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Abstract—Providing a practical and comprehensive 

methodology to facilitate management and coordination of 

multiple projects in a company’s portfolio is a challenging 

task. Historically, the focus of research has been limited to the 

selection and prioritization of the set of known projects, 

current and near future. It is argued that existing portfolio 

planning models can be improved by adding a stochastic 

generator of project streams that extends the portfolio and 

strategic planning horizon to include future unknown projects.  

The study both identifies the historical factors in the market 

that are strong predictors of the profile of future project 

streams and evaluates alternative modeling approaches to the 

problem. The outputs from the generator are those parameters 

most critical to a company, namely the occurrence and letting 

date of a project, its expected duration, and its expected cost. A 

case study of design-bid-build highway construction projects 

let by the Florida Department of Transportation (FDOT) is 

presented for developing, validating and testing the concept of 

a project stream generator. The results show that FDOT’s 

future projects can be stochastically forecasted by using 

historical data and autoregressive moving average modeling 

along with sampling from representative distributions of cost 

and durations of FDOT’s projects. 

Keywords-Project Portfolio Management; Stochastic 

Forecasting; Time Series Modeling; Strategic Planning; 

Uncertainty. 

I.  INTRODUCTION 

Previous work has established the need for future 
projecting portfolio planning, and proposed some basic 
modeling approaches to address this issue [1]. This paper 
advances that work by developing and evaluating the 
proposed methods of forecasting streams of future work that 
may be added to a future portfolio. 

Construction companies are usually involved in multiple 
projects at any given time. While different projects progress 
concurrently, they have different goals and objectives.  For 
instance, some projects may have financial objectives while 
others may be more focused on marketing or strategic 
networking. Consequently, a key managerial duty is to 
allocate resources (such as finances, materials, and 
personnel) between these concurrently ongoing projects and 
manage their workflow together to maximize the company’s 
performance [2]. The process of coordinating multiple 
projects as such is a challenging task because each incoming 
project affects all other ongoing projects in terms of their 

schedule and progress [3], and without foreseeing these 
effects, the consequences can be devastating. The goal of this 
study is to develop a stochastic project stream generator to 
forecast unknown future projects in order to extend the 
horizon of strategic planning for construction companies. 

The success of a construction company is strongly 
impacted by its ability to strategically plan for and manage a 
stream of projects, many of which will overlap in time, and 
all of which are subject to uncertainty about their occurrence, 
scope and resource needs.  This task can be broadly 
classified as Project Portfolio Management (PPM). Cooper et 
al. [4] describe PPM as “…dealing with the coordination and 
control of multiple projects pursuing the same strategic goals 
and competing for the same resources, whereby managers 
prioritize among projects to achieve strategic benefit.”  
Modern portfolio theory was introduced by Markowitz [5] 
within the context of finance. McFarlan [6] introduced the 
concept of PPM in an information technology project 
management context. He suggested using projects as the 
elements of a portfolio (instead of investments) to better 
achieve an organization’s objectives as well as reduce the 
overall risk that the organization encounters during execution 
of those projects. 

Providing a practical and comprehensive methodology to 
facilitate management and coordination of multiple projects 
in a company’s portfolio is a challenging task. There are no 
appropriate analytical solutions available for dynamic 
scheduling and resource allocation of project portfolios in 
real-time [3]. Existing proposed mathematical models (such 
as those of [7]–[12]) cannot handle the complexity of real 
world challenges due to a limited consideration of significant 
uncertainties within their models and a lack of provision for 
dynamic and real-time analysis. The primary focus of PPM 
research was initially to improve organizational performance 
by introducing good practices to choose and prioritize 
projects and ensure that the right mix of projects was 
adopted. A recurring theme is the alignment of the projects 
with the organization’s overall strategy. There is also 
extensive literature on project selection with a mathematical 
approach [13]–[16]. In this research, it is not proposed that 
developed models are incorrect. Instead, it is argued they can 
be advanced by adding a stochastic project generator to 
extend the portfolio and strategic planning horizon by 
forecasting the statistical profile of the stream of unknown 
future projects. The framework discussed in this paper would 
allow users to take into account unknown future projects in 
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their portfolio and strategic planning. From this perspective, 
it is a novel approach, which by the understanding of the 
authors has not been done before. Using such an extension 
would allow the user to plan quantitatively for their portfolio 
of future projects, as opposed to using a conjecture-based 
approach.  

