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Abstract—This work presents a non-invasive low-cost system 

suitable for the at home assessment of the neurological 

impairment of patients affected by Parkinson’s Disease. The 

assessment is automatic and it is based on the accurate 

tracking of hands and fingers movements of the patient during 

the execution of standard upper limb tasks specified by the 

Unified Parkinson’s Disease Rating Scale (UPDRS). The 

system is based on a human computer interface made by light 

gloves and an optical tracking RGB-Depth device. The 

accurate tracking and characterization of hands and fingers 

movements allows both the automatic and objective assessment 

of UPDRS tasks and the gesture-based management of the 

system, making it suitable for motor impaired users as are PD 

patients. The assessment of UPDRS tasks is performed by a 

machine learning approach which use the kinematic 

parameters that characterize the patient movements as input 

to trained classifiers to rate the UPDRS scores of the 

performance. The classifiers have been trained by an 

experimental campaign where cohorts of PD patients were 

assessed both by a neurologist and the system. Results on the 

assessment accuracy of the system, as compared to 

neurologist’s assessments, are given along with preliminary 

results on monitoring experiments at home.  

Keywords-Parkinson’s disease; UPDRS assessment; RGB-D 

camera; hand tracking; human computer interface; machine 

learning; tele-monitoring 

I. INTRODUCTION 

Parkinson’s Disease (PD) is a chronic neurodegenerative 
disease characterized by a progressive impairment in motor 
functions (e.g., bradykinesia) [1] , with important impacts on 
quality of life. Unified Parkinson's Disease Rating Scale 
(UPDRS) [2] is commonly used by neurologists to assess the 
severity of the disease, whose motor aspects are an important 
part. Specifically defined motor tasks are used by 
neurologists to assess impairments and to assign a subjective 
score for each task on a scale of five classes of increasing 
severity. 

The assessment process takes into account specific 
kinematic aspects of the movements (amplitude, speed, 
rhythm, hesitations) which are qualitatively and subjectively 
evaluated by neurologists. On the other hand, a quantitative 

and objective assessment of the tasks is important to increase 
the reliability of the clinical assessment [3]. A commonly 
adopted solution is to make use of the well-established 
correlation existing between kinematic parameters of the 
movements and the severity of the impairment [4][5]. This 
correlation is used in the automatic and objective assessment 
of  UPDRS motor tasks by several technological approaches, 
among which those based on optical devices and wearable 
inertial sensors [6][7]. 

Drug treatment of the PD symptoms is crucial to reduce 
the effects of the impairment in daily activities but, because 
of possible fluctuations in impairment, it would be desirable 
to adjust the therapy on a weekly basis, both for the best 
effectiveness and to reduce side and long term effects [8]. 
Unfortunately, the cost of a traditional weekly assessment, 
preferably at home to reduce patient’s discomfort, is 
unsustainable for the health care system. In this context, 
technology can support neurologists with an objective and 
quantitative assessment of UPDRS motor tasks. Focusing on 
the upper limb tasks of UPDRS, solutions based on wireless 
inertial measurement devices (accelerometers and 
gyroscopes) [8]-[10] and on resistive bend sensors [11] do 
not suffer of occlusion problems but they are more 
uncomfortable for motor impaired people respect to optical 
approaches and, more important, their invasiveness can 
affect motor performance. 

Optical approaches for hand tracking of motor impaired 
people and for the automatic assessment of upper limb tasks 
of UPDRS, namely Finger Tapping (FT), Opening-Closing 
(OC) and Pronation-Supination (PS), have been recently 
proposed based on RGB cameras [12], passive markers [13] 
and  bare hand tracking  by consumer depth sensing devices 
[14]-[17].  

Less attention is generally given to the assessment of the 
tracking accuracy obtainable by the proprietary hand-
tracking firmware of these consumer devices. Their accuracy 
can be unsatisfactory especially for fast movements, as has 
been shown by comparisons with standard optoelectronic 
systems [18]; nevertheless, this is an important requirement 
to be considered for the reliability of kinematic parameters 
and the motor performance assessment. Furthermore, the 
short product life span of these devices and of the related 
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Figure 1. Hand/fingers tracking system 

