
Network Coded TCP (CTCP) Performance over
Satellite Networks

Jason Cloud and Muriel Médard
Research Laboratory of Electronics

Massachusetts Institute of Technology
Cambridge, MA USA

email: {jcloud,medard}@mit.edu

Douglas Leith
Hamilton Institute

National University of Ireland Maynooth
Co. Kildare, Ireland

email: doug.leith@nuim.ie

Abstract—We show preliminary results for the performance
of Network Coded TCP (CTCP) over large latency networks.
While CTCP performs very well in networks with relatively short
RTT , the slow-start mechanism currently employed does not
adequately fill the available bandwidth when the RTT is large.
Regardless, we show that CTCP still outperforms current TCP
variants (i.e., Cubic TCP and Hybla TCP) for high packet loss
rates (e.g., > 2.5%). We then explore the possibility of a modified
congestion control mechanism based off of H-TCP that opens the
congestion window quickly to overcome the challenges of large
latency networks. Preliminary results are provided that show the
combination of network coding with an appropriate congestion
control algorithm can provide gains on the order of 20 times
that of existing TCP variants. Finally, we provide a discussion
of the future work needed to increase CTCP’s performance in
these networks.

Keywords—Network Coding; TCP; High Delay.

I. INTRODUCTION

It is widely known that TCP performs poorly over satellite
networks [1], [2]. The combination of long round-trip times
(RTT) and high packet loss rates (PER) over these networks
create an environment that seriously degrades the performance
of TCP. To overcome the challenges presented by satellite
communication, a large variety of solutions have been pro-
posed over the years. These range from modifications to TCP’s
congestion control algorithm to implementing performance
enhancing proxies (PEPs). Each, of which, usually have their
own drawbacks. In the case of modified TCP protocols,
adoption is prevented due to the specialized nature of the
protocol and issues related to fairness with other TCP variants.
In the case of PEPs, increased hardware costs and issues
regarding end-to-end semantics is an issue. In this paper, we
suggest the use of Coded TCP (CTCP) proposed by Kim et.
al., [3], to overcome a large number of these issues.

Providing reliable data transport for satellite environments
has been a topic of study since the late 1990’s [1], [2].
End-to-end solutions typically involve tuning TCP so that the
long RTT s representative of satellite links do not negatively
impact performance. Two versions that perform well over
satellite networks are TCP Cubic [4] and TCP Hybla [5].
Cubic, designed for high speed networks, and Hybla, de-
signed for heterogeneous networks, use a congestion window
algorithm that increases the congestion window size (cwnd)
independently from the RTT . This makes either version useful
in environments with high delay. Unlike TCP Cubic, Hybla
was developed to also reduce the impact of multiple losses,
inappropriate timeouts, and burstiness making it a more logical

option for use over satellite links. When compared with each
other, studies have shown that Hybla performs better than
Cubic under high PERs while the reverse is true under low
PER’s [6]. Regardless, both experience performance degrada-
tion under high losses. A more recent protocol, Loss-Tolerant
TCP (LT-TCP) [7], [8], combines Reed-Solomon (RS) coding
with TCP to overcome this issue, but it requires the use of
explicit congestion control (ECN) and the RS code can result
in performance loss due to decoding errors. CTCP circumvents
these issues by using a congestion control algorithm that does
not rely on feedback from lower layers and network coding
eliminates the possibility of decoding errors while helping to
overcome packet losses.

In lieu of changes to TCP, PEPs are another common
method used to increase performance over satellite links.
A TCP flow is generally terminated at the gateway to the
satellite link, a protocol specifically designed for the satellite
system (usually one that is proprietary) is used to transmit
data over the satellite network, and a new TCP session is
setup on the other side of the satellite link to complete the
connection. This implementation poses two issues. First, the
cost of implementing a PEP at the satellite network gateway
may be high. Second, the termination of TCP sessions at the
PEP violates end-to-end semantics such as IPSEC [2]. Again,
CTCP has the potential to eliminate the need for PEPs while
providing the same level of service over satellite links.

In this paper, we explore CTCP’s performance in high RTT
environments to determine if we can provide resilience in the
presence of high packet loss rates, in addition to achieving the
performance of TCP Cubic or TCP Hybla under no packet
losses. We first provide a description in Section II of the
existing, well tested version of CTCP that uses a TCP Reno
style slow-start mechanism. This version is designed to provide
robustness to packet losses through the use of network coding,
but the congestion window management is ill-suited to large
bandwidth-delay products (BDP). In Section III we measure
the performance of a modified version of CTCP that opens
cwnd in a manner similar to H-TCP [9] to show that it is
indeed possible to achieve high performance with large PER’s
and RTT ’s. Finally, we conclude in Section IV by proposing
areas of possible future work.

