
Function Points and Service-Oriented Architectures

A reference model for component based architectures

Roberto Meli

Data Processing Organization Srl
Rome, Italy

email: roberto.meli@dpo.it

Abstract — Software Service Oriented Architectures (SOA) are
characterized by the distribution of data processing components
on separate and cooperating technology platforms.
Unfortunately, this model represents a technology perspective
that is not useful to identify software objects to be measured
starting from the user’s (business) point of view, as required by
international standards of functional measurement (ISO 14143).
To solve this problem we have defined the concept of Measurable
Software Application (MSA). In the proposed model, each MSA
must lie in one and only one layer but may use or incorporate
services belonging to different layers. In each layer, we can find
generalized software components designed to give a specific and
reusable support to the implementation of particular functional
or non-functional requirements of the business (application)
layer. The identification of generalized software components that
belong to lower level layers with respect to the business one, is
also crucial to quantify the rate of reuse that should be computed
in each project measure for the correct calculation of economical
reward, as defined in a customer-supplier contract.

Keywords-function point analysis; SOA; component; middleware;
measurement.

I. INTRODUCTION

The goal of this paper is to show a model of a software
application specifically suited to allow Functional Size
Measurement Methods (also known as Function Points) to be
applied to this kind of architecture.

Software Service Oriented Architectures (SOA) are
characterized by the distribution of data and processing logic
components among separate and cooperating technology
platforms [1]-[5].

The execution of a process is often implemented
dynamically on the most appropriate element of the
architecture at any given time. This organization allows to
reuse generalized components (often called services), through
standardization and specialization, in order to construct any
new transaction. Models that describe these architectures use
the concept of layers, which is a way to aggregate those
components on the basis of homogeneity of logical
representation and usage.

These model, however, are seen from a technological
perspective, oriented to the software design and
implementation rather than the to the final user point of view.

One of the main values of Function Point Analysis is to
allow comparing the convenience of implementing the same
user functional requirements (same FP size) with competitive
architectures in such a way to choose the most productive one.

If any different technical organization of the implemented user
requirements had a different logical size this comparison
would not be possible. On the other side we should have a
practical way to allocate size and consequently effort and costs
in the places where that effort and cost is originated. This is
the goal that we had in mind in proposing the following
approach.

Section II recalls some concepts related to a typical SOA
architecture; Section III presents a model for functional
measurement of component based architecture; Section IV
illustrates how to consider embedded services provided by an
application to another one; Section V presents a comparison
with related works; Section VI explains the needs for further
research and finally Section VII shows the conclusions.

II. A TYPICAL SOA MODEL

In a distributed architecture, the business layer is associated
to the user needs and the typical way of using a system
requested by the final user. A Data Base Management System
(DBMS) layer, instead, is associated to the requirements of
data treatment and storage regardless to their semantic content
for the end user; in other words, it is a layer that manipulates
the information from a structural point of view rather than from
the final user semantic point of view. To the DBMS point of
view, the user "meaning" of a table and its data fields is not
important. The structured relationships between tables and data
fields, the integrity rules, the allowed operations, etc., are
important independently by the business meaning of the entity
represented by the table(s).

The most used layers to aggregate software components are
(Figure 1):

• Presentation Layer: contains the user interface,
typically the internet browser. From this layer it is only
possible to call services/classes that are in the Business
Layer.

• Business Layer: contains services/classes that perform
the processing functions required. They can be called
either by one or more classes in the Presentation Layer,
or even from classes that are in the Business layer
itself.

• Data Access Layer: contains services/classes that
enable the management of DB data. They can be called
only by the Business Layer services/classes.

74Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Figure 1. Three-Layers Architectural Scheme

In fact, this scheme highlights the distribution and
relationship of client and server components on the specific
physical nodes of an information system network of data
processing.

But this kind of elements is not relevant and useful for the
identification of the software objects to be measured from the
user’s (business) point of view. From the final user point of
view, a typical elementary process (also known as Base
Functional Component in the ISO standards for Functional
Measurement [2]) normally begins with the business user that
activates a functionality (i.e., a trigger to collect information
for searching or writing data) handled by the Presentation
Layer. This action activates specific features of the business
logic (Business Layer) and, according to the business rules, it
executes the steps needed to fulfil user requests, generally
through accessing or writing permanent archives (Data Access
Layer). The scenario ends crossing the layers again (in the
opposite direction) to show the results to the requesting user
(or to other destination users) through the Presentation Layer
features. This set of steps, which are considered by the user
meaningful and self-contained as a whole, crosses the layers
previously identified several times.