Software Development Kit (SDK) warns against solutions 
too dependent on proprietary hardware and software. Along 
this line of research, we present a low-cost system for the 
automatic assessment of the upper limb UPDRS tasks (FT, 
OC, PS) at home. The system hardware is based on 
lightweight coloured gloves, a RGB-Depth sensor and a 
monitor, while the software implements 3D tracking of the 
hand trajectories, characterizes them by kinematic features 
and assesses the motor performance by trained Machine 
Learning algorithms. The software performs the real-time 
tracking by fusion of both colour and depth information from 
the RGB and depth streams. The system acts at the same 
time as a non-invasive Human Computer Interface (HCI) 
which allows motor impaired PD patients to self-manage the 
test execution. Respect to other approaches, based only on 
depth information and proprietary algorithms, the hand 
tracking is more robust and accurate for fast movements 
[18], making the final assessment more reliable. Another 
important characteristic of our solution is that it does not 
relay on any particular hardware or SDK; it assumes the 
availability of RGB and depth streams at reasonable frame 
rate.  The accuracies obtained by the classifiers demonstrate 
the feasibility of the system in remote assessment of upper 
limb UPDRS tasks. Some preliminary results on at-home 
monitoring of PD patients are given. 

The paper is organized as follows. The technological 
solution and the methodological approach for the accurate 
tracking of hand and fingers movement are described in 
Section II. Section III reports the results of the automatic 
classification of motor performance and some preliminary 
data about the assessment of patient’s performance at home. 
Conclusions and future work are discussed in Section IV.  

II. SYSTEMS AND METHODS 

A. System Hardware 

The hand/fingers tracking hardware consists of a low-
cost RGB-Depth device (Intel Realsense SR300 ©) that 
provides synchronized RGB color and Depth streams at 
resolutions of 1920x1080 (Full HD) at 30fps and 640x480 
(VGA) at 30 fps (max. 200) respectively. The RGB-Depth 
device is connected via a USB port to a personal computer 
(PC) running Microsoft Windows and equipped with a 
monitor positioned in front of the user (Figure 1). The 
monitor provides the visual feedback of the HCI for the hand 
and finger movements of the user. The user equipment 
consists of black lightweight gloves with imprinted colour 
markers: each colour marker corresponds to a particular part 
of hand to be tracked (e.g., fingertips and wrist) or to be used 
for colour calibration and system interaction (e.g., palm). 

The device drivers and our developed software are used 
to implement both the hand and fingers tracking and the user 
interface of the HCI. The software running on the PC 
implements the data stream acquisition and processing for 
the hand/fingers tracking, the kinematic parameter estimation 
and the task assessment. Furthermore, the data produced in 
every test session, including video sequence of each 
performance, kinematic parameters and system scores are 

automatically encrypted and archived for further analysis and 
for clinician independent supervision and assessment. 

B. Initial Setup 

Global image brightness adjustment, hand segmentation 
and colour calibration for marker segmentation are 
performed during the initial setup phase. The Intel 
LibRealSense library is used for RGB and depth stream 
acquisition and the OpenCV library  [19] is used to recover 
the 3D position of the hand centroid from the depth stream. 
A hand shaking movement of the user starts the recovering 
of the initial hand position. The hand centroid is used to 
segment the hand from the background and to define 2D and 
3D hand bounding boxes, both for colour and depth images. 
Then RGB streams are converted from RGB to the HSV 
colour space, more robust to brightness variations. The 
design of the colour markers and the implementation of a 
colour constancy algorithm compensate for different ambient 
lighting conditions found in domestic environments. For this 
purpose, during the initial setup the white circular marker on 
the palm is detected and tracked in the HSV stream.  The 
average levels of each HSV component of the circular 
marker are used to compensate for predominant colour 
components due to different types of lighting. Their values 
are used to scale each of the three HSV video sub-streams 
during the tracking phase.  

C. Hand and Finger Tracking 

During the tracking phase, the 3D position of the hand 
centroid is used to continuously update the 2D and 3D hand 
bounding boxes (Figure 2). The colour thresholds selected 
during the setup phase are used to detect and track all the 
color blobs of the markers. To improve performance and 
robustness, the CamShift algorithm [19] has been used in the 
tracking procedure.  The 2D pixels of every color marker 
area are re-projected to their corresponding 3D points by 
standard re-projection, and their 3D centroids are then 
evaluated. Each centroid is used as an estimate of the 3D 
position of the corresponding part of the hand that is used for 
movement analysis.  
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Figure 2. Hand segmentation and marker detection: color blob 

centroids and bounding box 

 
 

Figure 3. Human computer interface with natural gestural 

interaction 

D. Human Computer Interface for System Management 

The real-time hand/fingers tracking software and the 
graphical user interface realize the human computer interface 
(Figure 3) where the patient can manage the test session 
(e.g., start and end the session, select the specific task, input 
information, etc.) by making simple gestures (opening and 
closing the hand, pointing with fingers) towards the 
graphical menu displayed on the monitor.  