II. CTCP OVERVIEW

The development of CTCP [3] has shown how the inte-
gration of network coding with TCP can provide significant

53Copyright (c) IARIA, 2014. ISBN: 978-1-61208-317-9

SPACOMM 2014 : The Sixth International Conference on Advances in Satellite and Space Communications

benefits over existing TCP variants, especially in high packet
loss environments. These gains are a direct result of the
combination of both network coding and CTCP’s congestion
window management. The remainder of this section will
provide a brief introduction into both of these mechanisms.
For a more detailed explanation of CTCP’s implementation
and performance, the reader should refer to [3].

A. Network Coding

One of the key features of CTCP is the use of network cod-
ing to aid in recovery from packet losses and the capability to
decrease overhead by limiting the number of required retrans-
missions. The gains provided by network coding are twofold:
network coded packets can be used to provide forward error
correction in the case of lost packets, and also simplifies
feedback and retransmissions (should they be needed). In
its current implementation, CTCP uses a systematic random
linear code [10]. As an example, consider the transfer of
packets p1 . . . pk between a server and client. Each packet
pi, i ∈ {1, . . . , k} is first sent uncoded followed by a number
of network coded packets where every coded packet ci is a
random linear combination of the packets p1, . . . , pk, i.e.,

ci =

k∑
j=1

αjpj , (1)

each αj ∈ F2q is randomly chosen, and q is large enough to
ensure linear independence among all network coded packets
with high probability (the current implementation draws αj

from F256). Should retransmissions be needed, additional
network coded packets are generated and sent to the client.
The number of coded packets sent along with the uncoded
packets is dynamically determined based on an estimate of
the path’s packet loss probability, while the number of packets
sent as a result of feedback is determined by both the number
degrees of freedom (dofs) required by the client to decode
and the estimated packet loss probability.

B. Congestion Control

The second feature of CTCP that is a major contributor
to the observed gains is the congestion window management.
CTCP uses a modified version of TCP’s Additive Increase,
Multiplicative Decrease (AIMD) algorithm that was designed
to be compatible with network coding. Specifically, the current
implementation modifies the multiplicative back-off factor, β,
to be

β =
RTTmin

RTT
, (2)

where RTTmin is the path’s estimated true round-trip prop-
agation delay (which is assumed to be the lowest per-packet
RTT observed during the lifetime of a connection) and RTT
is the last measured round-trip time. The congestion window
is increased using TCP Reno’s increase mechanism (i.e., the
slow-start mode increases cwnd by 1 for every received
acknowledgement, otherwise cwnd is increased by 1/cwnd).

This approach, in effect, assumes that the increase of a
packet’s RTT is solely due to the queuing of packets along
the path, which is an indication of congestion. If a packet is
lost at random and RTT = RTTmin (i.e., it is not lost due

Server Client

Dummynet

Router

Buffer, size Q

packets

Packet discard

probability p

Rate,

B Mbps
Delay T

Figure 1: Schematic of experimental testbed.

to congestion), then cwnd is not reduced. On the other hand
if RTT > RTTmin, a packet loss is interpreted as congestion
and cwnd is reduced by a factor of β. While this approach does
a fairly good job at distinguishing between packet losses due
to congestion and poor channels, it has a few characteristics
that may not work well for satellite networks. A more detailed
discussion is provided in Section IV.

C. Performance over Short RTT Networks

Using the mechanisms summarized above, [3] implemented
CTCP as a SOCKSv5 proxy in user space and measured its
performance over a wide range of conditions (although all
measurements were made using round-trip times representative
of terrestrial networks). Kim et. al. showed that CTCP can
achieve goodput efficiencies greater than 90% for packet loss
rates less than 0.2 while the performance of standard TCP
variants is severely impacted. Another important aspect of
CTCP is that it is friendly/fair with standard TCP, unlike
some TCP variants that work well over satellite networks but
are unfriendly to other TCP variants (e.g., TCP Hybla and
Cubic TCP [11]). This is important since we are interested in
providing an end-to-end solution. Therefore, we would like to
ensure that if the bottleneck link is not the satellite link, CTCP
does not adversely impact the performance of TCP flows not
traversing the satellite.

