
Microservices: AReview of the Costs and the Benefits

Ahmed Elfatatry
Information Technology Department

Alexandria University
Alexandria, Egypt

elfatatry@alexu.edu.eg

Abstract—This work is concerned with analyzing the merits
and the costs of Microservices. Following the hype associated
with a new technology may result in more problems rather
than solutions. The Microservices approach offers many
benefits in terms of flexibility and scalability. However, rushing
to use Microservices without balancing the situation may add
unnecessary complexity and there is a possibility that the costs
may outweigh the benefits. The key question is: are
Microservices in their current form solving more problems
than they create? In this paper, we analyze the benefits and the
costs of switching to Microservices. The aim is to support the
decision of whether to move to Microservices or not based on
the evaluation of the advantages and the disadvantages. The
main contribution of this work is the provision of a clear
picture of the costs and benefits of the technology to help
decide if and when a switch to Microservices is the correct
choice.

Keywords- Microservices; Flexibility, Scalability, Software
Engineering.

I. INTRODUCTION

Software Engineering has a long history of proposing
ways to deal with change. Flexibility is a desirable software
attribute, especially in business systems [1]. The ability to
change a system as a result of changing requirements with
minimum cost has been at the heart of Software Engineering
solutions [2] . Targeting low coupling, high cohesion,
modularization, and separation of concerns are just a few
examples.

The “service thinking” has been a shift in how software
is created and delivered. The core of such thinking is that the
focus should be on how to consume a functionality rather
than the means by which the functionality is produced [3].
In software terms, it is the decoupling of the producer from
the product. The Service Oriented Architecture (SOA) has
been an early implementation of such concept.

Micorservices are software components where
independence of development and deployment is a key
concern [4]. The concept of loose coupling is fundamental to
the idea of Microservices. Better flexibility can be achieved
if a system is built using independent services.

In this work, we provide an analysis of the costs and the
benefits of Microservices with respect to achieving
flexibility. The aim is to support the decision of switching to
Microservices.

This paper is structured as follows. Section 2 examines
the concept of Microservices and highlights the benefits of
applying such thinking. In Section 3, the Microservices
model is compared with the monolithic model in the context

of flexibility. Section 4 analyzes the inherent problems of
Microservices. The challenges of and future of
Microservices are discussed in Section 5. Finally, the
conclusions are presented in Section 6.

II. PROBLEM STATEMENT

Microservices architecture is a relatively new
architecture which originated in the industry. While there is
a great interest in the academia, however, there is an obvious
gap between the academia and the industry concerning the
topic. Few experience reports by the industry are available,
and less practical solutions from the academia [5]. Research
efforts usually focus on a single aspect of Micorservices
such as migration from legacy systems, architecture,
security, database heterogeneity, or service patterns. Other
research works highlight only benefits [6], or otherwise only
disadvantages. There is a gap in the literature concerning
studies that balance the costs versus the benefits.

III. WHAT ARE MICROSERVICES?

The Microservices approach is another way to think
about how to build software applications. The approach
advocates building the applications as suites of small,
independently deployable services, each running its own
process. There is no universally accepted definition of
Microservices. The independence of Microservices is a key
design issue. A service has to be independently deployable.
The reason is that this issue has an impact on managing
large scale deployment. Each service would be
independently developed as a self-contained product with its
own complete team. Microservices are built to serve a
specific context. Services are built around business

capabilities [7]. Related functionalities are combined into a
single business capability, and each Microservice
implements one such capability [7]. The development team
would include a user interface person, a database person,
and a business logic person. A team is usually responsible
for the whole life cycle of a Microservice [8].

Having described what Microservices are, in the
following we discuss the benefits of such approach.

 It is possible to release functionality faster. The
reason is that it is not needed to wait until it is
possible to release the whole system. Bringing
changes into production rapidly is a priority for any
business. The more an application is broken down
into smaller components, the easier it is to deal
with changes. Currently, this is not the case with
most monolithic applications [9] [10].

8Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

 Braking a system into smaller components supports
flexibility. The consumer of a specific functionality
may choose from a number of providers that
provide the same functionality with different non-
functional attributes. The more the software is
loosely coupled, the easier it is to engage with open
source, provided that there is a license. If a
company needs some functionality to be
incorporated into the systems from open source
components, it has to decompose the system into
smaller loosely coupled components.

 Independent scaling. Only the parts of the
application that need to be scaled up can be
assigned the required resources. There is no need to
upgrade the whole infrastructure only to serve
selected parts of the system [11]. The result is
efficient use of resources. Parts of the system that
need more computing power can be assigned the
needed resources without having to scale up the
whole system [12].