E. Clinical Assessment and Data Acquisition 

The system performance was evaluated on two cohorts; 
one made up of forty patients (22 females, 18 males) with a 
diagnosis of Parkinson’s Disease (PD), and the other made 
up of fifteen Healthy Control (HC) subjects. Patients were 
recruited according the UK Parkinson’s Disease Society 
Brain Bank Clinical Diagnostic standards and met the 
following criteria:  Hoehn and Yahr score (average 2.2, min 
1, max 4); age 43–81 years; disease duration 2–29 years. 
Patients were excluded if they had previous neurosurgical 
procedures, tremor severity > 1 (UPDRS-III severity score), 
or cognitive impairment (Mini–Mental Score < 27/30). The 
HC subjects met these criteria: age, 35–78 years, not affected 
by neurological, motor and cognitive disorders. All subjects 
provided their informed consent prior to their participation. 

The PD cohort was assessed for the FT, OC and PS 
UPDRS tasks on both hands by one neurologist expert in 
movement disorders and the resulting UPDRS severity 
scores were found between 0 (normal) and 3 (moderate 
impaired). The performance of the PD patients were tracked 
at the same time by the system and the related kinematic 

parameters of the hand/fingers trajectories were 
automatically extracted. The HC subjects performed the tests 
in the same environmental conditions and with the same 
system setup of PD patients.  

F. Kinematic Parameter Selection 

The automatic assessment of UPDRS tasks makes use of 
the well establish correlation existing between the kinematic 
parameters of the movements, objectively evaluated by the 
system, and the severity of the impairment, subjectively rated 
by neurologists and expressed as UPDRS scores [4]. The 
kinematic parameters we choose are closely related to the 
typical characteristic of the patient movement that are used 
by neurologists to score the performance (amplitude, speed, 
rhythm, hesitations, and others). To compact the information 
associated to the parameters and to reduce their redundancy 
the most discriminative ones among them have been 
identified for every UPDRS tasks. First, a Principal 
Component Analysis (PCA) was applied to the initial set of 
parameters to filter out those which contribute less than 5% 
to represent the whole dataset. Then, the selected kinematic 
parameters were correlated to neurologist UPDRS scores 
(Spearman’s correlation coefficient ρ), keeping only those 
ones with the best correlation with neurologist UPDRS 
scores, at significance level p<0.01 (Table I). Note that the 
choice of the parameters is such that increasing values of the 
parameters indicate a worsening of the performance. 

In this context, the kinematic parameters of the HC 
subjects have been used to normalize the PD ones. Thanks to 
the better performance of HC subjects, their average score 
values pi HC are always better than the pi PD ones, and are 
used to obtain normalized PD parameters ( pi PD norm  = pi PD 
/pi HC). This selection process produces normalized 
parameters which are able to discriminate UPDRS classes 
for the FT, OC and PS, highlighting the increasing severity 
of motor performance by the corresponding increasing of 
their values. This is visually confirmed by the mean values 
of the selected kinematic parameters versus UPDRS severity 
class as shown in the radar graphs of Figure 4(a) for FT, 
Figure 4(b) for OC and Figure 4(c) for PS tasks respectively. 
UPDRS classes for the FT, OC and PS, highlighting the 
increasing severity of motor performances by the 
corresponding expansion of the related radar graph 
representation.  

G. Automatic UPDRS Assessment by Machine Learning  

To implement the automatic assessment of the FT, OC 
and PS UPDRS tasks, three data sets of “parameter vector – 
neurologist UPDRS score” pairs were used to train three 
different classifiers. We use the LIBSVM library package 
[20] to implement three Support Vector Machine (SVM) 
classifiers with polynomial kernel. Their accuracy in 
assigning correctly the UPDRS scores was tested by using 
the leave-one-out cross validation method. The confusion 
matrices were used to characterize the classification 
performance of the SVM classifiers. 

