
Software Architecture Evolution of a Physical Security Information Management

System

Oğuzhan Özçelik

ASELSAN A.Ş.

Ankara, Turkey

e-mail: oozcelik@aselsan.com.tr

Halit Oğuztüzün

Department of Computer Engineering

Middle East Technical University

Ankara, Turkey

e-mail: oguztuzn@ceng.metu.edu.tr

Abstract—The planned reuse mentality of software product

line engineering makes it possible to deliver similar products

within a short amount of time. Physical Security Information

Management (PSIM) system customizations tend to be similar

to each other with fundamental requirements being more or

less the same in different projects. One of the most common

difference in these projects is the used sensors. Some sensors

could be integrated into the PSIM system easily if they are

compatible with a standard communication interface such as

Open Network Video Interface Forum (ONVIF) protocols. But

sensors that use a special communication interface need to be

integrated one by one. A PSIM system is always expected to

integrate additional sensors to its catalog. In order to do this

easily, the parts that need to be developed to integrate a sensor

must be segregated and developed individually for each sensor.

In this work, we aim to segregate the sensor integration of a

PSIM system and compare the old and new generations of the

architecture qualitatively, based on architecture models.

Keywords-Physical Security Information Management

Systems; Physical Protection Systems; Software Product Line

Engineering.

I. INTRODUCTION

A Physical Security Information Management (PSIM)
system integrates diverse independent physical security
applications and devices. Applications such as building
management or network video recorder systems, and devices
such as security cameras, access control systems, radars and
plate recognition systems are used interconnectedly. It is
designed to ensure the physical security of a facility, city or
an open field, while providing a complete user interface to
the security operators to monitor and control them.

The subject PSIM system of this work is called SecureX,
which is not the name of the actual system but a placeholder
used for confidentiality reasons. SecureX is a PSIM system
that aims to satisfy the needs mentioned above and also to
provide an easy integration environment for new sensors and
applications. The ever-increasing number of such new
systems and different security needs of different customers
drove SecureX team to embrace a software product line
engineering approach in order to reduce the response time to
reply to the customers’ demands. These demands vary from
practical improvements to integrating a new sensor or
security application as a feature to the system. SecureX is

deployed with the full feature set and only at runtime these
features are reduced to the ones required by a given
customer, using different configuration files. Any new
integration required by a customer needs to be developed as
a feature in SecureX. Afterwards, a new SecureX build must
be generated. Following every new integration, a new testing
process takes place and because the previously integrated
system might not always be available for testing, it must be
guaranteed that the new integration will not affect the other
integrations. In this work, a new method for integrating such
new systems while reducing the number of required tests is
proposed.

The rest of the paper is structured as follows. In Section
II, several PSIM products and their specializations are
mentioned. Also, we briefly explain how they approach the
sensor integration problem and why that is not enough in the
case of SecureX. In Section III, the general architecture of
SecureX is described and the point where sensor integration
takes place is shown. In Section IV, this sensor integration
point is described in more detail. In Section V, the problems
with the current architecture are explained and in Section VI,
a new architecture that solves those problems is described. In
Section VII, the benefits of the new architecture are shown
by explaining how it solves each problem of the current
design.

II. RELATED WORKS

There are several companies offering PSIM products.
Although they provide every essential feature of a PSIM
system, they may have different specializations. Genetec [1]
provides a video analytics tool to detect intrusions. Milestone
[2] uses its own Network Video Recorder (NVR) systems
and provides an easy to use video management system.
Nedap [3] is specialized in access control systems. However,
not many details exist on how they work internally. These
products integrate some general communication standards
like ONVIF [4] protocols and also release Software
Development Kits (SDK) and expect sensor manufacturers
or customers to integrate their custom subsystems into the
PSIM system as well. This way, they accelerate sensor
integration by including numerous 3rd parties. While
developing an SDK to use in integrations is a feasible
solution, in the SecureX’s case, the main objective is
developing an architecture that can simplify not only the
sensor integrations, but also the component selection to

15Copyright (c) IARIA, 2022. ISBN: 978-1-61208-946-1

SOFTENG 2022 : The Eighth International Conference on Advances and Trends in Software Engineering

deploy because different customers have different
requirements. Another requirement is that the new
architecture will be able to remove the update and test
overhead. A software product line architecture would be
suitable to accomplish this goal.

