

Smart Contacts as APIs

Athanasios Priftis
Information Systems Department

HESSO / HEG-GE,
Geneva, Switzerland

e-mail: athanasios.priftis@hesge.ch

Joël Israel
Information Systems Department

HESSO / HEG-GE,
Geneva, Switzerland

e-mail: joel.israel@hesge.ch

Jean-Philippe Trabichet
Information Systems Department

HESSO / HEG-GE,
Geneva, Switzerland

e-mail: jean-
philippe.trabichet@hesge.ch

Abstract— Although blockchain protocols have existed for
some time now, a focused analysis on smart contracts, as
Application Programming Interfaces (APIs) for user driven
and web based applications, is clearly missing. APIs as abstract
interfaces can inspire us in designing smart contract based
applications and information infrastructures. Such an
approach has an impact both on the architecture and coding of
applications. In this article, we will use our pilot on managing
building rights within the City of Geneva to demonstrate how
the architecture, design and implementation of smart contracts
can be advanced. Initiating the creation of new applications
and services based on the smart contracts characteristics, such
as forced temporality and immutability and transparency,
comes with new opportunities and challenges. Blockchain
could be more than an innovative technology, a building block
of new forms of social applications and infrastructures through
the design of smart contracts as APIs.

Keyword-Smart contracts; Blockchain pilot; APIs; Web
APIs; information infrastrucure and application; user-generated
content.

I. INTRODUCTION
The main purpose of our article is to examine a

blockchain - smart contract infrastructure, inspired by APIs,
in a real life pilot. This research and application effort,
launched late 2018, is still in progress within the Geneva
City administration. We will start the article presenting smart
contracts in relation to the concepts of information
infrastructures, in particular Application Programming
Interfaces (API). An analysis will follow, presenting the
work that is taking place, involving various actors: a research
group of the University of Applied Sciences in Geneva,
collaborating with several public administration departments
of the Geneva State in the area of building rights
management and house development, notably the Cantonal
Office of Housing and Urban Planning (DALE) and selected
private entities. The goal of this cross-organizational, action
oriented, research effort is to co-produce a set of smart
contracts, developed as APIs, facilitating the open and
transparent execution of urban planning processes, while
designing a multi-stakeholder governance infrastructure of
smart contracts. This information infrastructure could set the
basis for initiating hybrid, public – private, services in the

future. Finally, we will discuss the importance of coding
smart contracts as APIs. We will make appear some crucial
characteristics of smart contracts as key elements both in the
area of building rights management and the smart contracts’
themselves.

This is how our paper is structured. In section II, we
describe in more detail what a standard API is and discuss
the sociotechnical aspect of information infrastructures,
mainly in terms of public governance. In section III, we
present how smart contracts create applications and spaces of
social decision. Finally, in sections IV and V, we describe
the, API driven, architecture of our information
infrastructure, related to our pilot application, and discuss
further work and challenges.

II. UNDERSTANDING APIS AS INFORMATION
INFRASTRUCTURES

As already demonstrated in previous research efforts [1],
we cannot rely on the modern disciplinary methods and
frameworks of knowledge in order to think and interpret the
transformative effect which new technology is having on our
culture. It is precisely these methods and frameworks that
modern technology requires us to rethink. Smart contracts as
APIs can intersect the current state of opacity in application
development and contribute to our understanding of semantic
rules to user created applications.

An API can be understood as an abstract interface
establishing parameters for computational exchange. These
parameters can be accessed and incorporated for the creation
of any number of possible interfaces. In other words, it acts
as an interface, mainly by representing and defining the
possible functions of the exposed information elements, in
the form of tools that express, and make available, certain
functions of these elements. In this way, an API creates a
standardized method to facilitate forms of exchange between
various information elements and computational agents to
make them interoperable and independent of their respective
implementations [2]. As mentioned, this is done through an
API’s establishing of specified procedures, typically through
establishing parameters of access through the assigning of
various identifiers, priorities and restrictions that can be
operated upon within API-facilitated exchanges.

9Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

In regards to which information elements can and cannot
be surfaced and shared, an API can be seen as both an entry
point into the black box of a particular computational
service, but also as a clearly defined possibility towards other
possible exchanges with this service. At present, the term
API refers specifically to the category of APIs known as
Web-based APIs. A Web API encapsulates and specifies all
of the valid messages that two or more computational parties
can request and accept while communicating via network
protocols [3].

Bucher [4] provides important understandings to the
sociotechnical questions at play in API practices. They
pertain to API-supported fields such as application
ecosystems and social media platforms. They are better
understood when combining insights from fields, such as
software studies with ethnographic approaches into how
developers produce and make sense of code in their work
with APIs. The importance of APIs as both practical
connective enablers and abstract infrastructures for
networked computational practices is a key element of our
analysis. By focusing on smart contracts as an API
implementation in information infrastructures, we aim to
give a few suggestions for how anyone working with them
might think openness and terms of inclusivity set upon
practices of sharing, participation and exchange.

Information infrastructures are closely linked to social
innovation. They are considered as a significant part of
Information and Communication Technologies (ICT)
innovations, the development and study of which comprises
both the technological components, as well as, the social
aspects. The analysis of these information infrastructures
includes technological characteristics, capabilities,
interactions and negotiations between actors involved in their
development. Information infrastructures have to be
developed through a collaborative approach, as actors have
to give up control some over their data and systems to realize
mutual benefits, supported by governance mechanisms
making this possible. The entire setting in which actors
operate may change because of a social innovation [5]. This
requires organizations to develop advanced social and
collaborative capabilities, to be able to realize new modes of
public governance. Social factors affect the development,
adoption, change, operations, and stability of information
infrastructures, as well as, the application and services linked
to them [6].

In this context, learning from APIs while developing
smart contracts, can be extremely useful in the following
areas: a) designing and deploying the overall architecture of
our application, b) understanding and explaining, the unique
possibility of each smart contract as an API, serving a larger,
user oriented information infrastructure and c) establishing
user driven parameters negotiating the relationship between
transparency, openness, business model and integration of
systems. There areas are answering to questions such as what
data is closed, what is open, what is made accessible, what is
kept internal to a system, what is open to edition and how
this possibility to edit is, actually, taking place.

Our approach provides more experience and results at
this exact point. Smart contracts as APIs become an

important element to give some sense on how data is being
circulated, made accessible and inaccessible. Even more,
they allow us to (re)think, and at times intervene, to the
overall rules of governance of platforms and applications
around us.

III. ON SMART CONTRACTS
Understanding smart contracts as applications and spaces of
social decision making, needs a more detailed analysis. This
is what this section attempts to do.

A. Smart Contracts and their design as applications
The term smart contract was introduced by Nick Szabo

back in 1997 [7]. Smart contracts are self-executing
computer programs that implement a set of functionalities.
They are based on business rules and contractual agreements.
Smart contracts, very much like APIs, can automate business
logic by embedding, verifying, and enforcing the contractual
clauses of an agreement without intervention from
intermediaries. The main characteristics of smart contracts
include machine readability and distributed code running on
a blockchain platform. Smart contracts, similarly to APIs,
can be part of an application program, but can also act
autonomously for a predefined period distributed [8].

Blockchain technology established the ground for the
implementation of smart contracts as pieces of code that
consist of executable functions and state variables.
Specifically the execution of a function changes the state of
the variables according to related logic implementation.
Nowadays, the Ethereum blockchain protocol [9], is the most
widely used technological platform for the development of
the smart contracts, using Solidity, an object oriented high-
level language, as the implementation language.

The design of a smart contract consists of their
conceptual and technical part. The latter requires the setup of
the blockchain nodes, the definition of the business
functions, the description of the processes between the users
and the application template design for the definition of the
smart contract. The conceptual design consists of the
description and classification of business rules that will be
extracted from information carriers (e.g., documents or
code). The specification of conversion of extracted rules to
smart contract functionalities using domain knowledge,
formally represented as ontologies [10]. The extracted
information gains semantic meaning from the exploitation
and usage of standardized knowledge representation, such as
ontologies and semantic rules. Adopting semantic rules
incorporated into, and enforced by a smart contract, can be
facilitated by using smart contract templates. The templates
can serve as the skeleton for generating the final smart
contract to be used in the blockchain network.

