
An Approach to Testing Software on Networked Transport Robots

Ichiro Satoh

National Institute of Informatics
2-1-2 Hitotsubashi Chiyoda-ku Tokyo 101-8430 Japan

Email: ichiro@nii.ac.jp

Abstract—Networked transport robots have been widely used
to carry products in manufacturing and warehousing spaces.
Such robots communicate with servers in the spaces and other
robots through wireless local-area networks. Therefore, software
running on such robots is executed with the services that the
robots are connected to through networks, including multicast
protocols. To test such software, we need to execute it within
the network domains of the locations that the robots may move
and connect to because the correctness of the software depends
on the services. To solve this problem, we present a framework
for emulating the physical mobility of transport robots by using
the logical mobility of software designed to run on computers. It
enables such software to run within target network domains so
that the software can locally access servers and receive multicast
packets limited to the domains.

Keywords–Software testing; Wireless communication; Protocol;
Mobile agent.

I. INTRODUCTION

Many manufacturers and warehousers have been using
automated vehicles, called transport robots, to undertake repet-
itive transport tasks inside their facilities. Modern transport
robots for warehousing and manufacturing spaces have become
smart and exchange information on dynamic demands and
environmental changes in their target spaces with stationary
servers and other robots. They then should adapt themselves
according to the received information. Thus, robotics software
plays a key role as it is the medium through which their
autonomy and adaptation are embodied. One problem is that
the complexity of their software is far greater than conventional
transport robots. For example, these robots are networked with
stationary servers to exchange information with other robots
via wireless networking, e.g., Wi-Fi. Furthermore, networking
for transport robots in large warehousing and manufacturing
spaces results in another serious problem in testing software
for transport robots in the sense that these robots frequently
connect or disconnect to multiple network domains, which may
be smaller than target warehousing and manufacturing spaces,
while they move in such spaces.

In addition, not only the hardware of such transport robots
but also their software tend to be complicated. In fact, software
plays a key role in robotics as it is the medium by which
machines are made smart and adaptive. Software testing is a
popular methodology for finding information on the quality
of a software product or service by executing software intent
on finding its own problems, e.g., bugs, errors, or other
defects. Test-driven development is an evolutionary approach
to development that combines test-first development in which
you write a test before you write just enough production code
to fulfill that test and refactoring.

The development and testing software for such robots
is more difficult than that for conventional systems. This is
because, typically, software for robots need to make robots
reactive, concurrent, embedded, real-time, and data intensive.
Most transport robots tend to communicate with stationary
servers. Therefore, they are networked in order to exchange
a variety of information with stationary servers and other
robots via wireless networking. As a result, when a transport
robot moves between locations, it may lose connectivity to
a network domain provided on the previous location and
then gain connectivity at another network domain provided
on the current location. The software for running the robot
can no longer connect to the servers provided in only the
former domain, only those in the latter domain. To verify
the correctness of software for networked transport robots,
developers need to test software with all servers in the areas
that their robots may visit through the robots’ itineraries.
However, it is difficult for developers to actually move real
robots between locations in facilities that are used for business.

The purpose of this paper is to present a framework for
testing software designed to run on transport robots. The
framework is based on an early approach presented in one
of our past papers [11], in which the approach supported
testing software to be running on mobile computers by using
the movement of emulators used for mobile computers. Since
a manufacturing company asked us to develop a method to
test software designed to run on transport robots, we extended
the past approach with the ability to test moving robots to
solve the company’s problems. One reason is that mobile
computers, which the past approach focused on, do not move
between locations under their own control, but transport robots
themselves move between locations. The past approach also
assumed that the coverage areas of wireless networks to which
mobile computers connected did not overlap, but in small
spaces for warehousing and manufacturing, network domains
supported through wireless networks may not be separated.
The approach was aimed at testing client-side software running
on mobile computers but server-side software often runs on
transport robots. Therefore, although the framework presented
in this paper is constructed on the basis of the basic concept
of the past approach, it is extended with several abilities to
test software running on transport robots.