An interesting feature offered by the SVM classifier 
implementation is that, given the kinematic parameters 
vector as input, the classifier output is the vector P of 
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(a) 

 

(b) 

 

(c) 

Figure 4. Radar graph from selected kinematic parameters for FT task 

(a), OC task (b) and PS task (c) 

probabilities pj that the input vector belongs class Cj. To test 
the classifiers and build the confusion matrices the class Ck 
corresponding to the highest probability pk among all the 
probabilities in P is chosen.  

TABLE I.  SELECTED KINEMATIC PARAMETERS 

Name 
Finger Tapping UPDRS task 

Meaning Unit ρ-value 

X1 Maximum opening (mean) mm -0.43 

X2 Maximum opening (CV) - 0.35 

X3 Maximum amplitude (mean) mm -0.41 

X4 Maximum amplitude (CV) - 0.39 

X6 Duration (CV) - 0.42 

X9 Maximum opening velocity (mean)  mm/s -0.58 

X10 Maximum opening velocity (CV) - 0.39 

X11 Maximum closing velocity (mean) mm/s -0.55 

X12 Maximum closing velocity (CV) - 0.43 

X13 Main Frequency Hz -0.48 

Name 
Opening-Closing UPDRS task 

Meaning Unit ρ-value 

X1 Maximum opening (mean) mm -0.54 

X2 Maximum opening (CV) - 0.34 

X3 Maximum amplitude (mean) mm -0.55 

X4 Maximum amplitude (CV) - 0.31 

X5 Duration (mean) s 0.25* 

X6 Duration (CV) - 0.58 

X9 Maximum opening velocity (mean)  mm/s -0.63 

X10 Maximum opening velocity (CV) - 0.47 

X11 Maximum closing velocity (mean) mm/s -0.54 

X12 Maximum closing velocity (CV) - 0.53 

Name 
Pronation-Supination UPDRS task 

Meaning Unit ρ-value 

X1 Maximum supination (mean) deg -0.36 

X2 Maximum supination (CV) - 0.05 

X9 Maximum supination velocity (mean)  deg/s -0.42 

X10 Maximum supination velocity (CV) - 0.35 

X11 Maximum pronation velocity (mean) deg/s -0.46 

X12 Maximum pronation velocity (CV) - 0.44 

X13 Main Frequency Hz -0.47 

X19 Pronation Phase Duration s 0.33 

Legend 

Coefficient of Variation: ratio of standard deviation (σ) to mean μ of the parameter. CV = σ/μ 

Maximum Opening/Supination: peak of distance/angle in one movement 

Amplitude: difference between maximum and minimum distance/angles in one movement 

Duration: time elapsed between the start and the end of one movement 

Maximum Opening/Supination Velocity: peak in an opening/supination phase of one movement  

Maximum Closing/Pronation Velocity: peak in a closing/pronation phase of one movement  

Opening/Supination Phase Duration: Time for opening/supination phase of one movement 

Closing/Pronation Phase Duration: Time for closing/pronation phase of one movement 

Rate: Number of movements per second 
Main Frequency: Frequency with the peak in power spectrum (bandwidth 0.. 4 Hz) 
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The probabilistic assignment P of the classifier output 
allows for an interesting extension to continuous values of 
the discrete UPDRS classification obtained using the most 
probable class. For this purpose, for each task, the 
probabilities pi to belong to specific UPDRS classes (i.e., the 
outputs of the related classifier) have been combined in a 
weighted mean. 

In this way, a continuous estimation (W) of the UPDRS 
score is obtained (1): 

 

                                     W = ∑ i ∙ pi                                                        (1) 

i = 0..4; pi = probability to belong to class Ci 

 
The advantage of this approach is the possibility to assess 

continuous variations of motor impairments that is not 
possible to obtain with a quantized (0-4) UPDRS score. A 
support to the correctness of the proposed extension is based 
on the choice of kinematic parameters, which are closely 
related to the clinical ones; the increase of a parameter value 
should correspond to an increasing of the neurologist’s score. 
In practice, the classifiers output probabilistic assignment 
vectors P with only two significant probabilities that are 
related to contiguous classes. An application of the 
continuous UPDRS score estimate W in monitoring small 
fluctuation of patient impairment is presented in the 
preliminary experiments paragraph.  

III. RESULTS 

A. Accuracy of the Automatic Assessment 

The confusion matrices shown in Table II, III and IV 

were used to characterize the classification performance of 

the SVM classifiers for the FT, OC and PS UPDRS tasks, 

both for the left and the right hand.  