B. On Contracts, Smart Contracts and Social Decision
making
As Dupont and Maurer argue, blockchain technologies

differ from traditional social systems that validate, maintain
and enforce contracts between people (e.g., accountancy and
legal systems), because crypto-contracts tend to build social
and functional properties within the system [11]. In other

10Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

words, where lawyers and judges are needed to enforce legal
regulations and notaries are needed to validate certain legally
binding contracts, the blockchain allows for the validation of
smart contracts and their enforcement in its own right
without the necessity for arbitrating third parties. This
implies that in contrast with conventional contract laws,
which are necessarily coupled with their human validators
and enforcers, blockchain technologies are capable of
establishing and maintaining forms of political organization
that are (at least in the virtual realm) self-sustaining [12].

The decentralized enforcement of smart contracts
“dematerializes” or rather depersonalizes the auditing
authority: it eradicates the need for human arbitrators such as
notaries or accountants. While traditional contracts can be
described as textually expressed voluntary agreements
between two or more contracting parties that require human
arbitration to be validated, audited and enforced, a smart
contract appears as a mechanism that can be made binding
by means of computational scrutiny, without human
interference. However, the work of contracting remains
embedded in social interactions, namely the act of
consenting to a specific contractual reality. The aspects that
are delegated to the technology are the validation, storing
and enforcement of the contractual clauses.

As an initial governance method for our case study,
linked to smart contract and information infrastructure
challenges, we envisage a consensus-driven approach. As
Klievink and Janssen note, the consensus process is well
suited for a society where technological and economic
progress is within reach [13]. This approach has two clear
advantages over existing alternatives. First, the initiation of
an ongoing discussion with interested parties, as to achieve
an early alignment on governance rules, mainly through a
proposal and voting possibilities. Second, pilot participants
gradually develop strong incentives to resolve conflicts early
in the process to secure the viability of the application.

IV. PILOT: OPEN REGISTERS FOR BUILDING RIGHTS
In this section, we will examine the context of our pilot and
describe the, API driven, architecture of our information
infrastructure.

A. Context
The DALE (Office cantonal du Logement et de la

Planification Foncière, State of Geneva), in collaboration
with the University of Applied Sciences in Geneva (HEG-
GE) are co-producing a public register with set of smart
contracts facilitating the open and transparent execution of
urban planning processes. This existing initiative attempts to:
a) test and authenticate the execution of a process between
several entities of the domain, through the application of
smart contracts and b) make proposals around a multi-
stakeholder governance of smart contracts for public
services.

A recent study by Credit Suisse [14] describes the
challenging situation around an “affordable” housing-to-buy
in Geneva, highlighting, the urbanism consequence:
transportation, pollution, environment, moving of population

to other countries - areas. Thus, new solutions, services and
policies around building rights and urban planning are
becoming urgent. The existing informational infrastructure
includes a detailed analysis of the business process around
building permissions. The overall view of how the building
permission is processed today, includes: a) public
administration actors - departments’ participation and roles,
b) decision process and status of a building permit and c)
rules of when and how are building rights are calculated.

There are few selected information and consultation
initiatives, driven by the public administration, with
professional and local populations before the opening of new
building zone. This process is set in order to generate
building rights in specific areas with some kind of citizen
participation. Evaluating this situation, we concluded that the
process is largely opaque to the outside and confined within
the public administration actors. At the same time, opening a
new building zone can last up to four years, depending on
various circumstances. Moreover, the implementation
process of the accepted projects, in a specific building area,
is not available to the public. These initial elements justify
the main goal of this pilot: managing the building rights
process in a more open, educated and collective way.

B. An API driven architecture
The architecture of our application tries to serve the need

for more openness, transparency and collective management
by the following core socio-technical elements: a)
decentralized, permissive and editable storage of all data
collected within our application, b) easy and transparent
smart contract deployment and scrutiny for the related
administrative processes and c) possibility for users to create
proposals and vote for the proposals of others.

