
Self-Governance Developer Framework

Mira Kajko-Mattsson

School of ICT

KTH Royal Institute of Technology

Stockholm, Sweden

email: mekm2@kth.se

Gudrun Jeppesen

Department of Computer and Systems Sciences

Stockholm University

Stockholm, Sweden

email: gudrunjep@telia.com

Abstract—Success of software developers should be

attributed to developers’ knowledge of what to do and their
discipline and trust to their self-organization. To achieve this,
the software community should provide appropriate process
frameworks recommending developers what needs to be done,
still however, allowing maximal freedom, flexibility and self-
discipline. The Self-Governance Software Developer (SGD)
Framework is the solution to this. In this paper, we suggest and
motivate the SGD Framework. We also benchamark it against
Personal Software Process (PSP). Our results show that SGD
has a higher coverage of the developer activities. Still, however,
it needs to be evaluated within the industrial context.

Keywords-personal software process; self-discipline; self-

organization; software development; software methods, process

models, coding, unit testing.

I. INTRODUCTION

Discipline and know-how takes many forms and
permeates almost every aspect of software development.
Disciplined and knowledgeable developers and/or teams
know what is expected from them in specific development
contexts. They know best what activities to choose and how
to organize their work for the success of their projects.
Undisciplined and/or less experienced developers/teams, on
the other hand, may not always know what to do and are not
always able to deliver quality code on time and within
budget.

Many sources tell software developers what to do. The
most common ones are various software development
methods [1]-[3][7]-[9][12][16], or guidance from managers
[4], or organizational in-house methods [2]. Irrespective of
whether they are waterfall, iterative or of any other nature,
most methods impose sets of development activities that are
not always applicable in all kinds of development contexts.
Also, managers and/or organizations impose specific
methods to developers which are not always explicitly stated
and/or well motivated. This may limit the freedom of
developers and make them into passive workers who conduct
tasks to which they are not always convinced [5]-[7][13][18].

There is a big difference between developers deciding
what to do and being told what to do. Making decisions on
your own implies freedom. Developers become more self-
driven, enthusiastic and motivated about their work
[3][6][12][14]. By learning on their own mistakes, they
become more experienced, and hopefully, more mature
software developers. The modern methods have recognized

this, and therefore, they have given more freedom to
developers by eliminating the rigidity of development
methods and by decreasing the authority of the managers.
The modern methods give more trust and freedom to
developers by allowing them to self-govern their own work,
learn from their own experience and mistakes, and take their
consequences [4][5][7][8][10][11].

Currently, the idea of self-governance is becoming more
and more omnipresent within software development.
Individual developers and/or teams are expected to exercise
most of their necessary functions without intervention from
others. This may work well, as long as developers and teams
know what to do in order to achieve the best possible results.
Unfortunately, there are not many process models providing
them with this type of knowledge.

Today, there are no standard process models specifying
complete lists of activities as required of software
developers. Regarding the current software engineering
literature, the lists of activities to be conducted by developers
are scattered across various books or articles. The most
relevant and all-inclusive sources are (1) Personal Software
Process (PSP) as written by Watts Humphrey [7] and (2) our
works on developer tests [8][9]. Usually, complete lists may
be found only in the industry.

Most of the companies provide some kind of support
telling developers what to do. This support is realized in
form of process models or methods. The level of formality
and rigidness of these models may vary from company to
company. Some provide developers with strict sequences of
activities which must be conducted step by step. Some others
give free hands to developers in deciding what to do. Here,
the choice of activities strongly depends on the developers,
their knowledge of software development process, maturity,
experience, and most importantly, their ability to self-govern
themselves.

Even if it is highly desired, self-governance does not
always function in many development contexts. There are
many reasons to this. Some of them are that developers may
not always be aware of what to do and when, or they may
not be disciplined enough, or due to various external forces,
they may be forced to choose the shortest, however, not
always the most optimal way of organizing and conducting
their own work.

Success of today’s developers should be attributed to
their knowledge, discipline and trust. To achieve it, the
software community should provide process frameworks

103Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

Figure 1. Structure of the Self-Governance Developer Framework

telling developers what needs to be done, still however,
giving them maximal freedom to organize their own work
[15][17][18]. The SGD Framework is the solution to this.

In this paper, we suggest and motivate the SGD
Framework. SGD is an extension of PSP [7]. To illustrate the
enhancements, we benchmark SGD against PSP [9]. The
remainder of this paper is as follows. Section II presents the
SGD Framework. Section III benchmarks the framework
against PSP. Finally, Section IV makes concluding remarks.