We do not intend the framework to be general. The frame-
work is aimed at testing networked software, which should be
application-level in the sense that it does not directly access
low-level hardware. Conversely, any lower-level software, e.g.,
OS and device drivers, including software for directly moni-
toring and controlling sensors and actuators is not within the
scope of the framework. The framework proposed in this paper
is an extension of our two early frameworks [11][13]. The

27Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

first enables software designed to run on portable computers
to directly connect to network domains in the sense that the
software could send and receive packets reachable within the
domains, but it does not support the movement of robots. The
second was designed for testing software running on robots
but lacks any mechanisms for emulating networking, e.g.,
changing Internet Protocol (IP) addresses, when robots move
between two coverage areas of IP-enabled wireless networks.

The remainder of this paper is organized as follows. In
Section 2 we discuss an example scenario. Section 3 presents
the design and implementation of the proposed framework.
Section 4 shows demonstrates the usage of the framework
through an example and discuss software testing with the
framework. Section 5 surveys related work and Section 6
provides a summary.

II. EXAMPLE SCENARIO

As mentioned in the previous section, our framework
was inspired by practical problems discussed in our research
collaboration with a manufacturing company. The company’s
factory is shared by the company itself and its subsidiary
companies. They use modern transport robots to carry products
between the areas managed and operated by them, where
each of the areas provides its own wireless local-area network
for communicating with transport robots running within it
and local services provided only in the network. Transport
robots move from area to area in the factory along their
itineraries as shown in Fig. 1, where the coverage area of
each wireless network access point is smaller than the target
manufacturing spaces. Each network area has one or more local
servers available. A service discovery mechanism in each area
periodically multicasts User Datagram Protocol (UDP) packets
within the network domain of the areas to avoid congestion due
to the multicasting of packets.

• When a robot arrives at a new area in the factory,
it can receive multicasted UDP packets issued from a
service discovery mechanism, e.g., Universal Plug and
Play (UPnP), in the current area and learn the network
address of the mechanism’s directory server.

• The robot connects to the server and then informs its
own addresses to the server.

• When the robot leaves the area, it can no longer
connect to the servers that it connected to in the area
and it also cannot receive any UDP packets issued
from the area’s service discovery mechanism.

Networked software running on transport robots can be
classified into two kinds, i.e., client-side and server-side
software, independently of the transmission protocol, e.g.,
Transmission Control Protocol (TCP) and UDP. To test client-
side software for the discovery mechanism on a transport
robot, the software needs to be executed within each of the
network domains of the areas that the target robot may visit
because multicasted UDP packets for the mechanism can be
reached within the individual domains. When a transport robot
discovers available services within its current network domain
one the server-side, its software also needs to be executed
to multicast UDP packets so that discover other robots or
stationary servers within each of the network domains of the
areas that the target robot may visit.

Some readers may think that even when the target software
runs outside the areas, it can receive multicasted UDP packets
via a tunneling technique. That is, we forward these packets
from a target area to a computer that runs the software.
However, there are firewalls in networks for reasons of security,
and the cost of forwarding often affects time constraints in
protocols, e.g., timeouts.

III. DESIGN AND IMPLEMENTATION

Developers are required to test their target software within
each of the areas that their target robots may visit. However,
it is difficult for developers to actually move or carry robots
between areas and connect them to networks in a running
factory. Our proposed testing framework is used to deploy and
execute software that is designed to run on transport robots that
change their current networks as they move. This framework
has two key ideas. The first is to provide a target software
with software-level-emulated execution environment in which
the software should run. The second is to provide the software
with an emulation of the physical mobility of a robot by
using the software’s logical mobility, which has been designed
to run on robots over various networks. Physical mobility
entails the movement and reconnection of mobile computing
devices between sub-networks, while logical mobility involves
software that migrates between hosts on sub-networks. The
above emulator enables the target software to be execute within
the emulation of a target robot and to directly connect to
the external environment, such as the resources and servers
provided in the networks that a robot connects to.