III. CTCP PERFORMANCE IN SATELLITE NETWORKS

While previous results show that CTCP has great potential
in networks with high packet losses and low RTT , no mea-
surements exist for networks with large RTT . This section
will explore the potential for CTCP to provide improved
performance in environments with large delays using a testbed
located at the Hamilton Institute, NUI Maynooth, Ireland.

The testbed used to collect measurements consists of
commodity servers (Dell Poweredge 850, 3GHz Xeon, Intel
82571EB Gigabit NIC) connected via a router and gigabit
switches. A diagram of the setup is shown in Figure 1. Sender
and receiver machines used in the tests both run a Linux
2.6.32.27 kernel. The router is a commodity server running
FreeBSD 4.11 and ipfw-dummynet. Data is transferred be-
tween the sender and receiver machines using rsync (version
3.0.4) and the appropriate TCP version.

Each version of TCP, other than CTCP, is implemented
within the kernel making it easy to select the appropriate
variant. In the case of CTCP, it is implemented in user space as
a SOCKSv5 proxy with the forward proxy located on the client
and the reverse proxy located on the server. Traffic between
the proxies is sent using CTCP. Therefore, a client’s request
is first directed to the local forward proxy, transmitted to the
reverse proxy, and then forwarded to the appropriate port on

54Copyright (c) IARIA, 2014. ISBN: 978-1-61208-317-9

SPACOMM 2014 : The Sixth International Conference on Advances in Satellite and Space Communications

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7
x 10

6

PER

G
o
o
d
p
u
t
(b

p
s
)

CTCPv1
CTCPv2
HTCP
Cubic
Hybla
Reno
Veno
Westwood

(a) RTT = 500 ms

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7
x 10

6

PER

G
o
o
d
p
u
t
(b

p
s
)

CTCPv1
CTCPv2
HTCP
Cubic
Hybla
Reno
Veno
Westwood

(b) RTT = 600 ms

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7
x 10

6

PER

G
o
o
d
p
u
t
(b

p
s
)

CTCPv1
CTCPv2
HTCP
Cubic
Hybla
Reno
Veno
Westwood

(c) RTT = 700 ms

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

1

2

3

4

5

6

7
x 10

6

PER

G
o
o
d
p
u
t
(b

p
s
)

CTCPv1
CTCPv2
HTCP
Cubic
Hybla
Reno
Veno
Westwood

(d) RTT = 800 ms

Figure 2: Comparison of TCP variants with varying PER and RTT with a link rate of 10 Mbps. Each bar shows the mean goodput, while the error bars show one standard
deviation.

the server. The server responds using the reverse process. In
order to use rsync, proxychains (version 3.1) was used
to direct traffic to the proxy.

A series of tests were conducted using the following TCP
variants: CTCP, Cubic, Hybla, Reno, Veno, and Westwood. A
20 MB file download is used, along with varying PER’s and
RTT ’s, to characterize the performance of each TCP version.
Figure 2 provides a summary of each version’s mean goodput
as a function of the PER. Each test was run a minimum of
three times and a maximum of ten times depending on the
amount of time need to complete the 20 MB download.

The performance of CTCP, labeled “CTCP v1” in Figure
2, in networks with large RTT and low PER is significantly
poorer than two of the TCP variants designed for these network
types (i.e., TCP Hybla and TCP Cubic). For PER greater
than 2.5%, CTCP begins to outperform both of these TCP
variants for most of the RTT s tested. In fact, the goodput of
CTCP remains relatively constant as the PER increases to
20% while the goodput of the other TCP variants approaches
zero quickly.

The additive increase portion of CTCP’s current congestion
control algorithm is the primary reason for its poor perfor-
mance at low PER. To overcome the challenges related to
long RTT ’s, a modified version of CTCP, labeled “CTCP
v2” in Figure 2, was implemented that increases cwnd in
a manner consistent with H-TCP (see [9] for more details).
Because cwnd is no longer dependent on the RTT , it can
increase rapidly allowing it to use the available capacity more
efficiently. In addition to the use of network coding and the
unmodified multiplicative cwnd back-off approach, CTCP is
able to maintain a large throughput for PER’s as high as 20%.
In fact, measurements indicate that this modified version of
CTCP provides a gain of approximately 21 times that of TCP

10
−3

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

Loss Probability

G
o
o

d
p

u
t

(M
b

p
s
)

CTCPv2

Cubic TCP

Cubic TCP vs. Cubic TCP

(a) RTT = 500 ms

10
−3

10
−2

10
−1

0

0.5

1

1.5

2

2.5

3

3.5

4

Loss Probability

G
o
o

d
p

u
t

(M
b

p
s
)

CTCPv2

Cubic TCP

Cubic TCP vs. Cubic TCP

(b) RTT = 800 ms

Figure 3: Goodput versus packet loss rate for (i) a Cubic TCP flow and CTCPv2 flow
sharing a link (solid lines), and (ii) two Cubic TCP flows sharing a link (dashed line).
The link rate is 5 Mbps and the error bars show one standard deviation.