II. THE SGD FRAMEWORK

The SGD Framework provides generic activities that can
be selectively chosen by software developers or teams while
implementing software code and unit (developer) testing it.
The goal of SGD is to support developers in their daily work
by assisting them in self-managing, monitoring and
controlling their own assignments. The framework’s target
groups are software developers and teams whose main task is
to code, compile, unit test and integrate their own code units
before delivering them for integration and system testing. It
is an extension of Watts Humphrey’s PSP and of our former
work [7]-[9].

The SGD Framework is structured into two parts. As
shown in on the left-hand side of Fig. 1, these are (1) SGD
Process Model and (2) My SGD Process. The SGD Process
Model consists of (1) SGD Process Activity Categories, (2)
SGD Process Activities, and (3) SGD Process Guidelines.
This paper only focuses on (1) SGD Process Categories and
(2) SGD Process Activities. It excludes SGD Process
Guidelines.

A. SGD Process Model

The SGD Process Model consists of three main process

parts. These are (1) Pre-Work (2) Work, and (3) Post-Work.

The model’s activities cover a wide and all-inclusive

spectrum of activities that are relevant for conducting

implementation and unit (developer) testing. In actual

development endeavors, however, not all of the activities

need be conducted. In some contexts and/or programming

environments, only their subsets may be relevant. For this

reason, the SGD Process Model includes the SGD Process

Guidelines providing suggestions for what activities to

conduct, when and why.

As illustrated on the right-hand side of Fig. 1, the SGD

activities are grouped into nine categories that are

distributed across the three above-listed SGD process parts.

In the model, they are put in the part and category in which

they are contextually relevant. They are also listed in the

order that may correspond to a logical workflow. This may

make the model be understood as traditional and

heavyweight. However, the SGD Framework does not

impose any specific order of activities. The activities may

be conducted in any order and they may be included in any

process phase that suits the developers and their

environments. For simplicity reasons, however, they are

mentioned in the SGD Process Model part only once.

Developers are free to use them in the order that best suits

their requirements, needs, formality levels, development

approaches, contexts and specific working and/or

technological environments as long as their choice

contributes to product and process quality.

1) Pre-Work Activities: The SGD Process Model’s first

part, the Pre-work part, includes activities that need to be

conducted before starting the implementation work. The

Pre-Work activities are listed in Table I. They deal with

104Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

TABLE I. PRE-WORK ACTIVITIES (+ IMPLIES PRESENCE, –
 IMPLIES ABSENCE, P STANDS FOR PARTIALLLY)

identifying goals to be achieved, formulating strategies for

achieving the goals, arranging or creating ways for reaching

them, and with monitoring and controlling the

implementation and unit (developer) testing steps. They aid

developers in achieving an optimal balance between the

development requirements and the available resources.

The Pre-work part consists of Preliminary and Planning

Activities. They support developers in initiating their work

and in creating their own implementation and unit testing

personal plans. Although they are listed in the Pre-Work

category, they may very well be conducted both before and

during the actual implementation and testing work. This, of

course, depends on the development context at hand and the

needs that have arisen in that context.

a) Preliminary Activities: The Preliminary Activities

are to be conducted before starting the implementation and

unit (developer) testing work. They should be carried out

before the actual implementation work begins. They prepare

developers for performing high quality work. Here, the

concerns are making sure that methodologies, technologies,

standards, ways of working, commitments are understood

and are in place. The SGD Framework strongly

recommends that developers consider them before

launching their individual development endeavors. Their

non-performance may imply various risks that may

jeopardize development work and results.

To carry out their work in the best possible way,

developers should frequently learn or relearn the

organizational ways of working, revise and ensure

technologies and revise and understand standards that they

are going to use (see Activities PR-2 – PR-4 in Table I).

They must also pay attention to their past experiences in

order to be able to improve and determine their ways of

working (see Activity PR-5 in Table I). This is pivotal for

sustaining quality and technologically up-to-date and

standard-adhering work. If developers do not spend enough

time on these activities, they may run the risk of repeating

pitfalls of previous projects.

To find out about available resources and timescales for

their work, developers should review and agree on the

overall project plan in case of small projects or on parts of

the project plan in case of large projects (see Activity PR-1

in Table I). This will enable them to plan their own work so

that they can meet the stated requirements and customer

expectations. Finally, the SGD Framework recommends that

all developers sign their personal Service Level Agreements

(SLAs) – contracts in which they commit themselves to

conduct their work according to the agreed upon standards

and expectations (see Activity PR-6 in Table I).

b) Planning Activities: The Planning Activities aid in

formulating the initial and continuous development plans.

