

Software Quality Test Method of Satellite Control System using Software Test

Automation System

Cheol Oh Jeong, Byoung-Sun Lee, In Jun Kim, Yoola Hwang, Soojeon Lee

Unmanned Vehicle Systems Research Group
Electronics and Telecommunications Research Institute (ETRI)

Daejeon, Rep. of Korea
E-mail: {cojeong, lbs, ijkim, ylhwang, soojeonlee}@etri.re.kr

Abstract—Software (SW) quality management is a quality
protection activity applied throughout SW development. SW
quality management enables to implement software that is
defect-free and meets development requirements. Quality
management is performed through quality requirements,
quality assurance methodology and quality testing. This paper
shows SW quality test methods and results applied at the
development stage of satellite control system. SW quality test
was carried out by static test and dynamic test according to
Verification-Validation (V-V) model proposed in SW
engineering. The static test verifies that the source code is well
implemented according to the requirements and design at the
verification stage, and the dynamic test confirms in the
validation phase whether the implemented product is running
well. In order to efficiently perform the static test and the
dynamic test, an SW test automation system is implemented. In
this paper, we introduce a SW test automation system
implemented for SW static test and dynamic test execution.
Also, we show the results of the quality test that resulted in
satisfying the requirements through potential errors or defects
in the source code derived from static tests and requirements-
based coverage results derived from dynamic tests.

Keywords-Quality; Test; Satellite Control System (SCS);
Static Test; Dynamic Test; Test Automation System; Coverage.

I. INTRODUCTION
The function and role of the software, which has been

recognized as an auxiliary role of the hardware in the past,
is gradually becoming a key factor that determines the
completeness of the product. Accordingly, efforts are being
made to ensure software quality from the development stage
in order to secure software quality and efficient quality
control. The satellite control system continuously monitors
the state of the satellite during the operation of the satellite
and periodically sends commands to the satellite to carry out
a key function that enables the satellite to operate normally
during the life of the satellite. Therefore, the SW of the
satellite control system requires quality control from the
development stage, so that the stability of the system should
be secured. It is necessary to construct and operate a test
automation system to efficiently perform the quality test of
the SW requiring high reliability. The test automation
system consists of a static test function that verifies the
coding rule violation, code duplicate and complexity and a
dynamic test function that checks the requirement based
coverage required by the international standard [4]. Static
testing is a technique for analyzing design documents and

source code without direct execution of SW and examining
whether coding rules, memory errors, duplicate code and
code complexity are implemented according to international
standards through coding standards, checklists, and so on
[5]. On the other hand, the dynamic test is a technique to
find SW defects by comparing the actual results with the
expected results after executing the SW using test cases [6].
In this paper, we introduce a static test system and dynamic
test system that verifies and validates the SW quality of the
satellite control system. We present SW quality results
through SW error and latent defect analysis derived from
static test results, as well as coverage ratio analysis derived
from dynamic test results.
 The rest of the paper is structured as follows. In Section
2, we present an overview of SW quality test and SW test
automation system including SW static test flow and
dynamic test flow. In Section 3, we show the results of SW
static test and dynamic test. In Section 4, we show the
derived result of SW quality analysis from SW test results.
Finally, in Section 5, we present conclusion and future work.

II. SW QUALITY TEST

A. Overview of SW Quality Test
SW quality control by V-V technique is performed to

verify “Is the product being built correctly?” during
verification phase and to validate “Is the right product being
built?” during validation phase according to development
and testing stages [1][3][4]. In the verification stage, the
validity of the coding according to the specification is
verified using the static test. In the validation stage, dynamic
tests confirm whether the implemented SW satisfies the
specification and requirements, as shown in Figure 1 [2].
Software test automation system was implemented and
applied to verify and validate software quality efficiently.

B. Overview of SW Test Automation System
Software test automation system was implemented in

Windows 7 environment, and it consists of Redmine (open
source software) [8], Git (open source software) [9],
Continuous Integration Automation Test (CIAT) and Web-
based Quality Management System (WQMS), as shown in
Figure 2. REDMINE is an issue management tool that
manages issues that arise during both static and dynamic
testing. GIT is a source configuration control tool that checks

32Copyright (c) IARIA, 2018. ISBN: 978-1-61208-624-8

SPACOMM 2018 : The Tenth International Conference on Advances in Satellite and Space Communications

the version state of committed SW. CIAT is Continuous
Integration (CI) server that performs static and dynamic tests
and WQMS is a web-based quality monitoring system that
allows administrators or development departments to
constantly monitor static and dynamic test results and to
control test quality and manage schedules [3].

