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Abstract— Human Hand Acti vity Recognition (HAR) using 

wearable sensors can be utilized in various practical 

applications such as lifelogging, human-computer interaction, 

and gesture interfaces. Especially with the latest deep learning 
approaches, the feasibility of HAR in practice gets more 

promising. In this paper, we present a HAR system based on 

deep Autoencoder for denoising and deep Recurrent Neural 

Network (RNN) for classification. The proposed HAR system 

achieves a mean accuracy of 79.38% for seven complex hand 
activities, while only of 72.65% without the autoencoder. The 

presented combination of autoencoder and RNN could be 

useful for much improved human activity recognition. 

Keywords- Human Hand Activity Recognition; Autoencoder; 

Deep Learning; RNN; CNN. 

I.  INTRODUCTION 

Human Hand Activity Recognition (HAR) is  an essential 
technology in many user-centric applications such as human-

computer interactions, assisted living, smart homes, and 
lifelogging [1]. In general, there are two ways for HAR: 

using imaging sensors or inertial sensors that capture human 

activities [2]. Wearable devices are generally equipped with 
inertial sensors such as accelerometer, gyroscope, and 

magnetometer, which have proven useful for HAR. There 
have been many studies recognizing Activities of Daily 

Living (ADL) with these wearable devices [1]-[10]. Besides, 
various classifiers have been employed such as Hidden 

Markov Models (HMM), Support Vector Machine (SVM), 

and Restricted Boltzmann Machines (RBMs) [3], [4], [5]. 
Recently, data-driven approaches using deep learning for 

HAR have led to a significant recognition improvement by  
self-learning without the need of handcrafting features [6], 

[7]. Approaches based on Convolutional Neural Networks 
(CNN) demonstrate the advantages of using convolutional 

filters to capture local dependencies and scale invariance 

features. Previous works, such as [8] and [9] applied CNN to 
extract features from mult i-channel sensor data and 

recognized locomotion activities such as walking, sitting, 
walking upstairs, and walking downstairs.  

Recently, there is a growing interest in hand activity 
recognition [10], due to the widespread use and availability 

of wristbands and smartwatches. In the work [11], CNN was 
utilized to recognize mult iple daily life hand activities from 

multiple sensors signals. Approaches in [12] and [13] used 

Recurrent Neural Networks (RNN) to recognize locomotion 
and hand gestures using multiple Inertial Measurement Units 

(IMU) on the wrist and body parts. The work in [14] 
presented improvements in a mult i-sensor based HAR 

combining CNN and RNN. 
Although these previous studies accomplished some 

success recognizing hand activities, because of the delicate 
movements of hands and sensor noise, some additional 

preprocessing is needed to improve the recognition rate. One 

latest study in [15] examined different motion artifacts in 
constrained and free-mode motion sensor networks and 

demonstrated the effect of alleviating noise motion artifacts 
in HAR performance.   

In this work, we present a HAR system for daily hand 
activities consisting of a deep autoencoder for denoising and 

a deep RNN for classification. As reducing signal noise and 

improving signal representations can be dealt with a deep 
autoencoder [16], we have designed a supervised 

autoencoder for denoising and better signal representation. 
Then, a classifier based on RNN recognizes daily hand 

activities using only the signals from a single IMU on one 
dominant wrist. Our results show a significant improvement 

in recognizing complex hand activities. 

The rest of this paper is organized as follows. Section II 
describes the proposed methodology. In Section III, the 

experimental results  of HAR are presented. Finally, the 
conclusion is given.  

II. METHODS 

Our proposed hand activity recognition system is shown in 

Figure 1. The input signal is  composed of thirteen feature 
channels collected from a single IMU sensor at the right 

wrist of subjects. The Autoencoder (AE) module processes 
this input signal and transfers to the RNN classifier for hand 

activity recognition. 

A. Hand Activity Database 

In this study, we utilized the Opportunity public database 

[17], which contains continuous time -series data of various 

human hand activ ities. The database includes the recordings 

from four subjects: each subject performed an unscripted 

session of hand movements and ADL without constraints. 
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Figure 1. Proposed HAR system for hand activity recognition. From the left , signals coming from a single IMU go through our autoencoder 

module. Autoencoder reconstructs the data and transfer to RNN classifier. Classifier predicts activity class probabilities.  

Each session was performed five times with different 

numbers of repetition for the activit ies. Additional hand 

activities were co llected in an ext ra control (Drill) sessions, 

where each subject performed twenty scripted sequences of 

hand activities. We followed  the Opportunity multi-modal 

gesture challenge guidelines in [17] to split the data into 

train and test datasets. We focus on data collected from a 

sensor placed on the right wrist of a custom jacket, which 

was worn by the subjects. This sensor included a 

commercial RS458-networked XSense IMU composed of a 

three-axis accelerometer, a three-axis gyroscope, a three–

axis magnetometer, and four-channel quaternion orientation 

information. 