They deal with (1) reviewing the necessary documents,

(2) determining ways of conducting the work, and (3)

planning the work.

Developers should review the documents that provide

important input for understanding the scope of their work.

This includes reviewing of requirements and preparing

and/or reviewing of design specifications (see PL-1 –

PL-2 in Table I). In many cases, requirements and design

specifications may not be easy to understand. To free

themselves from any misunderstanding and/or confusion,

developers should resolve all kinds of unclear questions

and uncertainties (see PL-3 in Table I). In this way, they

make sure that they acquire a true picture of the user

requirements, that the design correctly reflects the

requirements, and that their plans are based on realistic

premises. Having understood the requirements and design

specifications aids developers in determining the limits and

approaches while planning their individual work.

The SGD Framework recommends that developers

determine implementation and unit (developer) testing goals

and strategies and practices that will guide them in their

planning (see PL-4 – PL-6 in Table I). Developers should

105Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

TABLE II. WORK ACTIVITIES (+ IMPLIES, – IMPLIES ABSENCE, I

MEANS IMPLICITLY, P STANDS FOR PARTIALLY)

then identify all kinds of standards that need be considered

during implementation, set deadlines that need be met,

estimate effort and resources and make their personal work

schedules (see PL-7 – P-10 in Table I).

After having created their individual plans, developers

evaluate them (see PL-11 in Table I), identify risks related

to the plans (see PL-12 in Table I) and plan for managing

the identified risks (see PL-13 in Table I). In this way, their

plans will achieve the right balance of scope, approaches,

resources and risks allowing developers to achieve their

goals in the best possible way.

2) The Work Activities: The SGD Process Model’s

second part, the Work Activities, includes activities required

for producing code and for assuring its quality. It consists of

five categories of activities: (1) Preparatory Activities,

(2) Coding Activities, (3) Testing Activities, (4) Evaluative

Activities, and (5) Debugging Activities. They are all listed

in Table II.

a) Preparatory Activities: The Preparatory Activities

include the activities needed for preparing the

implementation work. They help developers to become

ready for writing and unit (developer) testing code. The

activities deal with low-level designs, unit (developer) test

case designs, stubs and drivers, and unit (developer) testing

environment.

Before coding, developers should make the low-level

designs of the code they are going to write or, in cases when

someone else is responsible for making low-level designs,

they should review them. They should also make impact

analysis of the designs. The SGD Framework recommends

that developers prepare and/or review several design

solutions, analyze the impact of the solutions and select the

most appropriate solution for the work at hand (see P-1 and

P-2 in Table II). This will aid them in creating the best

possible solutions for the user requirements and the given

premises.

Developers should determine the types of unit

(developer) test cases and the order in which they should be

run. They should create or revise their own unit test case

bases and regression unit test case bases (see P-3 – P-5 in

Table II) and create or modify stubs and drivers, if

necessary (see P-6 in Table II). Finally, developers should

prepare or check their testing environments to enable

continuous and smooth testing without any technical

interruptions (see P-7 in Table II).

b) Coding Activities: The Coding Activities deal with

code production including writing or rewriting code and

compiling it. The SGD Framework recommends that code

be produced using the chosen low-level design. If code is

not based on any low-level design, then the risk is that it

may not meet the stated requirements. The coding activities

even include making personal notes on the compilation

errors and on the detected defects (see C-1 – C-4 in Table

II). This will help developers monitor their work, evaluate

the quality of their work and help them learn from their own

coding mistakes.

c) Unit Testing Activities: The Unit Testing Activities

aid in assuring that the code meets the stated quality goals.

They include (1) unit testing activities and (2) control of

unit test cases. The unit testing activities encompass

dynamic and static testing and the recording of the test

results (see T-4 – T-6 in Table II). The control of the unit

test cases, on the other hand, encompasses the review of the

unit test case bases with the purpose of checking whether

they still meet the given requirements and/or designs. Even

if developers have created or revised the unit test case bases

before starting coding, they should check them anew after

106Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

TABLE III. POST-WORK ACTIVITIES (+ IMPLIES PRESENCE, –
 IMPLIES ABSENCE, I MEANS IMPLICITLY, P STANDS FOR

PARTIALLY)

having implemented the code. If they find any problems in

them, then they should remedy them. It is only after coding

that developers may clearly see what changes need to be

done to the unit test case bases (see T-1 – T-3 in Table II).

d) Evaluative Activities: The Evaluative Activities deal

with the evaluation of unit (developer) testing results and

determination of the next step (see E-1 and E-2 in Table II).

