior and senior developers
that reads as follows. “If you apply for a junior position it
might not be that relevant because they wouldn’t expect
you to have knowledge about design patterns, but if you
apply for a medium/senior development position it is very
relevant.” This evidence relies to a discussion concerning
introductory training in DP. Some respondents also
indicated that Knowledge of DP did not have quite a lot to
say when they got their current job.

When we looked for the informants’ general
perception of DP, we found good evidence for positive
perceptions like: “Whenever I need to work on new
features / product development, I use design patterns”. We
also found typical evidence like “it helps with code
structure”. An interesting finding from respondents free
comments is that: “if I have used a common SDP, it might
have been easy to understand what I have coded”, and
“Also DP makes it easier for my colleagues to
understand“. More evidence for relevance is “I mostly use
patterns to communicate intent behind non-trivial code
structures.”

We wanted to test the evidence material for any sign of
enthusiasm, which we interpret as more than just a notion
of relevance. We found formulations that we think
conveys enthusiasm: “SDP had a big role in my evolution
with object oriented programming”, and one referring to
training: “It has been a great year for me - From finishing

53Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

school to this point in time I've become a much better
coder and problem solver.”

Some of the expressions from our respondents on the
use of DP show us when and why DP is being used in
work settings:

Practitioner 1: “Yes, weekly, to solve problems.”

Practitioner 2: “Yes. I used it every day. The main
purpose is to be able to understand the code faster and
easier if it needs to be changed later on.”

Practitioner 3: “Daily. … . We use it in our own
development, but it is also essential to understand
different design patterns when debugging other
developers code efficiently.”

One informant also specify two relevant situations:
“Yes, first under the design phase of the project and
then in the implementation phase.”

Much of the evidence refers to daily use: “Everyday,
solving problems or reading code in an architectural way
to find or create solutions at the right places keeping the
code maintainable.” There is also evidence in the context
of how often, that add concern of code quality: “Most of
the time, usually to handle complex situations that would
otherwise result in spaghetti code“.

As our findings reveal, most of the practitioners
believe that DP usage and knowledge improve their code.
Our findings also confirm that the improvement is in fact
a distinct purpose for using DP as some of the practitioners
use DP in order to improve the way they write the code so
that to make it as clear and logical as possible.

Our findings also revealed the relevance of DP as a
communication agent. As one of the informants indicated:
“The software design patterns knowledge will give some
help in having meaningful discussions with partners”. DP
is relevant as a knowledge framework in some situations,
helping participants from both different and same social
worlds discuss and elaborate solutions.

We specifically asked for informants’ perception of the
DP influence on time balance in projects. A typical answer
for this group is “projects may take a longer time to finish.
But it is usually worth it and may save time later.” We
summarized our findings in the following table (Table 1).

TABLE I. SUMMARY OF PRACTITIONERS’ PERCEPTIONS.
Question Practitioners’ perception

How • has a big role in practitioner’s evolution

• is a very important aspect of
programming

• studying DP has been great

• makes much better coders and problem
solvers

• allows for architectural perspective

• keeps code maintainable

• is timesaver in the longer run

• is a knowledge framework

When • weekly

• daily

• needing to change existing code

• debugging

• applying for a job

• applying for medium/senior
development position

• starting new features and product
development

Why • helps with code structure

• easy to understand what is coded

• communicate intent behind non-trivial
code

• solve problems

• understand others code quickly

• long term code maintainability

• using DP is doing it right

B. Relevance of DP from Managers’ perspective

It was important to have informant practitioners with
sufficient knowledge of DP to make the questionnaire
relevant. The relevance is for managers to have a stake in
development. Again, the communication between
management and practitioner profits on a mutual
understanding of tools and methodologies. Relevant to this
concern is evidence like “I think the application of design
patterns are very useful for designing faster and more
structured applications”. More directly targeted at a mutual
understanding between practitioners and managers is the
following evidence: “Use SDP to increase effectivity in
their daily work and to reuse code or methodology from
project to project. “

Evidence also displays the relevance of new hires
knowledge of DP as follows: “I think very much. It would
help keep the number of code lines down overhaul in an
application and in the long run perhaps save money“.