Hybla for a PER of 20% and RTT of 500 ms over a link
with a bandwidth of 10 Mbps.

In addition, preliminary testing has shown that this version
of CTCP is friendly with existing TCP versions. Each sub-
figure in Figure 3 provides a comparison of the throughput
for two tests. The dotted line labeled “Cubic TCP vs. Cubic
TCP” shows the throughput obtained by one Cubic TCP flow
competing against a second Cubic TCP flow. The solid lines
show the second test where a Cubic TCP flow is competing
against a CTCP flow. The indication of fairness is provided
by the similarity of the solid Cubic TCP line and the dotted
line.

While these results are promising, additional work is re-
quired. This is evident in the trace of the goodput and cwnd
shown in Figure 4. The instantaneous goodput is highly
variable, which causes delay jitter as packets are delivered to
higher layers. Possible causes of this may be an underestimate
of the packet loss probability or an underestimate of the
number of coded packets needed. Either case creates the
distinct decode events shown in the figure. Regardless, the

55Copyright (c) IARIA, 2014. ISBN: 978-1-61208-317-9

SPACOMM 2014 : The Sixth International Conference on Advances in Satellite and Space Communications

0 20 40 60 80 100
0

200

400

600

800

Time (seconds)

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 S
iz

e
 (

c
w

n
d
)

0 20 40 60 80 100
0

5

10

15

20

25

30

G
o
o
d
p
u
t
(M

b
p
s
)

(a) PER = 0.5%

0 20 40 60 80 100
0

200

400

600

800

Time (seconds)

C
o
n
g
e
s
ti
o
n
 W

in
d
o
w

 S
iz

e
 (

c
w

n
d
)

0 20 40 60 80 100
0

5

10

15

20

25

30

G
o
o
d
p
u
t
(M

b
p
s
)

(b) PER = 20%

Figure 4: Trace of CTCPv2 over a 10 Mbps link with a RTT of 500 ms. The dotted
line shows the the instantaneous goodput and the solid line shows cwnd. The mean
goodput in (a) and (b) is 9.19 Mbps and 8.92 Mbps respectively.

potential for greatly increasing performance at the transport
layer is evident. Not only can throughput performance be
drastically improved, but this solution appears, at first glance,
to be backward compatible with existing TCP variants.

IV. CONCLUSIONS AND FUTURE WORK

In Section II, an overview of CTCP is presented and a brief
overview of CTCP’s performance in networks with short RTT
was provided. In Section III, CTCP’s performance is compared
with other TCP variants in networks with RTT ’s similar to
those that would be observed with satellite communications.
Measurements showed that the current implementation of
CTCP performed worse than some existing TCP versions for
small PER, but outperformed other TCP versions for high
PER. One of the primary causes of this was discussed and
an alternate cwnd increase mechanism is used to highlight
that some minor changes to the current congestion control
algorithm can significantly improve performance in these
environments. While previous sections discussed several areas
of future research such as this, the remainder of this section
will introduce additional future research directions.

Additional research into CTCP’s congestion control algo-
rithm is required. First, the current implementation relies
on the RTT of the path in order to increase cwnd. For
connections with large RTT ’s, this is obviously an issue.
More aggressive methods for increasing cwnd, such as using
a H-TCP like mechanism, need to be thoroughly developed
while still maintaining interoperability with network coding
and fairness with legacy TCP variants. Second, the method
for determining whether a packet is lost due to congestion or
due to a poor link is also an issue. The multiplicative back
off method currently used (i.e., β = RTTmin/RTT) works well
when jitter in the RTT measurement is primarily caused by
the filling of queues. It fails to work properly when the delay
jitter is caused by something else. For example, if the delay
jitter is caused by a particular medium-access (MAC) method,
it is likely that β < 1 causing cwnd to collapse. This was
observed in measurements taken over a WiMax network [3]
where the MAC’s scheduling algorithm caused large variations
in the RTT . Methods using feedback from the network, such
as LT-TCP, which uses explicit congestion notification (ECN)
[7], are possibilities although we would like to ensure that
CTCP operates irrespective of lower layer implementations.