Recently, Tekinerdogan et al. [5] described how a PSIM
system should be designed with software product line
engineering methodologies to reduce the cost of
development by improving reuse. The present work
describes a step in architectural evolution toward a product
line architecture.

III. ARCHITECTURE OF SECUREX

SecureX has a distributed architecture which can be seen
in Figure 1. Graphical User Interface (GUI) Clients of
SecureX are installed on the computers of security officers,
enabling them to monitor the entire security infrastructure of
the area under surveillance. These clients are connected to
the SecureX Server application which handles the
communication between SecureX components. The server is
also responsible for recording events, including detections
and errors sent from adapter components to the central
database. SecureX could also be installed in a hierarchical
fashion in which higher servers could also control and
monitor the security components that are connected to the
servers under them. Under the SecureX Server, there are
adapter applications for each sensor group such as camera,
radar, plate recognition systems, access control systems, etc.
These adapters are the points where the SecureX
environment makes its connections to the outer world.

When a user wants to perform some action with a sensor,
after pressing a button in the SecureX GUI Client, a message
will be sent to the SecureX Server. Then, the server delegates
this message to adapters and other servers that are
hierarchically under that server. The message arrives at the
sensor’s adapter and, according to the Interface Control
Document (ICD) used in its integration, a message would be
sent to the sensor to perform the desired action. Events and

detections caught by the sensors would follow the reverse
route and find their way to the SecureX GUI Clients.

IV. EXISTING ADAPTER ARCHITECTURE

SecureX is developed using the Open Services Gateway
Initiative (OSGi) framework, which is a Java [6] framework
to develop modular software [7]. These modules are called
“bundles” and the framework could install, uninstall and
update them, even at runtime [8]. The bundles to be installed
and their start levels are stated in bundle configuration files.
A few of these bundles can be seen in Figure 2. SecureX
uses this framework to take advantage of its service
architecture. We use the Camera Adapter application to
describe the adapter architecture, but all adapter applications
of SecureX are quite similar.

The Camera Adapter application consists of many OSGi
bundles whose purposes vary from providing network
connection interfaces or utility tools, to message definition of
sensors. These message definition bundles contain the
methods for encoding and decoding messages to and from
the sensor. Generally, the message formats for each sensor
are different. They have different data types, header types,
checksum calculation methods, big or little endian formats.
Some sensors accept JSON formatted string messages and
some require encoding messages in a certain length byte
arrays and sending them. Information about how to
communicate with a sensor is given in its ICD. A message
bundle is basically an implementation of the related ICD.

The Configuration Manager class in the Core bundle is
mainly responsible for opening a Transmission Control
Protocol (TCP) port to accept incoming server connections
and initializing the Message Handlers. Each sensor’s type,
model, unique identifier key and required information about
establishing a connection to it is written in a configuration
XML file. The Configuration Manager constantly iterates
over these files, creating a Camera Communicator and a
specific Message Handler for every new or updated file.
Messages are received by the TCP server and forwarded
from there to the Camera Communicator and lastly to the
sensor’s Message Handler.