The rest of this paper is organized as follows. Section II 
provides a review of the shortcomings of existing PPM 
models and discusses the impact of uncertainties in PPM. 
Section III describes the project stream generator and the 
data used for its development and evaluation. Section IV 
discusses the modeling approach and results. Section V 
presents the conclusions and identifies future directions for 
the research. 

II. PROJECT PORTFOLIO MANAGEMENT AND 

UNCERTAINTIES IN STRATEGIC PLANNING 

Selecting projects from available options and planning 
and scheduling for them collectively have recently received a 
considerable amount of attention [17]. For construction 
related organizations, such as investors, developers, and 
contractors, it is critical to gather and analyze project 
information to select the best options according to their 
strategic goals and schedule them within the required 
timeframe and financial constraints. This is a complex and 
multifaceted process, which has many contributing factors, 
such as the market condition, the organization’s structure, 
resource availability and so on [18]. Research on this topic 
has come from several different points of view, including 
selection model criteria and scheduling mechanisms [19], yet 
the primary focus has been choosing the most appropriate 
projects rather than providing a real-time dynamic model to 
address the project selection and scheduling issues [3]. 
Another shortcoming has been to disregard the importance of 
multiple project scheduling and resource allocation under 
influential factors and uncertainties, such as the economic 
situation of the construction industry and companies’ 
organizational changes. Despite the wide range of available 
modeling approaches, companies still struggle to optimize 
and manage changes among their projects [19]. One of the 
reasons for this is that the proposed mathematical models 
cannot address the complexity of the real world situation [3]. 
Excluding uncertainties (such as the impact of possible 
upcoming projects) or changes in the economic and financial 
situation of the construction industry are some other 
noteworthy contributing factors to the poor performance of 
existing models. 

The concept of uncertainty is very significant within the 
field of project portfolio management. This has led to an 
extensive literature on uncertainty and the ways to manage it. 
Duncan [20] and Daft [21] demonstrated that changes in the 
business environment combined with projects with high 
complexity always result in an increase in uncertainty in 
parameters, such as the number of projects, their 
performance, and their adherence to the project plan. 
Farshchian and Heravi [22] used agent-based modeling to 
evaluate time and cost uncertainties related to current 
projects on a project portfolio.  

The impact of uncertainty on organizations is well 
established across many disciplines from psychology to 
economics [23]. Environmental uncertainties and their 
relation to organizations are analogous to the state of a 
person with a shortage of critical information about the 
environment. Scott [18] provides an example of the 
definition of environmental uncertainty as variability or the 
extent of predictability of the environment where work is 
executed. They also introduce some measures for 
uncertainty, such as variability of inputs, the number of 
deviations in the work process, and the number of changes in 
the main products. In the project management context, 
uncertainty in a project is defined as the accuracy of 
predicting the variation of resource consumption, output, and 
work process. Uncertainty in a project can be seen as a 
variation from expected performance of the system under 
investigation. 

The Project Management Institute (PMI) standard for 
portfolio management despite introducing the risk 
management concept at a portfolio level does not provide 
much information on how managers should handle 
uncertainty and risk within their portfolio. They only provide 
guidelines on categorizing different possible stages and 
processes plus naming some of the possible techniques 
available to handle uncertainties. The PMI only suggests 
monitoring risks and the performance of the project portfolio 
under the monitoring and control process group. The 
proposed framework by the PMI also includes monitoring 
changes in business strategy. This is an important task 
because when it occurs, it might result in a complete 
realignment of the portfolio. The mechanisms involved in 
this realignment are not specified other than restarting the 
whole PPM process from the beginning. Also, ad-hoc 
disturbances to the ongoing and approved project portfolios 
are almost entirely neglected. This oversight is not because 
the topic lacks interest or that authors assume a stable and 
predictable environment. Rather, it can probably be 
explained by the fact that the subject of PPM is relatively 
young and that the researchers and academics preferred to 
focus on more pressing issues in this area. For many 
companies, the environment is unstable, and the high level of 
uncertainty and unknowns resulting from the dynamic 
environment lead to some challenges. Upcoming projects 
significantly affect the performance of a project portfolio [3]. 
The typical approach when a new project is added to the 
portfolio is to update the project portfolio's plans and to try 
to re-optimize everything. 