We are using the InterPlanetary File System’s (IPFS)
API to interact with it as our storage system. IPFS is a
protocol and network designed to create a content-
addressable, peer-to-peer method of storing and sharing
hypermedia in a distributed file system [15]. Similar to a
torrent, IPFS allows users to not only receive but host and
edit content.

As opposed to a centrally located server IPFS is built
around a decentralized system of user-operators who hold a
portion of the overall data, creating a resilient system of file
storage and sharing. The main method is the following: a
hash is obtained based on the image file's binary codes. The
file is retrieved by searching for it with its hash. It is not
possible to replace an image, with another one, because the
file is changing when its hash changes. The hash code is
immutable on the Ethereum Blockchain and the file is
immutable on IPFS.

For our application to interact with IPFS, we are using
the method, presented in Figure 1. An IPFS node dials to
other application instances using WebRTC:

11Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

 ┌──────────────┐
│ Browser │ libp2p(WebRTC) │ Browser
│
│ │◀──────────────▶│
│
└──────────────┘
└──────────────┘
 ▲ ▲
 │WebSockets WebSockets│
 │ ┌──────────────┐ │
 │ │ Desktop │ │
 └───────▶│ Terminal

│◀─────────┘
 └──────────────┘

Figure 1. Application diagram with an IPFS node that dials to other

instances using WebRTC

We are using the Nuxt.js framework, ideal for creating

Vue.js applications and abstracting away the client/server
distribution. The two important functions deployed are the
ADD function (which takes a message ready to be posted
and returns the information of the created hash) and the
READ function read (which takes a hash and returns the
message created).

The next step is to add the discussion with Ethereum,
here the logic of the mechanism. We first check if we have
local data to be taken into consideration through the user’s
browser: if no, we collect the data by reading the smart
contract, pointing us to the file that needs to be recovered. If
yes, we check with the smart contract that the referenced
data are still valid, we update the smart contract and notify
all the users that this change took place, followed by the
online documentation. This process is facilitated by an
appropriate middleware known as MetaMask. MetaMask is
an application acting as a bridge that allows to run Ethereum
apps from the user’s browser without running a full
Ethereum node.

The result of these architectural choices is an early
prototype, published in June 2019, validated as a minimum
viable product from the actors of the pilot. It follows the
architecture described above and gives access to read and
edit an initial building rights’ table (DAB) describing the
number of building rights allocated to a specific construction
area, as well as, the exact parts of land associated to them. In
Figure 2, we present a view of the main page of the DAB
prototype:

Figure 2. The DAB prototype accessible at https://proto3.ynternet.org/

This initial table describing building rights in a specific

construction area is at the core of the case study. It is the
main register allowing for building applicants (site
developers, architects, private entities) to interact with the
public administration and claim their rights to execute a
building project in a selected area. Below follows a more
detailed view of this, now, decentralised and blockchain
validated table. Figure 3 demonstrates how the editing of the
initial building rights table in the DAB is presented:

Figure 3. Editing the initial building rights table in the DAB prototype
accessible at https://proto3.ynternet.org/

Regarding proposal creation of the application, our

architecture implements the following general idea: when a
user wants to send a new data through a smart contract, or
even create a new one, we add his/her proposal on a stack of
proposals with a dedicated function (addProposal). When we
accept a proposal, we empty the stack and replace the data
with the one in the proposal (acceptProposal that calls
updateHash). This point brings us to the semantic data
structure of the application. As already mentioned, IPFS
allow us to post whatever type of data we wish, raw data or
encrypted data. The application is now saving data in the
JavaScript Object Notation (JSON), with a history of all edits
made upon this data. The final version of the application will
generate several JSON data models based on different
processes, for example the table of distribution of user’s
building- rights in the application: one can create a specific
field data, mapped as an object of which each key is another
object, as demonstrated in Figure 4:

{
 "data": {
 "parcelle_id_1": {
 "bat_1": "dab_1",
 "bat_2": "dab_2",
 }
 "parcelle_id_2": {
 "bat_2": "dab_4",
 }
 }
 "created_at": "xxxx",
 "created_by": "xxxx",
 "previousVersion": "xxxx"
}