Figure 3 shows the functional flow diagram of the SW
test automation system. Test verification of the SW begins
with the developer or the coding authority connecting
directly to the test automation system and committing the
SW. Once the SW is committed, the tests are run
automatically after checking for the latest version. After the
test is over, the test results will be distributed via e-mail to
developers, administrators, managers and others involved in
SW development. If there are errors present in the test result,
the error will be corrected and the quality of the development
SW is verified through retest.

SW test automation systems can perform static and
dynamic tests. Table I shows test items which can be
performed using the SW test automation system. For static
tests, one can test for coding rules, memory errors, duplicate
code, and code complexity. For dynamic tests, one can test
for coverage. Tests can be performed using a test automation
system for SWs implemented in C # languages [5][6].

TABLE I. TEST ITEMS OF SW TEST AUTOMATION SYSTEM

Test Test Item Tool

Static Test

Coding Rule Verification FxCop

Memory Error Verification Sparrow QCE

Duplicate Code Verification CPD

Code Complexity Verification CCM

Dynamic Test Coverage Measurement SquishCoCo

The static test is performed according to the static test

flow, as shown in Figure 4.
We derive dedicated SW coding rules for the static test

by selecting the coding rules of error with high frequency of
occurrence and the rules of high importance. The selection
criteria for coding rules are as follows.

Rule selection criteria
- Rules that can be linked to faults when faults are dynamic
- Rules that may cause maintenance problems
- Rules that developers can easily understand

Rule exclusion criteria
- Rules that apply only to Visual Basic
- Rules that apply only to C / C ++
- Rules that difficult and abstract to explain
- Rules that proof is tough

Selected rules applying to static test are shown in Table II
[7].

TABLE II. RULES SELECTION BY SELECTION CRITERIA

Coding Rule Verification Memory Error Verification
Tool Rule

Description
Applied
Rules

FxCop

Design Rules 26
Globalization

Rules 1

Interoperability
Rules 11

Maintainability
Rules 0

Mobility Rules 0
Naming Rules 0
Performance

Rules 1

Portability
Rules 1

Reliability
Rules 0

Security Rules 20
Usage Rules 16

Total Applied Rules 76

Tool Rule
Description

Applied
Rules

Sparrow

API Usage 1

Design 1

Forbidden 1

Misuse 3

Program
Crash 4

Quality 24

Total Applied Rules 34

The requirement-based SW dynamic test was performed
by the procedure shown in Figure 5.

First, the test items were derived from the requirements
specification analysis for the system development, and then
the test cases were designed to enable dynamic test input
and output verification. A test case was implemented in a
script format using a macro program so that the test
automation system and the test case can be operated in an
interlocking manner. The dynamic test system was
performed by linking the implemented test case with the test
automation system. The test cases implemented in the script
format were implemented considering the test procedures
and the efficient recursive test. Dynamic tests were
performed on all the user interfaces of the implemented
system. The test case implementation uses AutoHotKey, a
macro program tool, and the scripted task case performs the
dynamic test in the order of Setup, Start, Output, and End as
shown in Figure 6.

The Setup phase copies the necessary Data Base (DB)
and data files before starting the test, and the Start step
compares the actual results with the expected results while
performing the scenarios in the test procedure based on the
user interface. The Output stage compares the actual results
with the expected results for the entire procedure to
determine the success of the test. Finally, the End step
executes the test case script as a procedure to initialize the
test.

III. RESULTS OF STATIC TEST AND DYNAMIC TEST

A. Static Test
Code rule verification and memory error verification were

performed on a total of 80,602 lines of source codes
according to the static test procedure. The static test
execution result is provided through the expression screen
of the test automation system to manager and SW
developers, as shown in Figure 7.