 It is easier to focus on security wherever it is
needed. More sensitive services could be put into
more protective zones. Less sensitive services that
require less protection can be assigned the
appropriate resources.

 Each service can be built using the best and most
appropriate tool for the task. It can be possible to
move parts of the system to the cloud [13]. A
company may decide to put some components on
the cloud to be managed by specialized
competencies. Whether or not the decision is to use
multiple technologies in a system, there is a
possibility to do it if needed [13].

 Redundancy. Usually, it is assumed that
redundancy should be avoided. In a Microservice
design, redundancy is a classic way of increasing
resilience. Microservices can help implementing
this concept more easily.

IV. MICROSERVICES VERSUS MONOLITHS

In a monolithic appication, modules cannot be executed
independently. Any change in one module of a monolith
requires rebooting the whole application. Scalability is
usually a problem in monolithic applications. Often, the
entire application does not need to be scaled up. Only a
subset of the modules need to be scaled up. The usual
strategy for handling such situation is to create new
instances of the entire application.

Typically, when monolithic architectures are exposed to
a growing load, it is difficult to locate which components of
the system are actually affected, since the system runs
within a single process. This means that although only a
single component may be experiencing load, the whole
monolith will need to be scaled up. This will be the only
solution even if it is known which component is
experiencing the load, as it is difficult to scale it in isolation

V. MICROSERVICES VERSUS SOA

Microservices are mainly focused on application
architecture, but they may have some elements that can be

taken to the enterprise level. This depends on the size of the
enterprise. SOA is an enterprise level concept. SOA is on
the enterprise scale while Microservices is on the application
scale. In short, a Microservice is a component while SOA is
an architecture.

In the traditional SOA, organizations would buy and
deploy an Enterprise Service Bus (ESB) and then deploy
their individual services on that ESB. But if more scalability
is needed, then, the entire ESB has to be scaled up [13]. The
Microservices advantage here is that individual services can
be scaled up. As Martion Fowler points out, the difference is
the shift from the intelligence that is built into the transport
layer to having the end points more intelligent and the pipes
being a little less intelligent [7].

VI. PROBLEMS OF MICROSERVICES

As stated in [11], the first disadvantage of Microservices
is its name. The goal of Microservices is to decompose an
application in order to facilitate development and
deployment of agile applications. Building small services is
not the goal of Microservices, but rather facilitating agile
development.

Although individual services may be very simple, there
is an increase in complexity as a result of having
communications between different components. Distributed
systems are more complex compared to monolithic systems.
In addition, managing running services is more complex
compared to monolithic services.

Partitioning a database across a number of different
Microservices makes it difficult to implement some business
transactions that can be implemented much easier in
monolithic systems. Implementing a query that needs
multiple joins can be a problem in some cases. Managing
consistency between databases is a difficult task.

Every single time a computation is done outside the
module boundary, the request has to travel through the
network. This results in communication overhead. The
Microservices approach will result in slower services.

From a mobile development perspective, a large number
of calls to backend Microservices is very expensive in terms
of battery usage. It is not possible to build a version of the
application for mobile devices only because all calls have to
eventually go to the backend servers.

The core idea of Microservices is having a large number
of small services, each doing small part of the work. Here,
the focus is not only on what such services are doing but on
the communications between them. Every single
communication between one service and another is a
potential place for something that can go wrong. In addition
to unit testing, testing a portion of communicating services
all together is necessary to obtain a better image of how the
system would behave in production.

Knowing what other services expect without hardcoding
such requirements may not be an easy task. In contract
testing, ingoing and outgoing attributes are checked for
conformance with the expected attributes in each case. The
development team of each Microservice has to check
communication with other services for conformance of
contracts.

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

Sharing code is harder. The objective of Microservices is
to create truly independent services. However, if there is a
need to share common utility code between services, then
the only option is to replicate a functionally across a number
of different services.

VII. CHALLENGES

While the concept of Microservices is simple, its
implementation is not. The problem is building a system of
Microservices. There are no specific rules for many issues:
only tradeoffs. One of the underlying tenets of
Microservices is that each service runs in its own isolated
process. In such case, the question is: how do services find
each other to connect? Hence, there is a need for a service
discovery mechanism to avoid hard coding the addresses.

One challenge of Microservices is deciding when to
include functions inside one service, and when to break
them into separate services. The shift to Microservices
requires changing the development methodology. The agile
approach would be suitable for the Microservices way.

Monitoring the system is another challenge because each
service may be running on a different computer or even on a
different platform. There is a potential that something might
go wrong. Having a mechanism for viewing which service is
causing a bottle neck is essential for such systems.