Managers believe in the positive influence of DP on
code improvement:

Manager 1:”Yes, absolutely.”

Manager 2: “Yes, because for other people with
the same design pattern knowledge, will make it much
easier to understand and thereby perhaps much easier
to improve upon later“.

Manager 2 also confirms the communication and
mutual understanding aspects of using DP as follows:

“The software design patterns knowledge will give
some help in having meaningful discussions with
partners”. We also found an interesting reflection in
“it makes me aware of need for pattern creation to
create re-usability and standardization.”

Interestingly we found more strong evidence of
positive management perceptions of DP. Manger 3 stated
the following:

54Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

“I want all employers to be as effective as possible,
and in this regard use SDP.”

Another informant (manager 4) formulated his
perception even stronger: “Extremely important”. In our
material, the positive perception of DP has strong
prevalence before any other alternative.

Managers’ concern for DP knowledge and new hires
are expressed in attitudes like:

“My understanding is that this influence them”,

“I imagine it does make them more effective.”, and

“This has not been on my criteria list (until now).”

The statement “Very relevant, most employers look for
design patterns knowledge” represents the most prominent
perception among managers. We also found variants of
that statement, like “have a positive attitude to design
patterns” and “In the current company it is high interest
and positivity for it.“ Some informants thought company
size decides level of interest, and stated accordingly: “In
bigger companies where you have 100++ employees there
is an interest and maintenance of this at a manager level.”

A manager focus relevance like this: “It helps seeing
pitfalls that has to be handled in the project.” Our findings
regarding managers’ preceptions towards the relevance of
DP are presented in the following table (Table 2).

TABLE II. SUMMARY OF MANAGERS’ PERCEPTIONS

Question Managers’ Perception

How • designing faster and more structured
applications

• opens for meaningful discussions

• better communication between
developers

• positive outlook on SDP

• reuse code or methodology

• seeing pitfalls

When • employing new hires

• manager is reminded

• daily work

Why • makes hires more effective

• code improvement

• keeps the number of code lines down

• perhaps saves money

• has lower maintenance requirement

• makes it easier to improve production
software later

• increases effectivity

• create re-usability and standardization

V. ANALYSIS AND DISCUSSION

This section contains analysis of our findings and how
they contribute to answering the research questions we set
in the introduction. Our findings pointed out that the social

world of IT managers have a mixed interest and
knowledge about DP and its relevance towards enhancing
software development practices. Our findings also
demonstrated that the social world of practitioners had a
more common interest towards DP with better engagement
and knowledge; and even with good understanding of the
positive influence of DP usage.

In our research, we wanted to find out how, when and
why DP had relevance to practitioners. We constructed a
questionnaire that aimed to reveal if DP had any relevance
or not in work settings. As highlighted in our findings,
most of the practitioners answered positively on the
relevance of knowledge in DP to software development.
There was only one feeble evidence on the irrelevance of
DP among practitioners.

So, in the following subsections, we analyze and
discuss our findings around the two research questions we
set in the introduction.

A. How, when and why do DP trained practitioners
perceive relevance of DP knowledge

We find that the study of DP has been a great personal
satisfaction for some of the informants. They also
generally think DP give important aspects of programming
activities in themselves. DP infer better coding, keep the
code maintainable and even give coders a view into
architectural considerations. DP also affects problem-
solving abilities, and is a timesaver in the long run. The
timesaving aspect is especially important in terms of
system change claims, which also answers the “when”
question. Using DP also creates a knowledge framework
to be used for the facilitation of communication between
stakeholders. It can even be used to enhance program
understanding through pattern reverse-engineering [40].

The reasons for DP’s relevance to practitioners are
close to the answers for “how” and “when”. The
understandability is important in multiple directions, that
is when coders shall understand other’s code, when other
shall understand “my code”, and even when the coder shall
understand his own code. This aspect is also tied to
intentions behind code that are difficult to understand
without the DP references. The “why” aspect also reveals
practitioner responsibility for future needs, as using DP is
considered doing the right thing. The same responsibility
is even deeper, as it emphasizes positive effect on long
term maintainability. Practitioners who have concerns for
long term effects of their work, do actually share managers
perspectives and interests like return on investment (ROI),
e.g. interest of ROI.