They should be conducted right after the unit (developer)

testing activities and before starting the next series of

implementation and unit (developer) testing steps. In this

way, developers will make sure that they have chosen the

workflow that is appropriate for their work context at hand.

e) Debugging Activities: The Debugging Activities aid

developers in identifying the sources of the errors that have

been discovered during compilation and unit testing and in

suggesting solutions for eliminating them (see D-1 and D-2

in Table II). The errors are only symptoms of defects and

they may not always be visible. Therefore, it is important

that developers (1) debug code for the errors that are not

easy to interpret and (2) confirm their underlying defects

before deciding on how to attend to them. Otherwise, the

defects may reappear either in the same or some other

disguise.

3) The Post-Work Activities: The Process Model’s third

part, the Post-Work part, includes activities required for

finalizing the implementation and unit testing. They are

listed in Table III. Here, the SGD Framework suggests that

developers make a self-assessment of their own

development work before they deliver their code to

integration and system testing and that they sign-off their

personal SLAs. When assessing their development work,

developers should identify causes of their mistakes and

identify improvements that should help them avoid future

mistakes (see A-1 – A-3 in Table III). This will help

developers become more effective and efficient.

When signing off their personal SLAs, developers should

first check that their code fulfills the commitments that they

have agreed to before starting their work (see S-1 in Table

III). They should then deliver their code (see S-2 Table III)

and, finally, sign-off their assignments (see S-3 in Table

III). In this way, developers will make sure that they have

performed all the work stipulated in their personal SLAs.

B. My Process Part

My SGD Process corresponds to the actual developer
process as planned and conducted by individual developers
and/or teams. As shown in Fig. 1, it consists of three
essential activity spaces. Activity spaces are empty spaces
that are to be filled in by developers themselves with the
activities from the SGD Process Model.

Not all of the SDG process model activities may be
necessary to conduct in all development contexts. In some
contexts, only their subsets may be relevant. For this reason,
the SGD Framework only provides empty activity spaces
that are to be filled in by the developers with the activities
which they have selected by themselves. The selected
activities are the reflection of developer’s workflows that
have been conducted or are going to be conducted. Their
choice depends on the chosen strategies, methodologies and
individual developer or team preferences.

As shown in Fig. 1, the SGD Framework suggests three
main activity spaces. These are (1) My Pre-Work Space to
be filled in with the start-up activities, (2) My Work Space to
be filled in with the actual development and testing
activities, and (3) My Post-Work Space to be filled in with
concluding activities.

The My Pre-work activity space is to be filled in with the
activities that developers need for initiating and planning
their work. The activities to be used in this space are mainly
the activities from the SGD Pre-Work part including
Preliminary and Planning Activities (see Fig. 1).

The My Work activity space is to be filled in with the
activities that developers perform when implementing and
testing their code. The activities to be used in this space are
mainly the activities from the SGD Work part including
Preparatory Activities, Coding, Unit Testing, Evaluation
and Debugging (see Fig. 1). In addition to this, the My Work
space may include sets of activities from the SGD Pre-work
part that developers need for conducting their continuous
preparation and planning.

Finally, the My Post-Work activity space is to be filled
in with the activities that conclude the implementation and
unit testing work. The activities to be used in this space
mainly come from the SGD Post-Work part including
Self-Assessment and Delivery and Sign-Off Activities (see
Fig. 1). However, this space may also include the activities
from the Pre-Work and Work parts in cases when developers
have not fulfilled their SLA commitments and, thereby,
have to finalize their work before submitting their code for
system integration.

III. BENCHMARKING THE SGD FRAMEWORK

The SGD Framework was benchmarked against PSP [7].
While benchmarking, we simply checked whether PSP
included the SGD activities. The presence of the activities is
marked with a plus (+), the absence is marked with a minus

107Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

(–). Unclear cases, such as implicit or partial presence of the
activities, are marked with I standing for implicit and P
standing for partial implementation.

The benchmarking results are presented in Tables I-III.
As can be seen there, PSP does not fully cover any of the
SGD Framework categories. Below, we briefly comment on
the benchmarking results for each of the categories.