Static test results are shown in Table III. A total of 871
rule violations were detected in the coding rule verification
including all violations from critical warning, critical error,

33Copyright (c) IARIA, 2018. ISBN: 978-1-61208-624-8

SPACOMM 2018 : The Tenth International Conference on Advances in Satellite and Space Communications

and error violation. A total of 3,340 rule violations were
detected in memory error verification, including all
violations from level 1 to level 3.

TABLE III. STATIC TEST RESULTS

Coding Rule Verification Results Memory Error Verification Results
Coding Rule # of

Detection
Design Rules 768

Globalization Rules 0
Interoperability Rules 0

Performance Rules 3
Portability Rules 0
Security Rules 0
Usage Rules 100

Total Violation
Number 871

Memory Error
Rule

of
Detection

API Usage 0
Design 0

Forbidden 0
Misuse 0

Program Crash 170
Quality 3170

Total Violation
Number 3,340

B. Dynamic Test
Dynamic testing was performed on a requirement based

basis and was performed on a flight dynamics subsystem. A
total of 20 test cases were derived for the 10 test items
through the requirements analysis for the dynamic test
execution. The errors/faults that are found during the
dynamic test are delivered to the developer and the recursive
test is performed to confirm the normal operation of the
system through the retest after the error correction. The
result of the dynamic test is provided through the display
screen of the test automation system, as shown in Figure 8.

Dynamic test results of performing a requirement based
dynamic test are shown in Table IV. Of the total of 20 test
cases, 18 test cases have been confirmed to pass successfully.

TABLE IV. DYNAMIC TEST RESULTS

Test Case
ID Test Description Pass/Fail

TFDS-01 Six-hour Orbit Prediction without Maneuver Pass
TFDS -02 One-month Orbit Prediction without Maneuver Pass
TFDS -03 One-month Orbit Prediction with Maneuver Pass
TFDS -04 Two Stations Bias Calibration Pass
TFDS -05 Orbit Determination Using Commercial Data

without Maneuver Pass
TFDS -06 Orbit Determination including Maneuver Pass
TFDS -07 Real-time Orbit Determination Pass
TFDS -08 Event Prediction (Eclipse & Sun-interference

test) Pass

TFDS -09 Station-Keeping Maneuver Planning and
Reconstruction Pass

TFDS -10 Station-Keeping Maneuver Preparation Pass
TFDS -11 Station-Relocation Maneuver Planning Pass
TFDS -12 De-Orbit Maneuver Planning Pass
TFDS -13 Collision Avoidance Pass
TFDS -15 Fuel Accounting by TOT Method Pass
TFDS -17 H Management Pass
TFDS -18 On-board Orbit Propagator Pass
TFDS -19 Earth Acquisition Pass
TFDS -20 Plot Services Pass
TFDS -23 Data Management Fail
TFDS -24 Process Management Fail

IV. SW QUALITY ANALYSIS RESULT
The SW quality level of static test can be confirmed by

the following formula.

Violation ratio (%) = # of violations/total line x100

When the SW quality level of static test is derived by
reflecting the number of violations in Table III for a total of
80,602 lines of source code, the violation ratio of about 1%
has calculated for the coding rule verification and about 4%
for the memory error verification has calculated, as shown in
Table V.

TABLE V. SW QUALITY LEVEL OF STATIC TEST

Classification # of Source
Code Line

of
Violation

Violation
Ratio

Coding Rule Verification
80,602

871 1.08%

Memory Error Verification 3,340 4.15%

The SW quality of static test results can be considered to

be high. It is possible to implement a more reliable SW by
debugging the violation code with the recommended code
format suggested by the coding rule format.

The SW quality level of dynamic test can be confirmed
by the following formula.

Coverage ratio (%)=# of success cases/# of total test cases

When the SW quality level of dynamic test is derived by
reflecting the number of success cases of 18 for a total test
cases of 20, 90% of coverage ratio is calculated. The
dynamic test was terminated when reaching a preset
coverage target of 90%. The quality of the dynamic test
results is considered to be high as the preset coverage target
is achieved. As the preset coverage target was achieved, two
test cases were not performed dynamic test and were marked
as fail. By re-configuring coverage targets and performing
source code debugging and dynamic testing, we expect
100% coverage to be achieved.