From the total of hand gesture classes in the database, we 
selected thirteen activities of our interest. The activities that 

involve similar executions are grouped as the same class. 
Resultant seven classes of hand activities are Close Door 

(Close Door 1 and Close Door 2), Open Door (Open Door 1 
and Open Door 2), Close Fridge, Open Fridge, Open Drawer 

(Open Drawer 1, Open Drawer 2, and Open Drawer 3), 
Close Drawer (Close Drawer 1, Close Drawer 2, and Close 

Drawer 3), and Drink from Cup. 

Using a slid ing window approach, the IMU signals were 

segmented with a window size of four seconds and an 

overlap of 50%. The data were normalized  to a range of [-1, 

+1] with zero  mean, which we denote them as epochs. Each 

epoch is tagged with a specific class label. We named these 

datasets of epochs as the IMU-train and IMU-test datasets 

respectively.  

To train our supervised autoencoder, we modeled the 

previous datasets using an Autoregressive Moving Average 

(ARMA) model and named them as the ARMA-train and 

ARMA-test datasets. Train ing the AE used these ARMA 

datasets as the ideal targets of the reconstructed and 

denoised signals. Finally, the AE reconstructed outputs are 

named as the AE-train and AE-test datasets. The classifier 

uses these datasets for performance analysis of recognition.  

B. Proposed Autoencoder 

In this section, the proposed AE and RNN classifier are 

presented.  

B1. Autoencoder Model 

The encoder 𝑓(𝑥)  in our AE arch itecture is a combination of 

a CNN layer and a Bid irect ional RNN (BRNN). A 

convolution layer extracts features from the input signal 

through a one-dimensional filter. These features capture 

local correlations hidden in  the data and form an  augmented 

representation in a set of multip le feature maps [14]. We use 

the hyperbolic tangent function as a non-linear activation 

function for the output of the convolution. The RNN layers 

process sequential data, taking advantage of parameter 

sharing, making possible each unit in the output be a 

function of the previous units. BRNN takes the output from 

CNN and uses it in two  parallel layers: forward  and 

backward loops used for exploding context from the past 

and future of a specific time step. The BRNN units are 

based on Long Short Term Memory (LSTM) cells, which 

use a concept of gates that define the behavior of the 

memory cell. The input 𝑥𝑡
  is fed into different gates such as 

the forget gate 𝑓𝑡 , input gate 𝑖𝑡, and output gate 𝑜𝑡  with the 

previous cell output ℎ𝑡−1 to compute the current output. In 

the following equations, we describe the LSTM unit  where 

𝜎 represents a non-linear function and [𝑊, 𝑏] are the weight 

matrices and bias vector associated with each gate.  
  

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (1) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡 ] + 𝑏𝑖) (2) 

𝐶�̃� = tanh(𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (3) 

𝐶𝑡 = 𝑓𝑡 ∗ 𝐶𝑡−1 + 𝑖𝑡 ∗ 𝐶�̃� 
(4) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡  ] + 𝑏𝑜) (5) 

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝐶𝑡) (6) 

  

From the encoder hidden representation ℎ, the decoder 

𝑔(ℎ) reconstructs the signals by two stacked convolutional 

layers. The last decoder convolution layer has its feature 

map size constrained to the same size of the input channels.  

B2. ARMA Modeling of IMU Activity Signals 

Before training the supervised AE, the ideal target dataset is 

obtained by modeling the orig inal IMU datasets via ARMA. 

The Akaike information criterion was used to select an 

appropriate order fo r the autoregressive and moving average 

models. For each channel, an optimized model was carefu lly  

chosen from a pool of different combination of orders: in  

most cases, the autoregressive model order of 3 and moving 
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average of 4 were selected. The ARMA-train and ARMA-

test datasets represent a denoised and improved 

representation of the signals in the IMU-train and IMU-test 

datasets. In Figure 2, one set of epoch instances from the 

IMU-test and ARMA-test datasets is shown. 

B3. Training and Testing Autoencoder 

The input to the AE was carried by mini-batches composed 

of epochs in the IMU-train dataset and target ARMA-train 

dataset. The AE used the Mean Square Error (MSE) as a 

loss function. The training algorithm iterated up to 100 

training steps with a learn ing rate of 1e-4. Gradient decedent 

recursively updated the network parameters using Adam 

optimizer algorithm. Weights init ialization used a random 

Gaussian distribution with a mean of zero and standard 

deviation of 0.5. To validate the AE performance, we 

quantified the similarity between the AE-test and ARMA-

test datasets. This similarity is based on the overall Root 

Mean Square Error (RMSE) and Pearson Correlat ion 

Coefficient (R) for each corresponding channel from both 

datasets.  

C. RNN Classifier 

The classifier module is composed of three RNN layers 

based on Gate Recurrent Unit (GRU) memory cells. The 

GRU cell possesses a reset gate 𝑟  and an update gate 𝑧 , 

unlike the LSTM variant it does not have an internal 

memory 𝑐𝑡  and an output gate 𝑜𝑡 . The GRU cell combines 

the input gate 𝑖𝑡  and forget gate 𝑓𝑡  in the update gate, and 

directly  apply the reset gate to the prev iously hidden state. 