Figure 2. Simplified Camera Adapter model in the existing architecture

Figure 1. Deployment model of SecureX

16Copyright (c) IARIA, 2022. ISBN: 978-1-61208-946-1

SOFTENG 2022 : The Eighth International Conference on Advances and Trends in Software Engineering

A Camera Communicator, which extends from the
Sensor Communicator class as in every other sensor family,
is the class where the processing of messages that came from
the server starts. It handles generic messages or preprocesses
them before the messages arrive at the Message Handler.
When a message is received from the server, it is added to
the message buffer of every active Camera Communicator in
that adapter. Camera Communicators take this message and
decide if this message is meant for their sensor. To do this,
they use the sensor identifiers in the messages. If the
identifier is the same with the Message Handler they have,
the message gets processed as will be explained in the
subsequent paragraph, otherwise it is discarded.

The processing of the messages starts at the Camera
Communicator level. Some messages are not specific to
different sensor integrations and can be handled at the
Camera Communicator level. Alternatively, some messages
require a preprocessing step such as transforming some
variables before they get forwarded to the Message Handler.
After the initial processing is done, the Camera
Communicator sends the message to the Message Handler.

The Message Handler is where the connection to the
sensor is established using the protocol the sensor uses,
which could be TCP, User Datagram Protocol (UDP),
WebSocket, serial port, (Representational State Transfer)
REST or any other network connection method that is stated
in its ICD. The Message Handler knows how the connection
should be established and how the incoming and outgoing
messages should be processed. It receives the incoming
message from the communicator and sends necessary
commands to the sensor. The Message Handler needs a
utility bundle to do the message conversions. When it needs
to encode/decode messages to/from the sensor, it uses the
Message bundle of that sensor that contains the message
types, formats, checksum methods and the information of
exactly how a message should be generated. After a message
is generated, the Message Handler sends it to the sensor
using the connection interface.

V. THE INTEGRATION PROBLEM

When the adapter starts, the StartLevelEventDispatcher
thread in the OSGi framework initializes all bundles that are
marked for auto-start in the bundle configuration file. In
Figure 3, initialization of the Core bundle is shown. The
Core bundle is the one that starts the main Camera Adapter
process with its thread “ConfigurationMonitor”. In the
initialization of the Core bundle, a single Configuration
Manager instance gets created. The Configuration Manager
then opens a port to listen to incoming SecureX Server
connections. After that, it starts a thread that periodically
checks sensor configuration files to find new or updated
configurations. If there is such a file, then the Configuration
Manager creates a Camera Communicator and the Message
Handler for that sensor. In the existing architecture, in order
to create a Message Handler instance, the Configuration
Manager has to know which Message Handler needs to be
used for which sensor configuration. In the configuration
file, the identifier of the correct Message Handler is given
and the Configuration Manager uses that identifier to

construct the Message Handler. But these Message Handler
classes are inside the Core bundle and the Configuration
Manager has a class dependency for them. This is the root
problem in the current architecture.

A. Difficulties with the Existing Architecture

In order to carry out a new sensor integration, the
message definition bundle has to be added in the Camera
Adapter product file and its Message Handler has to be
included in the Core bundle. The Configuration Manager
class needs to know with which configuration identifier the
new Message Handler should be constructed beforehand,
hence the dependency. Because of this design, integrating or
updating the integration of a sensor requires updating the
Core bundle in the adapter. The components in the Core
bundle, such as Configuration Manager and Camera
Communicator, are used in every Message Handler and need
to be compatible with all of them too. Therefore, any change
in those components in the integration of a sensor could
affect the already integrated sensors and cause them not to
function as intended. Alarms detected by the sensor might
start not to be forwarded to the server or changing the
orientation of the sensor becomes difficult because of a
change in some movement speed calculations.

In the current design, to update an already deployed
system, a complete new build needs to be generated and
tested. But testing of the previous sensor integrations are not
always easy or even possible. These sensors could be

Figure 3. Message Handler initialization in the existing architecture

17Copyright (c) IARIA, 2022. ISBN: 978-1-61208-946-1

SOFTENG 2022 : The Eighth International Conference on Advances and Trends in Software Engineering

Figure 4. Simplified Camera Adapter model in the new architecture

Figure 5. Camera Adapter Class Diagram (Simplified)

produced in very limited numbers and they can only be
found in the customer's facilities, working with the previous
SecureX version. The location of these facilities might be
difficult to access too and trips to these locations are not only
costly, but sometimes, also dangerous. Because these sensors
are almost always used in closed networks, the only way to
test them is by going to these facilities, increasing the test
cost. Also, customers would not want testers to separate
these sensors from the PSIM system to test with the new
version, creating a window of vulnerability.