Regarding the Pre-Work activities, PSP has performed
poorly. It does not encourage developers to revise and
ensure that the technology to be used is tested and
understood (Activity PR-2 in Table I). Neither does it
suggest that developers learn or relearn the organizations’
implementation way of working (PR-4 in Table I). We
believe that these activities are pivotal for succeeding with
the implementation work. Both technology and ways of
working continuously evolve. Lack of knowledge about
them may lead to substantial productivity loss. Finally, PSP
is not clear about whether developers should review and
revise their own implementation ways of working (Activity
PR-6 in Table I). In our opinion, this is a severe omission
considering the fact that this activity is driving the whole
personal software process.

Regarding the Planning activities, PSP fails to suggest
that developers review the requirements for the units to be
developed (Activity PL-1 in Table I). This may lead to the
fact that developers may misunderstand the requirements
and develop things that have not been expected from them.
PSP also fails to suggest that developers identify risks
related to their own personal plans (Activity PL-12). Again,
this activity is one of the driving wheels of a disciplined
personal developer process.

PSP is not explicit enough about activities related to
determining implementation and testing strategies and
practices (Activity PL-5 and PL-6 in Table I) and in
reviewing the developer plan for assuring that the work is
realistic and achievable (PL-11 in Table I). We believe that
this activity is very important. Not considering it may lead
to failure of delivering code in time or it may result in never
delivering it due to the unrealistic personal plans.

Considering the Preparatory activities in the Work part,
PSP does not consider the fact that developers should make
an impact analysis of their low-level designs (Activity P-2
in Table II). Neither does it consider the fact that developers
should revise the existing regression test base (P-5 in Table
II) and that they should prepare and check whether the
testing environment is appropriate (P-7 in Table II).

PSP covers all the SGD coding activities with one
exception. It does not encourage developers to make notes
on their defects (Activity C-4 in Table II). We believe that
this activity is important from the perspective of individual
professional development. By remembering defects and
analysing their root causes, that is, mainly mistakes,
developers will improve their professional skills and
become better at developing software.

In addition to traditional testing activities, SGD includes
checks whether unit test bases and regression test bases
meet the given requirements and designs (T-1 – T-2 in
Table II). PSP does not consider these activities at all.
Neither does it assume that there may be requirement

problems in the regression test bases (T-3 in Table II).
Requirements may change with time and this should be
reflected in the regression test base. Lack of the activities T-
1 – T-3 may lead to the omission of testing important
requirements and late discovery of defects, either during
integration and system testing or even during operation.

Regarding the remaining Work activities, such as
Evaluative and Debugging activities, PSP has implemented
them all. PSP also implements all but one Post-Work
activity. The activity that it does not implement concerns
signing off SLAs (see Activity S-3 in Table III).

IV. FINAL REMARKS

Self-governance should bring value in form of improved
developer productivity and job satisfaction. Developers
should be able to decide upon what activities to choose based
on the value the activities bring. This has been recognized in
PSP as suggested by Watts Humphrey [7].

In this paper, we have suggested Self-Governance
Developer Framework outlining the activities aiding
developers and/or teams in designing their own personal
processes. SGD only provides a basic conceptual structure of
the activities and provides guidelines for performing them. It
does not provide any suggestion for any order among the
activities. Neither does it define inputs and outputs of the
activities. As a framework, it constitutes a platform for
creating developer process models, which in turn, are free to
define their own order, inputs and outputs, and provide
guidance in decision making.

The SGD Framework is a continuation and extension of
PSP [7] and of our earlier work on developer testing process
[8][9]. So far, it has only been evaluated against PSP. It has
not yet been evaluated against other standards and industrial
or academic models. Evaluation, however, is on its way.
Right now, we are conducting active research by studying
activities as conducted by software engineering students at
KTH Royal Institute of Technology [19][20]. We are also in
the process of evaluating the SGD with the industrial
software engineering professionals.

REFERENCES

[1] P. Abrahamssom and K. Kautz, “The Personal Software
Process: Experiences from Denmark,” Proc. Euromicro
Conference, IEEE, Sept. 2002, pp. 367-374, doi:
10.1109/EURMIC.2002.1046223.

[2] F. Abdolazimian and S. Mansouri, “Business Process
Reengineering by Rational Unified Process (RUP)
Methodology,”. World Applied Sciencies Journal 4, (Supple
2), IDOSI Publications, pp. 33-42, 2008.

[3] K. Beck, M. Beedle, A. van Bennekum, A. Cockburn, W.
Cunningham, F. Fowler, J. Grenning, J. Highsmith, A. Hunt,
R. Jeffries, J. Kern, B. Marick, R. C. Martin, S. Mellor, and
K. Schwaber, “Manifesto for Agile Software Development,”.
[Online]. Available from: http://agilemanifesto.org/,
2017.03.15.