The use of network coding in CTCP is critical for overcom-
ing packet losses and providing high throughput, but little is

understood about how to adjust the number of packets coded
together (i.e., the coding window). The current implementation
of CTCP uses a fixed size block, or generation, scheme for
generating network coded packets. This is not optimal given
the user’s requirements since there is an inherent tradeoff
between throughput and delay as the block, or generation,
size is changed [12]. Dynamically adjusting the block size,
or using a sliding coding window approach, to meet the
user’s throughput/delay requirements is also a topic of ongoing
research. Furthermore, the interaction between congestion
avoidance and network coding is not fully understood. The
current implementation treats both congestion avoidance and
network coding separately, yet there is evidence that intelli-
gently merging the two can provide a performance increase.

In summary, CTCP has potential to greatly improve network
performance over existing transport layer protocols in the
presence of both high packet error rates and round-trip times.
Initial measurements have shown significant gains in goodput
over existing TCP versions, but additional research is needed
to tune both the congestion control algorithm and network
coding parameters to ensure proper functionality.

ACKNOWLEDGMENT

This work is sponsored, in part, by the Assistant Secretary
of Defense (ASD R&E) under Air Force Contract # FA8721-
05-C-0002. Opinions, interpretations, recommendations and
conclusions are those of the authors and are not necessarily
endorsed by the United States Government.

REFERENCES

[1] C. Caini, R. Firrincieli, M. Marchese, T. d. Cola, M. Luglio, C. Roseti,
N. Celandroni, and F. Potorti, “Transport Layer Protocols and Ar-
chitectures for Satellite Networks,” International Journal of Satellite
Communications and Networking, vol. 25, no. 1, 2007, pp. 1–26.

[2] A. Pirovano and F. Garcia, “A New Survey on Improving TCP Perfor-
mances Over Geostationary Satellite Link,” Network and Communica-
tion Technologies, vol. 2, no. 1, Jan. 2013.

[3] M. Kim, J. Cloud, A. ParandehGheibi, L. Urbina, K. Fouli,
D. Leith, and M. Médard, “Network Coded TCP (CTCP),”
CoRR, vol. abs/1212.2291v2, 2012. [Online]. Available:
http://arxiv.org/abs/1212.2291

[4] S. Ha, I. Rhee, and L. Xu, “CUBIC: A New TCP-Friendly High-Speed
TCP Variant,” SIGOPS Oper. Syst. Rev., vol. 42, no. 5, Jul. 2008, pp.
64–74.

[5] C. Caini and R. Firrincieli, “TCP Hybla: A TCP Enhancement for
Heterogeneous Networks,” International Journal of Satellite Communi-
cations and Networking, vol. 22, no. 5, 2004, pp. 547–566.

[6] S. Trivedi, S. Jaiswal, R. Kumar, and S. Rao, “Comparative Performance
Evaluation of TCP Hybla and TCP Cubic for Satellite Communication
Under Low Error Conditions,” in IMSAA, 2010, pp. 1–5.

[7] B. Ganguly, B. Holzbauer, K. Kar, and K. Battle, “Loss-Tolerant TCP
(LT-TCP): Implementation and Experimental Evaluation,” in MILCOM,
2012, pp. 1–6.

[8] V. Sharma, S. Kalyanaraman, K. Kar, K. K. Ramakrishnan, and V. Subra-
manian, “MPLOT: A Transport Protocol Exploiting Multipath Diversity
Using Erasure Codes, year = 2008,” in INFOCOM, pp. 121–125.

[9] D. Leith and R. Shorten, “H-TCP: TCP for High-Speed and Long-
Distance Networks,” 2004.

[10] T. Ho, M. Médard, R. Koetter, D. Karger, M. Effros, J. Shi, and
B. Leong, “A Random Linear Network Coding Approach to Multicast,”
IEEE Transactions on Information Theory, vol. 52, no. 10, 2006, pp.
4413–4430.

[11] A. Urke, L. Braten, and K. Ovsthus, “TCP Challenges in Hybrid Mili-
tary Satellite Networks; Measurements and Comparison,” in MILCOM,
2012, pp. 1–6.

[12] W. Zeng, C. Ng, and M. Médard, “Joint Coding and Scheduling
Optimization in Wireless Systems with Varying Delay Sensitivities,” in
SECON, 2012, pp. 416–424.

56Copyright (c) IARIA, 2014. ISBN: 978-1-61208-317-9

SPACOMM 2014 : The Sixth International Conference on Advances in Satellite and Space Communications