We describe the GRU gates in the following equations : 
  

𝑧𝑡 = 𝜎(𝑊𝑧 ∙ [ℎ𝑡−1, 𝑥𝑡])  (7) 

𝑟𝑡 = 𝜎(𝑊𝑟 ∙ [ℎ𝑡−1, 𝑥𝑡]) (8) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊[𝑟𝑡 ∗ ℎ𝑡−1, 𝑥𝑡]) (9) 

ℎ𝑡 = (1 − 𝑧𝑡) ∗ ℎ𝑡−1 + 𝑧𝑡 ∗ ℎ̃𝑡  (10) 

  

The output from last RNN layer is connected to a dense 

layer to obtain the class probabilit ies. Despite the 

compelling representation from RGRU, there is still a  

possibility of overfitt ing. We address this using a dropout 

technique for optimization with a value of 0.4 before the 

dense layer. The final layer produces the class probabilities 

from a Softmax function. Init ialization  of the weights uses a 

random Gaussian distribution with of mean zero and 

standard deviation of 0.5. The network is trained over 50 

training steps with a learn ing rate of 3e -4 with an 

optimization based on Adam algorithm. We compute the 

weighted F1-score and accuracy of classification for the 

given test datasets. 

III. EXPERIMENTAL RESULTS 

A. Validation of Autoencoder 

We computed the RMSE and R coefficient between the 
ARMA-test and AE-test datasets to evaluate the performance 

of AE. Table 1 shows a summary of these values. The 
signals in Figure 3 illustrate an exemplary epoch of “Open 

Door” activity from both datasets.  

 

 
Figure 3. Time series from the 3-axis gyroscope in the “Open Door” 

activity: ARMA (solid) and AE (dotted). 

TABLE 1. THE COMPUTED RMSE AND R-VALUES BETWEEN ARMA-

MODELED AND AE OUTPUT DATASETS. 

Channels Axis RMSE R 

Accelerometer 

X 0.0441 0.9387 

Y 0.0383 0.9805 

Z 0.0359 0.9953 

Gyroscope 

X 0.0262 0.9652 

Y 0.0251 0.9820 

Z 0.0234 0.9872 

Magnetometer 

X 0.0130 0.9799 

Y 0.0111 0.9892 

Z 0.0122 0.9927 

Q uaternion 

Q1 0.0328 0.9873 

Q2 0.0361 0.9914 

Q3 0.0340 0.9870 

Q4 0.0345 0.9976 

 

 
Figure 2. Time series from the 3-axis accelerometer in the “Open 

Door” activity: IMU (solid) and ARMA (dotted).  
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A1. Classification Performance 

The summary of the recall values achieved by the classifier 

on the IMU-test, ARMA-test, and AE-test datasets are 

shown in Table 2. Using the raw sensor signals in the IMU-

test dataset, the classifier achieved a mean F1-score of 

72.87% and accuracy of 72.65%. The recognition 

performance is not quite satisfactory for these complex hand 

activities. Using the ARMA-test dataset (i.e., modeled ideal 

dataset), recognition increased to a mean F1-score of 

82.40% and accuracy of 82.14%. For activit ies such as 

“Open Fridge” and “Open Drawer,” their recall values 

increased up to 78.33% and 81.55% respectively from 

around 60%. Finally, using the AE-test dataset (i.e., the 

output of AE), the classifier ach ieved a mean F1-score of 

79.64% and accuracy of 79.38%, reflect ing a 6.75% 

improvement over the raw signals from the IMU-test dataset 

and similar to the performance of the ARMA-test dataset. 

 

A2. Comparison of Related Works  

In this work, we have implemented a HAR system of deep 

denoising AE and RNN classifier, through which the 

improved representation of activity signals are utilized to 

recognize seven daily hand activities  using only a single 

IMU sensor. 

There are rare works of HAR systems utilizing denosing 

AE. The HAR work in [15] used an unsupervised 

Variational Autoencoder (VAE) in combination of CNN 

with LSTM. It shown that using 75 sensor channels that 

presented significat ive motion artifacts from Opportunity 

the denoised signals could improve the accuracy from 

72.96% to 90.81%. A lso there have been HAR works 

utilzing multip le sensors (i.e ., >70 sensor channels) to 

improve the performance. These studies reported F1-score 

of 75.4% [12], a  recall value of 83.5% [13] , and F1-score of 

86.6% [14] without the use of AE. In contrast with those 

studies, our architecture receive an input data compose of 13 

feature channels extracted from only one IMU sensor, which 

is more practical for an end- user application. 

IV. CONCLUSION 

In this work, we have presented a HAR system for daily  

human hand activit ies combining a denoising autoencoder 

and RNN for classification. Our results prove that AE helps 

the deep classifier and eventually HAR by reducing noises 

and representing signals better. The p romising results 

demonstrate the effectiveness of this approach, which could 

be used for other HAR systems. 
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