From them, all standard parameters for classifier 

evaluation (accuracy, sensitivity and so on) can be easily 

derived. 

TABLE I.  FT CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 15 3 0 0 

C1 2 21 2 0 

C2 0 1 18 3 

C3 0 0 2 13 

TABLE II.  OC CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 14 2 0 0 

C1 1 17 2 0 

C2 0 1 22 3 

C3 0 0 4 14 

TABLE III.  PS CONFUSION MATRIX (UPDRS CLASSES) 

 
SYSTEM SCORES 

 C0 C1 C2 C3 

CLINICAL 

SCORES 

C0 8 3 0 0 

C1 1 10 2 0 

C2 0 2 30 6 

C3 0 0 3 15 

 
It can be noted the nonzero off diagonal elements of the 

matrices are one position far from the diagonal ones, 
meaning the classification errors were limited to one UPDRS 
class. 

B. Preliminary Experiments on UPDRS Assessment 

A preliminary experiment to assess the feasibility of the 
proposed system in monitoring PD patient at home has been 
conducted. A small group of PD patients (4 subjects) used 
the system at home for a period of a week. The subjects were 
instructed to perform FT, OC and PS task at different times 
(30m, 1.5h, 2.5h, 3.5h) from drug intake, every day of the 
week. The intent was to assess the potential fluctuations in 
upper limb motor performance in the period after the drug 
intake. 

To give insight of the experiment results, a sample of the 
FT assessment is shown in Figure 5 for a PD patient, male, 
65 years old, diagnosis at 60, non-fluctuating, and with more 
motor impairment on the right side. The patient was 
performing the upper limb UPDRS tasks daily, at different 
times (30m, 1.5h, 2.5h, 3.5h) from drug intake as required. 
Thanks to the data storage and the remote retrieving 
capability of the system, the session data (video, scores, 
parameters) and in particular the videos acquired by the 
system during task executions were accessed from remote, 
analysed and scored by the neurologist for both hands, 
resulting in a FT score of UPDRS 0 or UPDRS 1. 

As shown in Figure 5, on the average, there is a good 
agreement between system and neurologist scores. 
Nevertheless, the system can assess tasks on a continuous 
scale (W score definition) respect to the standard discrete 
UPDRS score. This feature could open the possibility to 
investigate the interaction between drugs and motor effects 
with a more objective, sensible and hopefully accurate 
approach.  

IV. CONCLUSIONS AND FUTURE WORKS 

This work presents a non-invasive and low-cost system 
for the automatic assessment of PD patients performing 
standard upper limbs UPDRS tasks at home. The system is 
based on a new human computer interface that, by an 
accurate hand tracking allows both the system management 
and the automatic and objective UPDRS assessment. The 
hand gestural interface makes it suitable for motor impaired 
users, as are PD patients. The automatic assessment of 
UPDRS tasks is performed by a machine learning approach 
which uses some selected kinematic parameters that 
characterize the patient’s movements. UPDRS task 
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Figure 5. Automatic assessment of a FT task (left and right hand) at 
different times from drug intake. The continuous UPDRS assessment 

values and neurologist scores are shown at four different time. To 
facilitate the interpretation, scores are connected by coloured lines 

classifiers were trained during an experimental campaign 
where PD patients were assessed by the neurologist and the 
system. The results about the obtained confusion matrices of 
the classifiers show the classification errors are limited to 
one UPDRS class and only in a few cases, making the 
system suitable for at home self-administrated assessment of 
upper limb UPDRS tasks. Based on the classifier outputs, a 
new continuous estimation of the UPDRS score is introduced 
and its potential benefit discussed. 

Preliminary results about the application of the 
continuous UPDRS score in the at home monitoring of PD 
patients are presented. Further experiments are still needed to 
validate both the system usability and accuracy in the home 
environment, and the usefulness of the continuous UPDRS 
score here introduced in monitoring fine motor impairment 
fluctuations. Next steps will address also the extension of 
this solution to the analysis of other UPDRS tasks, aiming to 
obtain a global and comprehensive assessment of the neuro 
motor status of PD patients. It would be very important in the 
perspective of an optimization of the drug therapy, so 
improving both the clinical management and the patient's 
quality of life. This would be even more relevant if the 
overall assessment could be carried out at the patient's home, 
whenever more frequent observations are needed to better 
evaluate worsening in motor symptoms. 
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