Even if the tests are somehow completed, the update
procedure has its own problems. To quickly update systems
used in remote locations with little to no network access, or
used in thousands of mobile locations without stable internet
access, the update size must be minimal. But, with the
current architecture, the whole adapter build needs to be
updated, rather than just a couple of bundles.

Also, to catch up with new and updated sensors or
security systems, 3rd party companies are employed for

integrations. But this process is done through signing a Non-
Disclosure Agreement (NDA) and sharing huge parts of the
adapter code with them to be used to integrate the sensors.
Any one of them could expose the code at any point and this
indeed is a security vulnerability.

Because of these reasons, there is a need for an
architecture that ensures that the new integrations will not
affect the existing ones. The main problem with the current
design is, for every new integration, it has a need to update
the Core bundle. The reason for that is the Configuration
Manager class needs to know all available Message
Handlers and for what kind of sensor they need to be used
beforehand via class dependencies. In the new architecture,
this problem is targeted with the aim to reduce testing
overhead, reducing the amount of code that is shared with
3rd parties and also enables updating the deployed systems
with very low data.

VI. NEW ADAPTER ARCHITECTURE

To solve the problems with the existing architecture, a
new adapter architecture shown in Figure 4 is developed.
With this new architecture, all Message Handler classes
moved to their message definition bundles and an OSGi
service called IMessage Handler Provider Service that
provides a Message Handler constructor for a given
configuration identifier is developed. With that change, now
the Core bundle does not depend on the Message Handlers
or message bundles, but it depends on the Message Handler
Provider Service bundle. Message bundles also depend on
this service bundle too. This fixes the problem of the Core
bundle depending on Message Handlers and its need to be
updated to include a dependency with every new sensor
integration. These message bundles, similar with every other
OSGi bundle, can be extracted as a compiler .jar file and be

18Copyright (c) IARIA, 2022. ISBN: 978-1-61208-946-1

SOFTENG 2022 : The Eighth International Conference on Advances and Trends in Software Engineering

installed externally.
Figure 5 shows the new classes and their hierarchies

while Figure 6 shows the new message handler initialization
procedure. The Message Handler Provider Service Manager
implements the IMessage Handler Provider Service interface
and when it is initialized by the StartLevelEventDispatcher,
it reads a directory in which the new sensor integration
bundles are placed as .jar files. The manager installs those
new integrations and, after the initialization of every new
bundle, it registers itself as an instance that implements the
IMessage Handler Provider Service interface to the OSGi
context.

While those bundles are initialized, they register
themselves with the IMessage Handler Provider Service in
the OSGi context using the configuration identifier to
indicate the sensor they should be used for. Accessing the
registered IMessage Handler Provider Service is made
possible through the Message Handler Provider Service Util
class. This access technique blocks the requester thread until
a service instance registers. The Message Handler Provider
Service Manager registers itself after it initializes every
integration file. Because Message Handlers access this
manager using the same blocking technique, they can only
register themselves after the service manager finishes its job.

This causes all Message Handlers to register almost
simultaneously.

While this process continues, the Core bundle also starts
by the StartLevelEventDispatcher thread and continues its
regular processes. But this time, the Configuration Manager
class does not know any Message Handler itself. The
dependencies for Message Handler classes are removed.
When the Configuration Manager reads a sensor
configuration, it uses its configuration identifier and asks a
Message Handler constructor from the registered IMessage
Handler Provider Service. It uses the Message Handler
Provider Service Util class to access the service, so it also
waits until an IMessage Handler Provider Service finishes
its initializations and registers itself. After that, if a Message
Handler for a given configuration identifier exists in the
application, the Configuration Manager uses its constructor
to create an instance and initialize it. The initialized Message
Handler connects to the sensor and starts its regular
processes. If a Message Handler does not exist for that
identifier, the Configuration Manager skips that
configuration for this iteration.