Based on our evidence, we assume that knowledge and
use of DP is so advanced, that it infers a reinforced
perception of ownership to the work. Even more
interesting is whether advanced knowledge improves
productivity through enhanced self-esteem, as some of our
evidence indicated. Judge and Bono [28] pointed out the
relevance of self-esteem for job satisfaction and
performance. Pierce and Gardner [29] delve deep into
these questions in their review of organization-based self-

55Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

esteem literature. It is much more difficult to find literature
on DP knowledge affecting self-esteem and practitioner
productivity.

B. How mutual is practitioners’ and managers’
understanding of the relevance of DP?

The DP literature argues on the importance of IT
managers to have insights, reasoning, and techniques to
promote and implement design patterns in order to gain
operational efficiency and provide strategic benefit for
their IT organization. Learning and organizing DP provide
an important step [31]. Fowler also state that developers
should adapt design patterns to their own environment, and
that implementing a pattern for a particular purpose is one
of the best ways to learn about it. Cline [31] noted, as
design patterns capture distilled experience, they could be
used as a tool to improve communication between
software developers and other stakeholders, including less
experienced developers and managers. Moudam et al. [12]
also referred to DP as a communication agent.

Our findings actually highlighted DP as a
communication tool to facilitate the interaction between
the social worlds of managers and practitioners. The social
worlds of managers and practitioners are different, but
importantly influenced by the limits of effective mutual
communication. Generally, the communication between
management and practitioners profits on a mutual
understanding of tools and methodology. The hierarchical
positions of each member makes the mutual understanding
of methods and tools a critical factor. We wanted to gather
evidence of the practitioner’s perception of the
management’s and industry’s general understanding and
attitudes towards DP. Since managers have the model
power [33, 34], their knowledge of DP is critical to the
practitioners’ access to DP and in creating mutual
understanding between the two worlds. DP can create
mutual understanding by providing a standard vocabulary
among practitioners and managers. Under such
circumstances, we assume that practitioners who want to
use DP will suffer from a weak mutuality of DP
understanding and interest.

Even more problematic are the possibilities of
misunderstandings and errors induced by different
understanding. Literature on this topic for other disciplines
exists for example in Hantho et al. [33]. Much closer to
our research is Margaret [34] who reports a study of the
communication between systems analysts and clients to
create requirements. Marne [35] actually construct a DP
library as a communication tool. We differ from this by
focusing the importance of communication between
practitioners and their superiors. DP is by evidence
depicted as a tool of communication between individuals
of both our social worlds.

We have evidence that most managers have little
knowledge of DP, but still express considerable
confidence in their employees’ usage of them. Managers
naturally possess an economical mind-set. The
practitioners’ more technical mind-set actually has some
commonalities with their superiors, which support the

mutual understanding between the two social worlds. We
found evidence of practitioners’ concern for ROI, and also
manager’s concern for building faster applications more
effectively. This is evidence of mutual interests, which is
likely to infer a shared interest of communication.

Some managers appreciate relevance of DP based on
their assumptions of faster and more structured
applications, terms applied to faster designing and
development, rather than meaning the application run
faster. Still, the interesting part is that the evidence implies
an interest for the practitioner’s concerns. Besides a
general positive appreciation of DP, managers also believe
in reuse, enhanced communication between stakeholders
in the software process. There is also evidence that
managers find DP useful in detecting architectural and
technical pitfalls.

There is convincing evidence of mutual understanding
between our two social worlds. Even if the mind-sets and
perspectives are different, we claim that the reasons mostly
fall under the practitioners’ concerns as well. DP increases
effectivity, and more specifically makes hires more
effective. The code improvement, as in lowered number of
code lines, is in both stakeholder group’s interest. Lower
maintenance requirements and easier software
improvement are also a concern of practitioners.
Reusability is of course also in the practical interest of the
coder, while standardization is a general interest of the
growing software community that embrace open source
solutions. Coherence in DP perceptions between the two
social worlds, as well as self-confidence based on
knowledge, likely enhance productivity in both social
worlds.