Figure 4. Data structure for the distribution of user’s building rights

12Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

https://proto3.ynternet.org/
https://proto3.ynternet.org/

This modular and decentralized architecture, described in
summary above, is thought out itself as an API. It acts as an
interface for semantic data to be stored and then executed, as
part of, or new smart contracts. These data are organised and
can be accessed through a central smart contract, an oracle,
which will serve as a registry table for other smart contracts.
The oracle keeps a key - value of an identifier to the address
of a smart contract tracing back to all data related to it. This
process is called oraclize and provides a way to get outside
data from any API onto the blockchain. This point allows us
to proceed to the next area and examine the actual coding
structure of smart contracts as APIs.

C. Coding Smart Contracts as APIs
Coding Smart Contracts as APIs allows us to design and

deploy them, with the four characteristics described in the
following paragraphs. The first one consists of making
public a register with its data and add a read and write
function available to its users. Figure 5 details how this code
operates.

// This is the object structure representing a record
 struct record {
 address created_by;
 address updated_by;
 address smartContractAddress;
 bool exists;
 }
 // the mapping representing the register
 mapping(string => record) internal register;
 // Public function that write a record into the register
 function write(string memory _identifier, address

_smartContractAddress) public returns (bool) {
 address creator = msg.sender;
 if (register[_identifier].exists) {
 creator = register[_identifier].created_by;
 }
 register[_identifier] = record({smartContractAddress:

_smartContractAddress, exists: true, updated_by: msg.sender, created_by:
creator});

 return true;
 }
 // Public function that read a record value from the register
 function read(string memory _identifier) public view returns

(address) {
 require(register[_identifier].exists, "This record is empty");

 return register[_identifier].smartContractAddress;
 }

Figure 5. Creation of a blockchain register with a read and write
functions

The second characteristic is linked to the modularity

smart contracts as APIs, particularly for assigning of various
identifiers, priorities and rules. This includes adding the
canUpdateExistingRecord parameter, set with the smart
contract deployment. This parameter is stating if an existing
record can be updated. In Figure 6, we present the initiation a
smart contract as an API.

// Can you update an existing record ?
 bool internal canUpdateExistingRecord;
 // At Smart Contract deployment you must say if an existing record can

be updated
 constructor (bool _canUpdateExistingRecord) public {
 canUpdateExistingRecord = _canUpdateExistingRecord;

 }
 ...
 function write(string memory _identifier, address

_smartContractAddress) public returns (bool) {
 // Before writing into the register, check whether you are about to

update an existing record and if you have the right to do so => otherwise we
send an exception stating "Existing records can’t be updated"

 require(!register[_identifier].exists || canUpdateExistingRecord,
"Existing records can’t be updated");

 ...
 }

Figure 6. Initiating a smart contract as an API

The third characteristic is about initiating a continuous

interoperability between, user-driven, applications. This is
initiated by adding an event, emitted every time someone
writes on the register. The data of this event are describing
its full internal process and are open and reusable to all
blockchain users. In Figure 7, we demonstrate the code
creating events allowing for more interoperability.

// event that can be transmitted and followed on the blockchain
 event writeRegister(
 string _identifier,
 address _smartContractAddress
);
 ...
 function write(string memory _identifier, address

_smartContractAddress) public returns (bool) {
 ...
 // when we write into the register, we emit the event
 emit writeRegister(_identifier, _smartContractAddress);
 ...
 }

Figure 7. Creating events allowing for more interoperability

The final characteristic regards the possibility for a

collaborative edition of the smart contracts based on
transparent rules and constant user driven improvement. This
take place by adding a function that changes the value of the
canUpdateExistingRecord parameter. The code presented in
Figure 8 introduces a propositions’ mechanism for all users
of the application and will be, at a later stage of this pilot,
associated to a voting function.

 // an event to be sent when someone change the

canUpdateExistingRecord value
 event updateCanUpdateExistingRecord(
 bool _oldValue,
 bool _newValue,
);
 // You can modify the canUpdateExistingRecord value
 function setCanUpdateExistingRecord(bool

_canUpdateExistingRecord) public {
 emit updateCanUpdateExistingRecord(canUpdateExistingRecord,

_canUpdateExistingRecord);
 canUpdateExistingRecord = _canUpdateExistingRecord;
 }

Figure 8. Towards user driven collaboration and improvement

As with all public smart contracts, the code presented

above can be traced online with all of its actual transactions
[16]. The demonstrated characteristics showed how a smart
contract designed as an API, can be implemented in a
modular and open way.

13Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

V. CONCLUSIONS AND FUTURE WORK
Application development, in a blockchain and smart

contracts context, seems like a novel opportunity to create
platforms with less opacity and great collaboration for their
participants. However, blockchain(s) remain protocol(s) and
as we already learned in the last twenty, or so, years,
decentralized protocols are neither participative, nor more
democratic by default: control and centralization can take
place in various levels and spheres [17]. Through this article,
we tried to use APIs as an overall concept both of the
architecture and the smart contracts of our pilot. Particularly,
the function the oracle is cutting through existing APIs and
smart contracts as applications.

Developing an API culture is a prerequisite to use any
information infrastructure, particularly the ones allowing for
the deployment of smart contract enabled applications. Smart
contracts’ immutability and forced temporality are crucial.
At the time of execution of an application, there are elements
that demand explicit attention and negotiation with involved
stakeholders. Moreover, they need to be designed and
thought our as APIs, exposing for the very beginning their
objectives, rules of operation and governance.

The early experience from our building rights’
management pilot is teaching us that, smart contracts
adoption and administration, need to be tightly linked to
specific skills within the responsible organizations. The main
driver for public sector blockchain pilot initiatives, like our
Geneva based pilot described in this article, is mostly based
in the principles of transparency and efficiency, particularly
in business process and data monitoring. Blockchain and
smart contracts are unique elements for information
infrastructures serving such principles.

ACKNOWLEDGMENT
This paper is possible thanks to the SCODES research

project: an applied research project on blockchain protocols
and smart contracts, involving five Hautes Ecoles from
French-speaking Switzerland (University of Applied
Sciences HES-SO). Its goal is to develop knowledge within
this particular field studying and developing practical cases
of use and transferring the acquired knowledge to the
regional economic actors.

REFERENCES

[1] A. Priftis and J.-P. Trabichet, “The CoWaBoo protocol and
applications: towards the learnable social semantic web”
International Journal on Advances in Software, vol. 11, pp. 6-
17, 2018.

[2] T. Espinha, A. Zaidman and H.-G. Gross, “Web API growing
pains: Loosely coupled yet strongly tied,” Journal of Systems
and Software, vol. 100, pp. 27–43, 2015.

[3] Wikipedia. Application programming interface, [Online].
Available from:

https://en.wikipedia.org/wiki/Application_programming_inter
face, [retrieved: September 2019].

[4] T. Bucher, “Objects of intense feeling: The case of the Twitter
API,” Computational Culture, number 3, 2013. Available
from: http://computationalculture.net/objects-of-intense-
feeling-the-case-of-the-twitter-api/ [retrieved: September
2019].

[5] D. Rüede and K. Lurtz, K., “Mapping the various meanings of
social innovation: Towards a differentiated understanding of
an emerging concept” EBS Business School Research Paper
Series 12–03, Oestrich-Winkel, 2012.

[6] P. Constantinides, “The development and consequences of
new information infrastructures: the case of mashup
platforms”, Media, Culture & Society, vol. 34(5), pp. 606-
622, 2012.

[7] N. Szabo, “Formalizing and Securing Relationships on Public
Networks”. First Monday, vol. 2, no. 9, 1997, doi:
http://dx.doi.org/10.5210/fm.v2i9.548 [retrieved: September
2019].

[8] R. O’Shields, “Smart Contracts: Legal Agreements For The
Blockchain,” 21 N.C. Banking Inst. pp. 180-181, 2017.

[9] V. Buterin, V. “A next-generation smart contract and
decentralized application platform.” Ethereum 1–36 (2014)
[Online]. Available from:
http://buyxpr.com/build/pdfs/EthereumWhitePaper.pdf
[retrieved: September 2019].