This means that a partitioning of software application in
such a way doesn’t allow the proper identification of the right
software items to be measured in the user functional
perspective.

III. MODEL FOR FUNCTIONAL MEASUREMENT OF

COMPONENT BASED ARCHITECTURE

A more usable model for a functional measurement is
shown in Figure 2.

Figure 2. Multi-Layer Model for a Functional Measurement point of view

In the diagram, we see that an enterprise system can be
considered as an interface for the activation of a set of
applications that are available for the users in a multi-channel
way and that rest, in turn, on various underlying software
layers, each of them providing "services" to the above layer in
a direct or indirect manner.

To clearly identify the entire domain of what to measure,
from the user’s point of view, we introduce the concept of
Measurable Software Application (MSA).

A MSA is defined as "an aggregate of specific functional
features conceived from a user point of view, homogeneous in
terms of level of logical abstraction."

The term “Measurable” is necessary since very often, as
we have already seen, the term Application alone is often
already associated (in organization's catalogues) to groups of
functionalities aggregated on a technological base instead of a
logical one.

For example, in a web environment we may distinguish
between a client application (browser), a data base server
application, a Content Management System, a generalized
“log on” feature and a library of components/web services.
From the user’s point of view, all these pieces are technically
cooperating to support a Business Application at a logical
level that is unitary in the user’s view. This aggregation is
called MSA.

A layer is linked, therefore, to a certain level of abstraction
in the representation of data and related functions, this, in turn,
determine a different concept of user associated with that
particular layer.

Any MSA, by definition, should lie down on a specific and
unique layer. An MSA may belong to one and only one layer
so the measurement is consistent in terms of level of
abstraction and it does not depend on the internal modular
organization but only on the external functional user
requirements.

In Figure 2, the arrows show the “call direction” of the
components on the underlying layers. Between the typical
Application layer and the Operating System one or two
intermediate layers have been inserted: the layer of
generalized business components and the one that includes
generalized technical components.

The former are business functions recognizable by the user
at the application level, but not sufficiently independent to be
considered part of the upper level (otherwise such these
business functions would be recognizable as further MSAs).

In fact they represent a kind of "recognizable pieces" of
software that need to be "composed" and "aggregated"
together in order to fulfil a unique user need (i.e., a component
for the verification of a Security Social Number, to be inserted
in several elementary processes of the Application component
layer).

The latter are technical generalized functions that enables
features for the management of applications (such as print
programs, or a piece of software for the design of generic
form, as well as a physical security service, a network service,
access identification and management or client-server services
too).

So, any MSA might incorporate and execute components
that are distributed across multiple layers, each one containing
generalized software (technical or business) components

75Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

designed to give specific support to the implementation of
reusable and specific functional or non-functional
requirements.

Therefore, in this model, a middleware layer contains a set
of functions defined by the “software architect”, working to
aid specific requirements of factorization and independence
from hardware, operating systems and DBMS environments.

As the middleware functionalities are generalized, they can
then be used by different MSA (Figure 3), even not initially
considered in defining the technical architecture layers.

Figure 3. Link between architectural components

The IFPUG Function Point Analysis [7] requires the
measurements of the software functionalities as recognized by
the final user, while the functionality provided by the
middleware are usually not perceived by the user him/herself,
although he/she takes advantages of their presence in the
systems. For example, a logon transaction for authentication
of authorized users of a system can be considered as an EI
(External Input) from the user’s point of view since, from the
software designer point of view, there may be many other
elementary functions and/or intermediate software
transactions, performed by the middleware and necessary for
the completion of authentication service.

The functional requirements can be represented in the
system specifications at different, and often not entirely
consistent, conceptual and decomposition levels.

In this case a mapping activity can be necessary to
correctly assign the functional user requirements (FUR)
among the different software layers, to identify the software
components to be measured independently each from the
others.

Information exchange between different layers may be
modeled and measured but different layer’s measures can only
be cumulated for managerial or contractual reasons. Given a
certain MSA, its unique size is calculated on a single specific
layer defined by its users.

In other words, the baseline FP measure of an MSA
(useful, for example, to define specific service level
agreements) must not be obtained as the sum of single
measures performed on different layers.

It is possible to measure components at a lower level or
macro functions at a higher level if we do not add their values
in the asset evaluation for that specific MSA.

For example, a measurement on a Technical Generalized
Services Layer can be performed to reward the development
of middleware components that the supplier needs to design
and build to fulfil non-functional user requirements or
technological constrains that cannot be satisfied by
standardized commercial-off-the-shelf solutions.