Despite the fact that the DP community has been
successful in promoting good software engineering
practices [37], adoption rates are still low for IT
organizations due to lack of discovery and limited
education around how to apply design patterns to specific
domain contexts [14]. This low adoption rate attributed to
the fact that finding DP relevant to a particular problem
isn’t trivial [14]. This challenge is, in part, due to the
nature of how patterns often match a problem domain and
each domain needs a distinct approach [37].

When Khom et al. [15] considered criticism to DP;
they discussed three GoF [7] examples. Patterns like
Flyweight can be a topic of internal discussion, and thus
act as social glue among participants. Classical patterns are
important not only to infer high software quality, but also
to let developers feel at home and find their way in
complicated code. Confident and pattern-aware
programmers can influence software quality positively, if
they are comfortable with the specific pattern instance in
use. If the developer finds that a pattern actually decreases
the understanding of a software area, it might be because
the wrong pattern is used, or that the pattern infers
abstractions that decreases both learnability,
understandability and the simplicity of debugging. Such
abstractions may even amount to emotional resistance
[38]. The quality of discussions is better when it is
grounded in well-known DP topics, awakening the feel-

56Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

good of being “at home”, even at work. We would like to
promote formal instruction and common knowledge of DP
as a social glue between individuals from both the social
worlds of practitioners and managers. We would also like
to see the construction of meet-up arrangements for the
discussion of DP, in order to strengthen the
communication attributes of the topic.

Khom et al. [15] states “we consider reusability as the
reusability of the piece of code in which a pattern is
implemented”. We oppose this, and stated earlier that DP
must be constructed and instantiated on site. We find it
important to apply the reusability term to the pattern and
not the pattern instance code. A target for a specific pattern
usage is to improve understandability. A misplaced or
miscoded pattern might be the cause of reducing
understandability. Internalized pattern knowledge can lead
to creative solutions, as opposed to solutions searched by
catalogue. The catalogue solutions have to be tested and
found usable for the specific problem, and are often only
partially understood. We therefore promote formal
instruction of DP to internalize a small set of pattern
repertoire in the minds of the social worlds’ individuals.

VI. CONCLUSION

In this paper, we empirically assessed whether or not
knowledge of DP is relevant for managers and
practitioners in software development companies. Our
findings revealed that there are differences between the
social worlds of managers and practitioners in how they
perceive DP as a vehicle to enhance performance of
development teams. Practitioners expressed high level of
relevance for the knowledge of DP, while managers put a
lower level of relevance to DP. However, our findings also
revealed that both social worlds believed in DP’s ability to
act as a communication tool, and that the quality of
mutuality in DP perceptions between the two social worlds
is good.

Several works focus on measurable characteristics by
inspecting collections of code. Hegedus et. al. [39] inspect
the quantitative grounding for evaluating the effect of DP
on software maintainability. In contrast, we wanted to
investigate the effect on human thinking and courage in
software building. Meaningful naming of components, like
classes, fields and enum type items, is an example of less
measurable code characteristics that still may have huge
effect on software maintainability, because of its ability to
guide human understanding.

We do not focus DP’s characteristics as a direct
software improving tool, but indirect as a human helper.
DP help humans think, and thereby help humans improve
design and program code. Tahvildari et al. [40] focus on
their own classification schemas to help designers
understand relationships between patterns, but do not
connect DP directly to the assistance to think, or to the
user’s attitudes towards DP. Even if the correct usage of
DP reduces risk, the adoption rates are still low.
Manolescu [14] claimed low discovery and education to be
important factors, which makes it interesting to investigate
the present attitudes of employers and former students of

DP, and detect any importance for their professional life. If
practitioners’ knowledge and usage of DP enhance them as
coders, it is of great significance when their managers find
positive relevance in their usage of DP. The practitioners
will feel support and encouragement to continue their good
work.

Measuring attributes of software created with patterns
would oversee all the varying ways of instantiation, all the
varying machine and OS variants and escape future
changes in OS/machine dependencies. We therefore and
alternatively suggest the discussion of practitioners’ self-
confidence and its effect on productivity, a coherence that
can prove to be more future-proof, being grounded in the
human nature.