• The first is to use host-level virtual machines, e.g.,
VMWare and Hyper-V, and migrate the target software
and operating systems from a virtual machine host
to another host by using a technique, called live
migration. The technique enables virtual machines
to migrate to other machines to emulate the discon-
nection/reconnection of transport robots to networks
within which multicast packets for plug-and-play pro-
tocols are transmitted to servers, stationary embedded
computers, and other mobile or stationary robots.

• The second is to introduce an emulator for testing
software with plug-and-play protocols running on
language-level virtual machines, e.g., a Java virtual
machine called JVM. The emulator can carry the
target software between hosts by using a mobile agent
technology. This is useful for testing application-level
or middleware-level software.

The current implementation is based on the latter because the
former needs high-speed networked storage systems, e.g., a
Storage Area Network (SAN), which are expensive and used
in data-centers rather than warehousing and manufacturing
spaces. Our target software is also Java-based software to com-
municate with stationary servers through TCP, UDP, or upper
layer protocols. Each emulator provides the target software
with not only the internal environment of its own target robot
but also the external environment, such as the resources and
servers provided in the networks that the robot connects to. Our
final goal is to emulate the reconnection of networked robots to
networks managed by multicast-based management protocols
by using virtual machine migration. In this paper we explain
our approach on the basis of the second, i.e., mobile agent-
based emulator, because the first and second are common and

28Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

Wi-Fi coverage of
network domain 2

Wi-Fi coverage of
network domain 3

Wi-Fi coverage of
network domain 4

Wi-Fi coverage of
network domain 1

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

Directory server
(UDP multicasting)

 Moving robot
disconnected

to Wi-Fi domain 2

Moving robot
connected to

directory server
in domain 1

Moving robot

Route for robot

Figure 1. Transport robot with WiFi in a factory

it is simpler to implement the second than the first. Physical
mobility entails the reconnection of a robot to a network, while
logical mobility involves a mobile agent-based emulator of a
robot.

• Like virtual machines, this framework emulates its
target robot.

• Depending on the reconnection of its target robot, the
mobile agent-based emulator can carry software that
should run on the computer on behalf of the robot
to networks that the robot may be moved into and
connected to.

• The emulator allows us to test and debug software with
computational resources provided through its current
network as if the software were being executed on
the target robot when dynamically attached to the
network.

• Software successfully tested in the emulator can still
be run in the same way without being modified or
recompiled.

Each mobile agent is just a logical entity and must thus be
executed on a computer. Therefore, this framework assumes
that each of the sub-networks to which a device may be moved
and attached to has more than one special stationary host,
called an access point host, which offers a runtime system
for executing and migrating mobile agent-based emulators.
Each access point host is a runtime environment for allowing
applications running in a visiting emulator to connect to local
servers in its network. That is, the physical movement of a
mobile computing device from one network and attachment
to another is simulated by the logical mobility of a mobile
agent-based emulator that carries the target applications from
an access-point computer in the source network to another
access-point computer in the destination network. As a result,
each emulator is a mobile agent, and can thus basically not
only carry the codes but also the states of the applications
to the destination, so the carried applications can basically
continue their processes after arriving at another host as if
they had been moved with the target device.

The emulator delegates instruction-level emulation of target
robots to JVM. In fact, each emulator permits its inner software
to have access to the standard classes commonly supported by
the JVM as long as the target robot offers them. The upper of

Fig. 2 shows the physical mobility of robots and the lower of
Fig. 2 shows the logical mobility of emulators.

In addition, each emulator offers its inner software as
typical resources of the target robots. It can maintain a database
to store files. Each file can be stored in the database as a pair
consisting of a file/directory path name pattern and a content
and provides its target software with basic primitives for file
operation, e.g., file creation, reading, writing, and deletion. The
framework provides the target software with two states in the
lifecycle of the software running on the target robot, networked
running state and isolated running state:. The former enables
the target software to run within the target network domains,
can link up with servers on the network through TCP and
UDP and can send/receive UDP multicast packets. This state
emulates that the robot is within the coverage area of one
of the network domains provided through wireless networks.
The latter runs the software but prohibits the software from
communicating with any servers on the network. This state
emulates a situation in which a robot is out any coverage areas
of the network domains.