III. UNKOWN FUTURE PROJECT STREAM GENERATOR 

This paper presents an approach to statistically represent 
unknown future projects to extend the portfolio and strategic 
planning horizon. Forecasting a company’s unknown future 
projects can be based on the company’s past and current 
portfolio data, or it can use historical data from market to 
forecast all the upcoming projects as project streams and 
filter those by bidding success models. In an environment, 
where the supply of the projects is scarce and very 
competitive, using just the company’s past projects to 
forecast the future unknown projects is potentially less 
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accurate. Arguably it is more valid to forecast streams of 
unknown projects (all the available projects in the future) 
considering the uncertainties in the context and filter those 
projects by bidding success models to get the final future 
projects in a company’s portfolio. The forecast can 
statistically generate a single set of outputs or stochastically 
produce streams of values as output. Considering the 
uncertainties in the market, the PPM context, and the 
availability of future projects, stochastic forecasting appears 
to be the right choice. 

This paper reports on the development, validation, and 
testing of a project stream generator for design-bid-build 
highway construction projects let by the Florida Department 
of Transportation (FDOT). The primary data for this study 
were obtained from FDOT’s historical project lettings 
database covering 14 years (from 2003 to 2017). The last 
two years (2015 and 2016) data are withheld to be used as a 
validation set for the final model and not being used in this 
study to be used after more models are tested for final 
verification without any kind of bias. Thus, the model 
training and selection are based on the data from 2003 to 
2015, which contains 2,816 design-bid-build project-letting 
reports. The outputs from the generator are those parameters 
most critical to a company, namely the occurrence and 
letting date of a project, its expected duration, and its 
expected cost. Other factors, such as economic condition can 
have an impact on the project stream. Table I shows a pool 
of candidate variables containing 24 potentially relevant 
predictors including the macroeconomics metrics and 
construction indices that were compiled from the related 

sources and literature [24]–[26] that can be used in 
multivariate modeling.  

The data should be split into three sections as a training 
set, a test and model selection set, and a final validation set 
for the final model. In this process, different models are 
trained and tested using the cross-validation method and the 
best model is validated with the withheld data. The final 
validation set is the data from 2015 and 2016, and the data 
from 2003 to 2015 is used for training and testing of 
different models to find the best performing model and 
optimize its corresponding values.  

The data under study is a time series and so the 
continuity of the data is important and should not be 
tampered with by randomly dividing into different sections 
for validation. As a result, a rolling forecast origin and a 
rolling window method is used to cross validate the models’ 
performance to avoid overfitting and overestimation of 
performance. The rolling window method has a fixed 
window (Figure 1-A), where the training (orange bar) and 
test (blue bar) sets duration is fixed and rolls through time. In 
this research, the trainig and testing set were chosen to be 
three years each and roll one year in each trial. The rolling 
forecast method on the contrary uses progressive length of 
data as the training set (as shown in Figure 1-B) in each trial. 
The initial training set was chosen to be three years and 
increase one year in each trial while the test set remain three 
years of consecutive data after the end of the training set for 
each trial. Using both methods can help better understand the 
model’s performance and give more insights into the 
characteristics of different time spans of the data. 

 

 

Figure 1. Visual represenation of cross-validation methods used. A) Evaluation based on a fixed window rolling forecast B) Evaluation based on an 

increasing window rolling forecast 
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TABLE I.  Potentially Relevant Predictors. 