REFERENCES

[1] E. Folmer. and J. Bosch “A pattern framework for software
quality assessment and tradeoff analysis.” International Journal of
Software Engineering and Knowledge Engineering, Vol.17, no.
04, pp.515-538, 2007.

[2] G. Shlezinger, I. Reinhartz-Berger, and D. Dori. “Modeling design
patterns for semi-automatic reuse in system design. Cross-
Disciplinary Models and Applications of Database Management:
Advancing Approaches.” Advancing Approaches, pp.29, 2011.

[3] S. Henninger. and V. Corrêa. “Software pattern communities:
Current practices and challenges.” In Proceedings of the 14th
Conference on Pattern Languages of Programs, ACM,, 2007.

[4] D. J. Ram and M.S. Rajasree. “Enabling Design Evolution in
Software through Pattern Oriented Approach, in Object-Oriented
Information Systems” In Proceedings of 9th INternational
Conference, OOIS 2003, Geneva, Switzerland, PP. 179- 190,
September 2003.

[5] C. Larman. Applying UML and patterns: an introduction to object-
oriented analysis and design and iterative development. 2005:
Pearson Education India.

[6] L. Ackerman and C. Gonzalez. “The value of pattern
implementations.” DR DOBBS JOURNAL, Vol. 23, no. 6, pp.
28-34, 2007.

[7] J. Vlissides, et al. “Design patterns: Elements of reusable object-
oriented software.” Reading: Addison-Wesley, Vol. 49, no. 120,
pp. 11, 1995..

[8] P. Tarret al. «N degrees of separation: multi-dimensional
separation of concerns.” In Proceedings of the 21st international
conference on Software engineering. 1999. ACM.

[9] V. Kulkarni and S. Reddy “Separation of concerns in model-driven
development.” IEEE software, Vol. 20, no. 5. Pp. 64- 69, 2003.

[10] M. Aksit, B. Tekinerdogan, and L. Bergmans. Achieving
adaptability through separation and composition of concerns. 1997.

[11] T. Mens and M. Wermelinger “Separation of concerns for software
evolution.” Journal of software maintenance and evolution:
research and practice, vol. 14, no. 5, pp. 311-315, 2002.

[12] Z. Moudam and N. Chenfour “Design Pattern Support System:
Help Making Decision in the Choice of Appropriate Pattern.”
Procedia Technology, Vol. 4, pp. 355-359, 2012.

[13] R. Subburaj, G. Jekese, and C. Hwata “Impact of Object Oriented
Design Patterns on Software Development.” International Journal
of Scientific & Engineering Research, vol. 6, no. 2, pp. 961-967,
2015.

[14] D. Manolescu et al. “The growing divide in the patterns world.”
Software, IEEE, vol. 24, no. 4. Pp. 61-67, 2007.

[15] F. Khomh and Y. G. Guéhéneuc. “Do design patterns impact
software quality positively?” In Software Maintenance and
Reengineering, 2008. CSMR 2008. 12th European Conference on.
2008. IEEE.

57Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

[16] L. Rising. “The Benefit of Patterns.” IEEE software, vol. 27, no. 5,
pp. 15-17, 2010.

[17] B. Wydaeghe et al. «Building an OMT-editor using design
patterns: An experience report.” In Technology of Object-
Oriented Languages, 1998. TOOLS 26. Proceedings. 1998. IEEE.

[18] A. E. Clarke. and S.L. Star “The social worlds framework: A
theory/methods package.” The Handbook of Science &
Technology Studies, vol. 3, pp. 113-137, 2008.

[19] A. L. Strauss. Scientists and the evolution of policy arenas: The
case of AIDS., in stone symposium of the society for the study of
symbolic interaction. 1991: San Fransico, CA.

[20] T. Shibutani. “Reference Groups as Perspectives.” American
Journal of Sociology, vol. 60, no. 6, pp. 562-569, 1955.

[21] B. Elkjær. “Organizational learning the ‘third way’.”Management
learning, vol. 35, no. 4, pp. 419-434, 2004.

[22] B. Elkjærand M. Huysman “Social worlds theory and the power of
tension.” IN: D., Barry & H., Hansen (Eds.), The SAGE handbook
of new approaches in management and organization, pp. 170-177,
2008.