V. CONCLUSION & FUTURE WORK
This paper introduced the SW quality test method of

SCS using SW test automation system implemented to
ensure the quality and stability of software during the
software development period. We also presented the static
test results and dynamic test results as well as SW quality
analysis results. This allows for the assurance of quality and
stability of the development software which was
complemented by identifying and modifying the software
errors and defects during the development period. Through
this, it is possible to analyze SW quality of satellite control
system, and SW quality and stability are secured. When
participating in similar satellite control system development
program in the future, it is expected to apply the
implemented software test automation system to ensure that
the quality and reliability of mature software development is
applicable.

34Copyright (c) IARIA, 2018. ISBN: 978-1-61208-624-8

SPACOMM 2018 : The Tenth International Conference on Advances in Satellite and Space Communications

ACKNOWLEDGMENT

This work was supported by the Space Core Technology
Development Program of NRF-Ministry of Science, ICT
and Future Planning [NRF-2014M1A3A3A03034729,
Development of core S/W standard platform for GEO
satellite ground control system]

REFERENCES
[1] National IT Industry Promotion Agency. nipa: SW

Development Quality Management Manual. [Online]
Available from: http://
codedragon.tistory.com/attachment/cfile22.uf@233B8149549
02830161BD7.pdf, Mar. 17, 2018

[2] Electromics & Telecommunications Research Instittute,
ETRI: Technical Document - SW Quality Management
System of SGC Core Platform Development, Jan. 2015

[3] C. O. Jeong, B. S. Lee, I. J. Kim, Y. L. Hwang, and S. J. Lee,
“Automated S/W testing system for Core S/W of Ground
Control System”, KOSST Conference, Jun. 2015

[4] C. O. Jeong, B. S. Lee, I. J. Kim, Y. L. Hwang, and S. J. Lee,
“SW Quality Test Method of Satellite Control System”, The
Korean Society for Aeronautical and Space Sciences, Fall
conference, Nov. 2015,

[5] C. O. Jeong, B. S. Lee, I. J. Kim, Y .L. Hwang, and S. J. Lee,
“SW Static Test Method of Satellite Ground Control System”,
The Korean Society for Aeronautical and Space Sciences,
Spring conference, Apr. 2016

[6] C. O. Jeong, B. S. Lee, I. J. Kim, Y. L. Hwang, and S. J. Lee,
“Software Dynamic Test Environment Development of
Satellite Ground Control System”, The Korean Society for
Aeronautical and Space Sciences, Fall conference, Nov. 2016

[7] C. O. Jeong, B. S. Lee, I. J. Kim, Y. L. Hwang, and S. J. Lee,
“SW test automation system implementation for securing SW
quality and stability”, Int'l Conference on Software
Engineering Research and Practice (SERP’17), Jul. 2017

[8] REDMINE: [Online] Available from:
http://www.redmine.org/projects/redmine/wiki/Download,
Mar. 17, 2018

[9] Git: [Online] Available https://git-scm.com/downloads, Mar.
17, 2018

Figure 1. SW Quality Management System

Figure 2. Test automation system configuration

Figure 3. Test Process of SW Test Automation System

35Copyright (c) IARIA, 2018. ISBN: 978-1-61208-624-8

SPACOMM 2018 : The Tenth International Conference on Advances in Satellite and Space Communications

Figure 4. Static Test Flow

Figure 5. Dynamic Test Process Diagram

Figure 6. Test Case Script Structure

36Copyright (c) IARIA, 2018. ISBN: 978-1-61208-624-8

SPACOMM 2018 : The Tenth International Conference on Advances in Satellite and Space Communications

Figure 7. Static test result display screen (example)

Figure 8. Dynamic test result display screen (Example)

37Copyright (c) IARIA, 2018. ISBN: 978-1-61208-624-8

SPACOMM 2018 : The Tenth International Conference on Advances in Satellite and Space Communications

	I. Introduction
	II. SW Quality Test
	A. Overview of SW Quality Test
	B. Overview of SW Test Automation System

	III. Results of Static Test and Dynamic Test
	A. Static Test
	B. Dynamic Test

	IV. SW Quality Analysis Result
	V. Conclusion & Future Work
	Acknowledgment
	References