[4] K. Culver-Lozo, “The Software Process from the Developer's
Perspective: A Case Study on Improving Process Usability,”
Proc. Ninth International Software Process Workshop, IEEE,
Oct. 1995, pp. 67-69, doi: 10.1109/ISPW.1994.512766.

108Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

[5] W. Hayes, “Using a Personal Software ProcessSM to improve
performance,” Proc. Fifth International Software Metrics
Symposium. Metrics, IEEE, pp. 61-71, 1998.

[6] A. Heravi, V. Coffey, and B. Trigunarsyah, “Evaluating the
level of stakeholder involvement during the project planning
processesss of building projects,” International Journal of
Project Management, ELSEVIER, vol. 33, pp. 985-997, 2015.

[7] W. S. Humphrey, Introduction to the Personal Software
Process, Addison-Wesley, 1997.

[8] G. Jeppesen, M. Kajko-Mattsson and J. Murphy, “Peeking
into Developers' Testing Process,” Proc. International
Conference on Computational Intelligence and Software
Engineering, IEEE, pp. 1-8, 2009. doi:
10.1109/CISE.2009.5366347.

 [9] M. Kajko-Mattsson and T. Bjornsson, ”Outlining Developers'
Testing ProcessModel,” Proc. 33rd EUROMICRO
Conference on Software Engineering and Advanced
Applications, IEEE, pp, 263-270, 2007, doi:
10.1109/EUROMICRO.2007.45.

[10] Z. Lasio, “Project portfolio management: An integrated
method for resource planning and scheduling to minimize
planning/scheduling-dependent expenses,” International
Journal of Project Management, ELSEVIER, vol. 28, pp. 609-
618, 2010.

[11] M. Lavallé and P. N. Robillard, ”The Impacts of Software
Process Improvement on Developers: A Systematic Review,”
Proc. 34th International Conference on Software Engineering,
pp. 113-122, 2012, doi: 10.1109/ICSE.2012.6227201.

[12] M. Maccoby, “Self-developers: why the new engineers
work,” IEEE Spectrum, IEEE, vol. 25, no. 2, pp. 50-53, 1996,
doi: 10.1109/6.4511.

[13] N. H. Madhavji, X. Zhong, and E.E. Emam, “Critical Factors
Affecting Personal Software Processes,” IEEE Software,
IEEE, vol. 17, no. 6, pp. 76-83, 2000, doi:
10.1109/52.895172.

[14] C. d. O. Melo, C. Santana, and F. Kon, “Developers
Motivation in Agile Teams,” Proc. 38th Euromicro
Conference on Software Engineering and Advanced
Applications, IEEE, pp. 376-383, 2012, doi:
10.1109/SEAA.2012.45.

[15] S. Priestley, Scientific Management in the 21th Century.
[Online]. Available from:
http://www.articlecity.com/articles/business_and_finance/arti
cle_4161.shtml, 2017.03.15.

[16] K. Schwaber and J. Sutherland, The Scrum Guide TM.
[Online]. Available from:
ttp://www.scrumguides.org/docs/scrumguide/v2016/2016-
Scrum-Guide-US.pdf#zoom=100, 2017.03.15.

[17] C. M. Thomas, “An Overview of the Current State of the
Test-First vs.Test-Last Debate,” Scholarly Horizons:
University of MinnesotaMorris Undergraduate Jounal, vol. 1,
iss. 2. [Online]. Available from:
http://digitalcommons.morris.umn.edu/cgi/viewcontent.cgi?ar
ticle=1015&context=horizons, 2017.03.15.

[18] S. Wambler, Choose the Right Software Method for the Job.
[Online]. Available from:
http://www.agiledata.org/essays/differentStrategies.html,
2017.03.15.

[19] University Degree Programme in Information and
Communication Technology (CINTE), KTH Royal Institute
of Technology in Sweden. [Online]. Available from:
https://www.kth.se/student/kurser/program/CINTE/HT13/kurs
lista?l=en, 2017.03.15.

[20] University Degree Program in Information and
Communication Technology (TCOMK), KTH Royal Institute
of Technology in Sweden. [Online]. Available from:
https://www.kth.se/student/kurser/program/TCOMK/HT14/ge
nomforande?l=en, 2017.03.15.

109Copyright (c) IARIA, 2017. ISBN: 978-1-61208-553-1

SOFTENG 2017 : The Third International Conference on Advances and Trends in Software Engineering