[23] M. Huysman and B. Elkjær. “Organizations as arenas of social
worlds: Towards an alternative perspective on organizational
learning?” In Organizational Learning and Knowledge Capabilities
Conference. 2006.

[24] A. E. Clarke.. Social organization and social process: Essays in
honor of Anselm Strauss, 1991.

[25] A. H. Van de Ven Engaged scholarship : a guide for organizational
and social research. 2007, Oxford ; New York: Oxford University
Press. xii, 330 p.

[26] A. H. Van de Ven Engaged scholarship a guide for organizational
and social research. 2007, Oxford University Press: Oxford ; New
York. p. 1 online resource.

[27] A. Alnusair T. Zhao, and G. Yan “Rule-based detection of design
patterns in program code.” International Journal on Software Tools
for Technology Transfer, vol. 16, pp. 315-334, 2014.

[28] T. A. Judge and J.E. Bono. “Relationship of core self-evaluations
traits—self-esteem, generalized self-efficacy, locus of control, and
emotional stability—with job satisfaction and job performance: A
meta-analysis.” Journal of Applied Psychology, vol. 86, pp. 80-92,
2001.

[29] J. L. Pierce and D.G. Gardner. “Self-Esteem Within the Work and
Organizational Context: A Review of the Organization-Based Self-
Esteem Literature.” Journal of Management, vol. 30, no. 5, pp.
591-622, 2004.

[30] D. Alur et al. Core J2EE Patterns (Core Design Series): Best
Practices and Design Strategies. 2003: Sun Microsystems, Inc.

[31] M. P. Cline. “The pros and cons of adopting and applying design
patterns in the real world.” Communications of the ACM, vol. 39,
no. 10, pp. 47-49, 1996.

[32] A. M. Kanstrup and E. Christiansen. Model power: still an issue?,
in Proceedings of the 4th decennial conference on Critical
computing: between sense and sensibility, pp. 165-168, 2005,
ACM: Aarhus, Denmark.

[33] A. Hantho, L. Jensen, and K. Malterud. “Mutual understanding: a
communication model for general practice. “Scandinavian Journal
of Primary Health Care, vol. 20, no. 4, pp. 244-251, 2002.

[34] T. Margaret. “Establishing Mutual Understanding in Systems
Design: An Empirical Study.” Journal of Management Information
Systems, vol. 10, no. 4, pp. 159-182, 1994.

[35] B. Marne et al. “A Design Pattern Library for Mutual
Understanding and Cooperation in Serious Game Design, in
Intelligent Tutoring Systems”. 11th International Conference, ITS
2012, Chania, Crete, Greece, June 14-18, 2012. Proceedings, S.A.
Cerri, et al., Editors., pp. 135-140, 2012, Springer Berlin
Heidelberg: Berlin, Heidelberg.

[36] F. Buschmann, K. Henney, and D. Schimdt. Pattern Oriented
Software Architecture, vol. 5, 2007: John Wiley & Sons.

[37] S. J. Bleistein et al. Linking requirements goal modeling
techniques to strategic e-business patterns and best practice. in 8th
Australian Workshop on Requirements Engineering (AWRE’03).
2003. Citeseer.

[38] V. Holmstedt and S. A. Mengiste. «Effect of Code Maintenance on
Confidence in introductory object oriented programming Courses.”
IN: IRIS2016. 2016: Sweden. Unpublished

[39] P. Hegedűs et al.. Myth or reality? analyzing the effect of design
patterns on software maintainability, in Computer Applications for
Software Engineering, Disaster Recovery, and Business
Continuity, pp. 138-145, 2012, Springer.

[40] L. Tahvildari and K. Kontogiannis. «On the role of design patterns
in quality-driven re-engineering. in Software Maintenance and
Reengineering.” IN: Proceedingsof Sixth European Conference
on. 2002. IEEE.

[41] Standish Group 2015 Chaos Report, available at:
https://www.infoq.com/articles/standish-chaos-2015 [accessed
March 2017]

[42] http://www.qsrinternational.com/what-is-nvivo [accessed March
2017]

58Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