The framework provides an original runtime system for
emulators by extending our existing mobile agent platform
[12]. When an emulator with its target software is transferred
over a network, the runtime system transforms the state and
code of the agent, including its software, into a bitstream
defined by Java’s JAR file format, which can support digital
signatures for authentication and transmit the bitstream to the
destination host. Mobile agent-based implementation of the
framework assumes that the target software is constructed as
a set of Java bytecode, although its virtual machine-based
implementation can support other software. Each emulator
allows its target software to access most network resources
from the host, e.g., the java.net package.

As mentioned in the first section, in an earlier version of
this framework the target software must be client-side when
communicating through TCP. The current implementation of
this framework dynamically inserts a packet forwarding mech-
anism like Mobile IP [9] into the java.net package by
using a bytecode level modification technique [1] when classes
for TCP servers, e.g., ServerSocket and InetAddress,
of java.net, are invoked from the target software. When
wireless network domains overlap, robots may have more than
one IP address. Our modified classes for IP addresses, e.g.,

29Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

Network domain A

Local servers

Local servers

Local servers

Network domain B

Network domain C

Target
software

Target
software

Target
software

Logical migration

Logical migration

Local servers

Local servers

Local servers

Remote control
server

Control message

Access
point
host

Control message

Control message

Mobile agent
based emulator

Access point host

Target
software

VM

Network domain A

Network domain B

Network domain C

Physical migration

Logical mobility of emulartor

Physical mobility of robot

Figure 2. Physical mobility of robot (left) and logical mobility of emulator
(right)

InetAddress, can return an IP address explicitly specified
from developers.

IV. EXPERIENCE

To illustrate the utility of the framework, in this section
we present our experience with testing two typical kinds of
software for networked transport robots.

A. Testing software for transport robots

In developing modern transport robots, we need to test
transport robots with WiFi interfaces, which tend to be used
in factories or warehouses (Fig. 3). We had five requirements:

• Each networked transport robot has an embedded
computer (Intel Core i5, 2-GHz) with Linux and a
WiFi interface.

• The factory has eight areas, where each area has its
own wireless local area network provided through

WiFi and provides directory servers available within
the coverage space of the WiFi.

• Each robot discovers directory servers by receiving ad-
vertisement messages with their network addresses pe-
riodically issued from them through a UDP multicast-
based original service discovery protocol available
within the WiFi area of its current location.

• Each robot periodically updates its location to other
robots or stationary servers within its current area
through a TCP/IP-based original service discovery
protocol.

• The coverage areas of the WiFi access points may
overlap, and there are some spaces beyond the cover-
age areas of the WiFi access points.

Robot

WiFi interface

Sub-network area
(WiFi area)

Directory
server

Advertisement messags
(UDP multicast packets)

Moving

Figure 3. Communication between transport robot and directory server
through WiFi

We tested two protocol stacks for the service discovery
protocol through UDP multicast and session protocols between
robots and directory servers by using the proposed framework.
These protocols were constructed in Java so that we could
directly use a mobile agent-based emulator based on JVM.
To test the protocol stacks running on the client-side, i.e.,
robots, we customized a mobile agent-based emulator for the
target robots. The emulator provided virtual I/O to control the
movement of a robot for its target software, but it carried
the software to a host within the target areas and enabled
the software to receive UDP multicast packets, which were
reachable within the area, and directly connected to the servers.