The identification of generalized software components that
belong to lower level layers with respect to the business one is
also crucial to quantify the rate of reuse that should be
computed in each project measure for the right calculation of
compensation, as defined in the contract.

The previous concepts are incorporated into the Simple
Function Point specification [8], which is a more recent
Functional Size Measurement Method with respect to the
IFPUG one.

IV. HOW TO CONSIDER EMBEDDED SERVICES PROVIDED BY

OTHER MSA

Sometimes it can be necessary to perform a new software
development or a software enhancement of an MSA including
elementary processes that use services of other MSA that have
to be developed, modified, cancelled or remain unchanged for
this purpose.

Figure 4. shows the various functional elements introduced
so far to help in the understanding of what and where counting
in such cases. A software development or enhancement of an
MSA (MSA01 in the picture), which involves the add, change
or delete of common services of another MSA (MSA02 in the
picture), will count:
- within the MSA01 domain, the user functionality

required;
- within the MSA02 domain, the common services that

MSA02 “published” to make them available for other
MSA that are affected by add, change or delete operations
in order to implement the functional user requirements of
MSA02.

Figure 4. Relationships between MSA’s components

The main cases that may occur are listed below. Suppose
that an elementary process EP0103 (that is part of MSA01)
uses the “published service” PS0203 (that is part of MSA02).

76Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

The most relevant scenarios are:
1) ADD of Elementary Process EP0103 (within MSA01) involves

ADD of “Published Service” PS0203 (within MSA02)

2) ADD of Elementary Process EP0103 (within MSA01) involves

CHG of “Published Service” PS0203 (within MSA02)

3) ADD of Elementary Process EP0103 (within MSA01) involves

doing nothing for “Published Service” PS0203 (within MSA02)

4) CHG of Elementary Process EP0103 (within MSA01)

involves ADD of “Published Service” PS0203 (within MSA02)

5) CHG of Elementary Process EP0103 (within MSA01)

involves CHG of “Published Service” PS0203 (within MSA02)

6) CHG of Elementary Process EP0103 (within MSA01)

involves DEL of “Published Service” PS0203 (within MSA02)

7) CHG of Elementary Process EP0103 (within MSA01)

involves doing nothing for “Published Service” PS0203 (within

MSA02)

8) DEL of Elementary Process EP0103 (within MSA01) involves

CHG of “Published Service” PS0203 (within MSA02)

9) DEL of Elementary Process EP0103 (within MSA01) involves

DEL of “Published Service” PS0203 (within MSA02)

10) DEL of Elementary Process EP0103 (within MSA01) involves

doing nothing for “Published Service” PS0203 (within MSA02)

11) Doing nothing for Elementary Process EP0103 (within

MSA01) involves CHG of “Published Service” PS0203 (within

MSA02)

As an example, let’s concentrate on the first case:
1) ADD of Elementary Process EP0103 (within MSA01) involves

ADD of “Published Service” PS0203 (within MSA02)

In this case the elementary process EP0103 in MSA01 is
created simultaneously with the creation of a common service
(PS0203) in MSA02. From the perspective of MSA01, the
measurement of the elementary process EP0103 is reduced
because of the advantage (in terms of effort savings) earned
using components “published” by the service PS0203.

This lowering is not applicable in case of baseline
measurement that is a measurement for asset evaluation
purposes.

From the perspective of MSA02, the service PS0203 was
not pre-existing, so it is completely counted and charged as
ADD, and classified as a middleware elementary process.

As in this case it is possible that some new functionalities
can be built starting from pre-existing software component,
allowing to obtain a significant reuse. In such cases it’s
possible to adopt a “lowering by reuse”, applying a reducing
factor (50% for example) to the data and/or transactional
functions that are reusing such components.

The reuse of logical entities within a new software
development means the use of logical archives already
implemented in other MSAs. In this case it’s no necessary to
design and maintain a new data structure in the database,
cause it can be reused an existing one.

This is a constraint that must be followed mainly to assure
project and data integrity, and that has a consequent impact on
the right calculation of FP functional size.

For transactional functions the reuse may be related to the
integration of common services and application components

defined and made available by corporate software
frameworks.

A common service can be a set of architectural classes,
support and/or shared services that have to be specially used to
standardize the software behaviour and to obtain the same
technical solution for some common application issues.

Any “lowering by reuse” should not be carried out in case
of baseline measurement (that is a measurement for asset
evaluation purposes) but only to determine the right size of
new software development and enhancements.

Using this approach it is possible to allocate an adequate
amount of size to the appropriate development teams that are
responsible to maintain different MSA. The total size
recognized for the development or enhancement task is so still
consistent with an external user point of view but, at the same
time, it is useful for management of different teams or even
suppliers and contracts.