[10] M. Wöhrer and U. Zdun, “Smart contracts: Security
patternsin the ethereum ecosystem and solidity,” in1st
InternationalWorkshop on Blockchain Oriented Software
Engineering@ SANER 2018, 2018. [Online]. Available
from:
https://eprints.cs.univie.ac.at/5433/7/sanerws18iwbosemain-
id1-p-380f58e-35576-preprint.pdf [retrieved: September
2019].

[11] Q. Dupont and B. Maurer, B “Ledgers and Law in the
Blockchain.” Kings Review [Online]. Available from:
http://kingsreview.co.uk/magazine/blog/2015/06/23/ledgers-
andlaw-in-the-blockchain/ [retrieved: September 2019].

[12] A. Wright and P. De Filippi, “Decentralized Blockchain
Technology and the Rise of Lex Cryptographia.” Social
Science Research Network 2580664 (2015). Available from:
http://papers.ssrn.com/abstract=2580664 [retrieved:
September 2019].

[13] B. Klievink and M. Janssen, M., “Developing multi-layer
information infrastructures: Advancing social innovation
through public–private governance”. Information Systems
Management, 31(3), pp. 240-249, 2014.

[14] Investment Solutions & Products Swiss Economics,
“Location, location, floor plan for the Swiss Real Estate
Market in 2019” [Online]. Available from:
https://www.credit-suisse.com/media/assets/private-
banking/docs/ch/privatkunden/eigenheim-finanzieren/swiss-
real-estate-market-2019.pdf [retrieved: September 2019].

[15] J. Benet, “IPFS - Content Addressed, Versioned, P2P File
System (DRAFT 3)” [Online]. Available from:
https://ipfs.io/ipfs/QmV9tSDx9UiPeWExXEeH6aoDvmihvx6
jD5eLb4jbTaKGps [retrieved: September 2019].

[16] Smart Contracts as API: the Oracle. Full code accessible at
https://ropsten.etherscan.io/address/0xf083a44e157b9ac4b7de
a543bd67547ecf57d00a#code [retrieved: September 2019].

[17] A. Galloway, Protocol: How Control Exists After
Decentralization, MIT Press, 2004

14Copyright (c) IARIA, 2019. ISBN: 978-1-61208-757-3

SOTICS 2019 : The Ninth International Conference on Social Media Technologies, Communication, and Informatics

http://dx.doi.org/10.5210/fm.v2i9.548
http://buyxpr.com/build/pdfs/EthereumWhitePaper.pdf
http://kingsreview.co.uk/magazine/blog/2015/06/23/ledgers-andlaw-in-the-blockchain/
http://kingsreview.co.uk/magazine/blog/2015/06/23/ledgers-andlaw-in-the-blockchain/
http://papers.ssrn.com/abstract=2580664
https://www.credit-suisse.com/media/assets/private-banking/docs/ch/privatkunden/eigenheim-finanzieren/swiss-real-estate-market-2019.pdf
https://www.credit-suisse.com/media/assets/private-banking/docs/ch/privatkunden/eigenheim-finanzieren/swiss-real-estate-market-2019.pdf
https://www.credit-suisse.com/media/assets/private-banking/docs/ch/privatkunden/eigenheim-finanzieren/swiss-real-estate-market-2019.pdf
https://ipfs.io/ipfs/QmV9tSDx9UiPeWExXEeH6aoDvmihvx6jD5eLb4jbTaKGps
https://ipfs.io/ipfs/QmV9tSDx9UiPeWExXEeH6aoDvmihvx6jD5eLb4jbTaKGps
https://ropsten.etherscan.io/address/0xf083a44e157b9ac4b7dea543bd67547ecf57d00a#code
https://ropsten.etherscan.io/address/0xf083a44e157b9ac4b7dea543bd67547ecf57d00a#code

	I. Introduction
	II. Understanding APIs as Information Infrastructures
	III. On smart contracts
	A. Smart Contracts and their design as applications
	B. On Contracts, Smart Contracts and Social Decision making

	IV. Pilot: Open registers for building rights
	A. Context
	B. An API driven architecture
	C. Coding Smart Contracts as APIs

	V. Conclusions and future work
	Acknowledgment
	References