The developer could instruct the emulator to migrate to
access-point hosts on the sub-networks of other areas. Also,
since the emulator could define its own itinerary in the areas,
it could precisely trace the movement of each robot. It could
carry the target software, including the protocol stacks, to
access-point hosts in the areas. It could continue to run the
software in the local area network and permitted the software
to directly receive UDP multicast packets, which servers only
transmitted within the domains of the local area networks. We
measured the processing overhead of the emulator, but the
performance of software running in an emulator on an access-
point host was not inferior to that of the same software running
on the target robot, as long as the processing capability of the
host was equivalent to that of the robot.

B. Discussion

While it was impossible to measure the framework’s bene-
fits quantitatively, it could eliminate the task of the developer
having to carry and connect his/her target robot to local-area
networks to verify whether software designed to run on the

30Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

robot can successfully coordinate with servers or other robots.
Let us now compare the framework with the other two existing
approaches.

a) Comparison with field testing approach: This ap-
proach involves the developer carrying computers running the
emulator of a target robot and testing the target software
in the emulator within the local-area network at the current
location. The developer can stay in front of his/her computer
and directly view and operate the graphical user interface of a
map viewer application on the computer. Like our framework,
this approach permits the target software to receive packets that
the location information servers multicast within the current
local-area network because the software is running within the
domain of the local-area. However, the developer carries the
computer between places simply to check whether or not the
software runs properly. This task is extremely cumbersome
for the developer. Our framework, however, can replace the
physical mobility of the developer with the logical mobility of
an emulator of the robot and it thus enables the software to
run and link up with servers within the local-area network.

b) Comparison with network-enabled emulator ap-
proach: A few emulators enable software to run on a local
computer and link up with location information servers on
target networks that their target devices may connect to through
networks. Such existing emulators cannot send and receive
packets beyond security mechanisms, e.g., firewalls. The cost
of the approach is also inevitable in the sense that it often
makes heavy traffics in networks, because packets transmitted
only within the local-area networks at the location of a target
robot tend to be much. The approach resulted in increased la-
tency and network traffic in communication between the target
application and servers, unlike ours, because the application
in an emulator had to remotely communicate with the servers
via routers and gateways, whereas the target robot could be
directly connected to the servers. This is a serious problem in
testing applications in gathering a large volume of data from
servers, and vice versa.

V. RELATED WORK

There have been many commercial and academic frame-
works for simulating the target robots in virtual environments
and for testing software for the robots in the environments.
As far as we know, there is no paper on enabling software to
be tested with networked environments that target robots may
connect to.

Nevertheless, we discuss several existing approaches to
testing software for robots. SITAF [14] is a framework for test-
ing robot components by simulating environment. It generates
test cases on the basis of specifications given by the developer.
This test generation combined with simulation allows tests to
be repeated. It also discards the need oto reuse tests, since they
are generated. Biggs [3] presented testing software by using a
repeatable regression testing method for software components
that interact with hardware, but his approach focused only on
individual components rather than whole robots. Among them,
Chung et al. [5] showed experiments on applying International
Organization for Standardization (ISO) for software testing
(ISO 9126) to components for academic robotics. Laval et al.
[7] proposed an approach to enabling the testing of not only
isolated components but also whole robots. Their approach
assumed standalone robots, so they did not support software

for networked robots. Paikan et al. [8] proposed a generic
framework for test driven development of robotic systems. It
enabled functionalities to be tested but did not support any
networking. Chen et al. [4] and Petters et al. [10] inserted
an extra step in hybrid tests between simulation and tests
based on three levels: component-level tests, online-level test
with humans, and offline test (based on logs). Son et al.
[15] proposed another three levels of tests: unit testing, state
testing and API testing. However, their approaches did not
support networked software running on robots. Laval et al. [7]
proposed a safe-by-construction architecture based on a formal
method instead of any testing approaches.

Reconnection and disconnection resulting from the move-
ment of robots are similar to that when carrying portable
computers, e.g., notebook PCs, tablets, and smartphones. There
have been several attempts at testing software designed to
run on portable computers. [2][6][16]. A typical problem in
physical mobility is that the environment of a mobile entity
can vary dynamically as the entity moves from one network
to another.