Figure 6. Message Handler initialization in the new architecture

19Copyright (c) IARIA, 2022. ISBN: 978-1-61208-946-1

SOFTENG 2022 : The Eighth International Conference on Advances and Trends in Software Engineering

VII. CONCLUSION

The proposed adapter architecture allows us to integrate
additional sensors into the already deployed PSIM systems,
without requiring to generate another complete build of an
adapter. Because previous integrations are not touched,
integration tests of only the newly integrated sensors would
be sufficient. When the sensor is integrated, it will most
probably be available and going to the field and using the
sensor of a customer will no longer be needed.

The .jar files of the integration bundles are smaller than
one MB so system updates can be completed even with
unstable or slow networks. Even if new sensor integrations
have a problem working with previously integrated sensors,
simply removing the .jar file would be enough to revert back
to the previous deployment.

Segregating sensor integration also enables easily
selecting and combining different integration bundles
according to the project's requirement, as one could expect
from a system developed with software product line
principles. The new design also enables employing 3rd party
companies for integrations without sharing the bulk of the
adapter code. Now, any integrator could develop an
integration bundle only with the Message Handler, IMessage
Handler Provider Service and the Message Handler
Provider Service Util classes.

The new architecture provides a helpful pattern towards
transforming SecureX into a Software Product Line (SPL).
An external .jar installer service could be used not only for
sensor integrations, but also for features such as additional
GUI views or in the server, new alarm evaluation algorithms.
Because every feature is developed as an OSGi bundle, they
all could be externalized.

 The sensor integration problem could be solved by
developing an SDK, similar to the products given in the
Section II, but this design also eliminates the need of
deploying the SecureX with a full feature set and stripping it
off with configuration files at runtime. As this design gets
implemented in other parts of the SecureX, they could all be
removed from the base build and can be added per customer
demand. The new design opens a path for segregating such
different aspects in the SecureX and is expected to be even
more beneficial in the future.

REFERENCES

[1] Genetec KiwiVision. [Online], retrieved March 2022
Available: https://www.genetec.com/products/

[2] Milestone XProtect. [Online], retrieved March 2022
Available: https://www.milestonesys.com/solutions/

[3] Nedap Aeos Access Control. [Online], retrieved March 2022
Available: https://www.nedapsecurity.com/solutions/

[4] Open Network Video Interface Forum (ONVIF). [Online],
retrieved March 2022 Available: https://www.onvif.org/

[5] B. Tekinerdoğan, İ. Yakın, S. Yağız, and K. Özcan, “Product
Line Architecture Design of Software-Intensive Physical
Protection Systems”. IEEE International Symposium on
Systems Engineering (ISSE), 2020, pp. 1-8, doi:
10.1109/ISSE49799.2020.9272239.

[6] “The Java Language Specification, Java SE 8 Edition” J.
Gosling, B. Joy, G. Steele, G. Bracha, and A. Buckley. Apr.
2015. [Online]. retrieved March 2022 Available:
https://docs.oracle.com

[7] R. S. Hall, K. Pauls, S. McCulloch, and D. Savage. “OSGi in
Action - Creating Modular Applications in Java”. Manning
Publications, 2011

[8] “OSGi Service Platform, Core Specification, Release 8,” The
OSGi Alliance, April. 2018. [Online]. retrieved March 2022
Available: http://docs.osgi.org/specification/

20Copyright (c) IARIA, 2022. ISBN: 978-1-61208-946-1

SOFTENG 2022 : The Eighth International Conference on Advances and Trends in Software Engineering