In an analogous way, it is possible to deal with the other 10
cases listed before.

To be clear with IFPUG experts, we are not proposing a
change in IFPUG counting rules but a smart usage of the
delivered size measure which becomes "worked or workable"
size measure useful for managerial goals. If we look at the
released functions, the standard IFPUG measure (without
reuse impact) gives a size value to the end user consumable
solution. The new measure (Corrected or Contractual
Functional Size) is closer to the "worked size" which may be
very different to the "usable size". Existing productivity rates
(like ISBSG data) may be used on the Corrected Functional
Size more consistently because are non "polluted" by the reuse
factor.

V. COMPARISON WITH RELATED WORKS

Measuring Function Points of a SOA software application
has been frequently approached using a traditional way
[9][10][11].

The most used approach consists in setting the boundaries
of the "objects" to be measured between the "calling" software
and the "called" services, separating them and measuring the
interactions among them as if they were "peer to peer"
applications. This may be useful to assign to a single (used)
service a sizing weight on its own but it is confusing when we
consider the "calling" software that, in addition to its usual
"end user interactions", has to add functionalities to deal with
the usage of lower "incorporated" components in order to
release "end user" transactions. This may easily lead to an
over-measurement of functional size which is in contrast with
the idea that software developed in a SOA environment should
be "smaller" than software developed in a traditional way
because of reusable component. If we have a library of
reusable components we need to develop less functionalities
"by scratch" and we would like to express this "saving"
quantifying the software size that is reused and the size which
remains to be developed completely. In the model presented in
this paper, we approach the measuring of a SOA based
application as a situation of component reuse: the delivered
external size of the application (the released functionalities) is
calculated as usual and it is not dependent on its internal
architecture. In addition to this size we may calculate e second
size - called "worked" or "contractual" size - which can be

77Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

more useful for estimation goals. Single services may still be
measured separately in the traditional way if we like to
manage them by metrics.

VI. NEED FOR FURTHER RESEARCH

In order to confirm the validity of the proposed approach
for software governance goals an empirical research is needed
to provide evidence that effort and costs may be correlated to
the functional size so configured.

VII. CONCLUSIONS

The approach presented here, to measure software
applications organized by the use of SOA architectures, is
consistent with the ISO/IEC 14143 requirements but, at the
same time, it might be useful to manage distributed efforts in
software development and enhancement processes and
contract management.

REFERENCES

[1] The Open Group, SOA Source Book (First Edition), Van Haren
Publishing, Apr 2009

[2] A. Schmietendorf and R. Dumke, “Guidelines for the Service-
Development within Service-oriented Architectures”, SMEF2007, 2007

[3] P.C. Clemens, “Software Architecture Documentation in Practice”, SEI
Symposium, Pittsburgh, 2000

[4] OASIS SOA Reference Model Technical Committee, “Reference Model
for Service Oriented Architecture 1.0 OASIS Standard”, 12 October
2006, Organisation for the Advancement of Structured Information
Standards, https://www.oasis-open.org/standards#soa-rmv1.0, [retrieved:
Mar, 2017].

[5] T. Erl, “Service-Oriented Architecture – Concepts, Technology, and
Design”, Prentice Hall/PearsonPTR, 2006.

[6] ISO/IEC 14143-1:2007, Information Technology – Software
Measurement – Functional Size Measurement – Part 1: Definition of
Concepts, February 2007

[7] International Function Point Users Group, “Function Point Counting
Practices Manual - Release 4.3.1”, January 2010.

[8] SiFPA, "Simple Function Point Functional Size Measurement Method -
Reference Manual SiFP-01.00-RM-EN-01.01",
http://www.sifpa.org/en/index.htm, [retrieved: Mar, 2017].

[9] L. Santillo, `Seizing and sizing SOA applications with COSMIC
function points', Proc. Fourth Software Measurement European Forum,
(SMEF 2007), May 2007, Roma, Italy.

[10] J. Lindskoog,: Applying function points within a SOA environment,
IFPUG Proceedings ISMA4,
http://www.ifpug.org/Conference%20Proceedings/ISMA4-
2009/ISMA2009-20-Lindskoog-APPLYING-FUNCTION-POINTS-
WITHIN-A-SOA-ENVIRONMENT.pdf, [retrieved: Mar, 2017]

[11] Y. M. P. Gomes, "Functional Size, Effort and Cost of the SOA Projects
with Function Points", Service Technology Magazine, Issue LXVIII•
November 2012

78Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