VI. CONCLUSION

In this paper, we presented a framework for testing software
running on networked transport robots, e.g., transport robots.
The goal of the framework is to enable us to test networked
software that reconnects and disconnects to the networks of the
robots’ destinations according the movement of the robots. It
can emulate the physical mobility of target robots and enables
software to directly connect to the networks of destinations in
addition to the internal execution environment of the robots.
Since our emulators were provided as mobile agents, which
can travel between computers under their own control, they
could carry and test software designed to run on their target
robots in the same way as if they had been moved with the
robots on which they were executed, and connected to services
within their current local area networks. Our early experience
with the prototype implementation of this framework strongly
suggested that the framework could greatly reduce the time
needed to develop and test software for networked industrial
computers.

REFERENCES

[1] Apache Software Foundation: “Byte Code Engineering Library,”
http://jakarta.apache.org/bcel/, October 2001.

[2] K. Beck: “Test Driven Development: By Example,” Addison Wesley,
November 2003.

[3] G. Biggs: “Applying regression testing to software for robot hard-
ware interaction,” In Proceedings of IEEE International Conference on
Robotics and Automation (ICRA’2010), pp. 4621-4626, May 2010.

[4] I. Y. Chen, B. A. MacDonald, and B. C. Wunsche: “A flexible mixed
reality simulation framework for software development in robotics,”
Journal of Software Engineering for Robotics, No.2, Vol.1, pp. 40-54,
September 2011.

[5] Y. K. Chung and S. M. Hwang: “Software testing for intelligent robots,”
In Proceedings of International Conference on Control, Automation and
Systems, pp. 2344-2349, October 2007.

[6] D. Gelperin and B. Hetzel: “The Growth of Software Testing,” Com-
munications of the ACM, Vol. 31, No. 6, pp. 687-695, June 1988.

[7] J. Laval, L. Fabresse, and N. Bouraqadi: “A methodology for testing
mobile autonomous robots,” IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS’2013), pp. 1842-1847, November
2013.

31Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

[8] A. Paikan, S. Traversaro, F. Nori, and L. Natale: “A Generic Testing
Framework for Test Driven Development of Robotic Systems,” Interna-
tional Workshop on Modelling and Simulation for Autonomous Systems
(MESAS 2015), pp. 216-225, Lecture Notes in Computer Science, vol.
9055. Springer, April 2015.

[9] C. Perkins, “IP Mobility Support”, Internet Request For Comments RFC
2002, October 1996.

[10] S. Petters, D. Thomas, M. Friedmann, and O. Von Stryk: “Multilevel
testing of control software for teams of autonomous mobile robots,”
Simulation, Modeling, and Programming for Autonomous Robots, pp.
183-194, November 2008.

[11] I. Satoh: “A Testing Framework for Mobile Computing Software,” IEEE
Transaction on Software Engineering, Vol.29, No.12, pp. 1112-1121,
December 2003.

[12] I. Satoh: “Mobile Agents,” Handbook of Ambient Intelligence and
Smart Environments, pp. 771-791, Springer, October 2010.

[13] I. Satoh: “Testing software for networked industrial systems,” Pro-
ceedings of 39th Conference of IEEE Industrial Electronics Society
(IECON’2013), IEEE Industrial Electronics Society, October 2013.

[14] H. Seong and J. Seok: “SITAF: simulation-based interface testing au-
tomation framework for robot software component,” In Florian Kongoli,
editor, Automation. InTech, July 2012.

[15] J. Son, T. Kuc, J. Park, and H. Kim: “Simulation based functional
and performance evaluation of robot components and modules,” In
proceedings of International Conference on Information Science and
Applications (ICISA’2011), pp. 1-7, May 2011.

[16] J. A. Whittaker: “What is Software Testing? And Why Is It So Hard?,”
IEEE Software, pp. 70-79, January 2000.

32Copyright (c) IARIA, 2019. ISBN: 978-1-61208-701-6

SOFTENG 2019 : The Fifth International Conference on Advances and Trends in Software Engineering