Having dispersed services, and more opened ports leads
to a greater attack surface. If each service has its own
database, then there is more potential for database related
attacks.

Although the Microservices approach offers substantial
benefits, a Microservices architecture requires extra
machinery, which can impose substantial costs. To enhance
the economics of Microservices, it is useful to be integrated
with the cloud [12].

Discovery, granularity, and security are among the
challenges that faced prior technologies as well, such as
Web services [14]. While security and granularity had some
solutions, automatic discovery has never been solved.

VIII. CONCLUSION

The term Microservices implies something small, but
this name can be misleading since not all services in a
Microservices architecture need to be micro [7]. A service
will become as big as it needs to be to provide a coherent,
efficient, and reliable function. However, it is not about the
size. It is about focus and logical cohesion. The main
advantage is breaking the system into smaller chunks that
can be managed individually.

Before switching to Microservices, a number of
questions need to be answered depending on each individual
case: why it is needed? Is it scalability? Is it flexibility?
Which parts of the business have such needs? An additional
issue concerns the readiness of the teams for the journey. If
the answers are not clear enough and justified, then finding
the correct answer should come first. Unless the goals are
clear enough, benefits cannot be measured.

Writing Microservices based application involves many
different issues compared to writing monolithic applications.
However, transitioning from a monolith is even more
difficult than building Microservices from scratch.

Advocates for Microservices implicitly suggest that
monoliths are outdated. While flexibility and scalability are
weak points in monoliths, they may not be priority for all
applications.

Everything comes with a cost, and so do Microservices.
If the benefits of switching to Microservices do not
outweigh the gains, then the decision is not rational.
Whether to move the whole monolith to Microservices is a
critical question and does not have a black or white answer.
Chosen parts of the application can be migrated into
Microservices. The Microservices design thinking can be
applied to a monolith. Decomposition strategy, and
interaction patterns have to be revisited. A monolithic
system can still implement asynchronous communication.

REFERENCES

[1] S. Peng, L. Shen , H. Liu and F. Li, "User-Oriented
Measurement of Software Flexibility," in 2009 WRI World
Congress on Computer Science and Information Engineering,
vol. 7, IEEE, pp. 629-633, 2009,.

[2] M. Elkholy and A. Elfatatry, "Change Taxonomy: A Fine-
Grained Classification of Software Change," IT Professional,
vol. 20, no. 4, pp. 28-36, 2018.

[3] A. Elfatatry, "Dealing with Change: Components Versus
Services," Communications of the ACM, vol. 50, no. 8, pp. 35-
39, August 2007.

[4] P. Jamshidi, C. Pahl, N. Mendonca, and J. Lewis,
"Microservices: The Journey So Far and Challenges Ahead,"
IEEE Software, vol. 35, no. 3, pp. 24-35, 2018.

[5] N. Alshuqayran , N. Ali, and R. Evans, "A Systematic Mapping
Study in Microservice Architecture," pp. 44-51, 4-6 Nov. 2016.

[6] M. Fowler, "martinfowler.com," 2017. [Online]. Available:
https://martinfowler.com/articles/microservices.html. [Accessed
January 2109].

[7] J. Thönes, "Microservices," IEEE Software, vol. 32, no. 1, pp.
116, 2015.

[8] S. Newman, Building Microservices, CA: O'Reilly Media, Inc.,
pp. 9-12, 2015.

[9] C. Pautasso, O. Zimmermann, M. Amundsen, J. Lewis, and N.
Josuttis, "Microservices in Practice, Part 2: Service Integration
and Sustainability," IEEE Software, vol. 34, no. 2, pp. 97-104,
2017.

[10] A. Kwan, H.-A. Jacobsen, A. Chan, and S. Samoojh,
"Microservices in the modern software world," pp. 297-299,
2016.

[11] S. Green, How To Build Microservices: Top 10 Hacks To
Modeling, Integrating & Deploying Microservices, pp. 24-32,
2015.

[12] A. Singleton, "The Economics of Microservices," IEEE Cloud
Computing, vol. 3, no. 5, pp. 16-20, 2016.

[13]C. EsL. S. David, "Practical Use of Microservices in Moving
Workloads to the Cloud," IEEE Cloud Computing, vol. 3, no. 5,
pp. 10-14, 2016.

[14] C. Zeng , Z. Lu , J. Wang , P. Hung, and J. Tian, "Variable
Granularity Index on Massive Service Processes,", IEEE 20th
International Conference on Web Services, Santa Clara, CA,
USA pp. 18-25, 2013.

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