The sequence of generating information in the proposed 
model starts with forecasting the number of projects (project 
frequency) for the desired time span, using the optimal 
model based on the training and validation from historical 
data. This is followed by sampling the project costs from the 
cost distribution. At each point in time, the number of 
samples from the distribution is based on the number of 
projects forecasted in the previous step. Finally, the project 
durations are sampled from the duration distribution. One 
important issue is the relationship between these main 
variables in this process. No logical relationship can be 
established between duration of the projects and the 
frequency of the projects. However, the frequency of the 
projects and their accumulated cost has a high correlation, 
which can be used in the modeling process. Figure 2 
represents the four possible ways that this relationship can be 
accounted for. One option is using a unidirectional 
assumption to use cost as an exogenous variable to forecast 
frequency (number one) along with other variables or vise 
versa (number two). The third option is to use a recursive 
model and test for convergence of the values. The last option 
is to neglect this correlation and assume that it is captured 
through the individual forecasting of each variable. Another 
important relationship is the possible correlation between 
cost and duration, which should be considered in the 
sampling process from their representing distributions. This 
could be done by using an empirical copula to build a 
multivariate probability distribution. As a result, the two 
variables are assigned simultaneously in each round of 
sampling with the correlation incorporated in the values. 

 

Figure 2. Possible strategies to address the relationship between cost and 

frequency of the projects. 1) Use cost to forecast frequency 2) Use 

frequency to forecast cost 3) Recursively use cost and frequency to forecast 

each other 4) Ignoring the relationship of the cost and frequency in the 

model 

In general, the generator could be implemented as a 
univariate or multivariate model, and with linear or nonlinear 
relationships between the inputs and outputs of each model. 
The complete set of results from the proposed framework 
can be used as a component in any PPM model to consider 
unknown future projects in strategic planning. 

IV. MODELING APPROACH 

Different approaches have been used for time series 
modeling. Cargnoni et al. [27] used Gaussian models to 
forecast the number of high-school students in each grade in 
future school years in the Italian school system. Voyant et al. 
[28] employed a multilayer perceptron to forecast global 
solar radiation. Li and Chen  [29] used a LASSO (Least 
Absolute Shrinkage and Selection Operator) based 
regression to estimate macroeconomic time series, and they 
demonstrated how this method could be combined with a 
dynamic factor model to yield a more accurate forecast 
performance. Exterkate et al. [30] used kernel ridge 
regression as a multivariate model for economic time-series 
forecasting by considering the nonlinear relationships among 
the variables. They found that this method outperformed 
traditional time-series forecasting techniques based on 
principal components. Yu and Liong [31] compared the 
linear ridge regression, ARIMA (Autoregressive Integrated 
Moving Average), naïve, inverse approach, and support 
vector machine in forecasting hydrologic time series and 
concluded that the ridge linear regression outperformed the 
other models in terms of both performance and time of 
execution. Choubin et al. [32] compared multiple linear 
regression, a multilayer perceptron neural network, and an 
adaptive neuro-fuzzy inference system for forecasting 
precipitation and concluded that the multilayer perceptron 
neural network outperformed the other methods. Cao and 
Tay [33] used a support vector machine for financial time-
series forecasting and compared it with a multilayer back-
propagation neural network and a regularized radial basis 
function neural network. They concluded that the support 
vector machine outperformed the back-propagation neural 
network and produced a performance similar to that of the 
regularized radial basis function neural network. The review 

CANDIDATE VARIABLES SOURCE 

GROSS DOMESTIC PRODUCTS 

(GDP) 

U.S. Bureau of Economic 

Analysis 

GDP IMPLICIT PRICE DEFLATOR 
U.S. Bureau of Economic 

Analysis 

INFLATION RATE World Bank 

CONSUMER PRICE INDEX U.S. Bureau of Labor Statistics 

NATIONAL HIGHWAY COST INDEX 

(NHCCI) 

U.S. Department of 

Transportation 

FDOT’S ANNUAL BUDGET 
Florida Department of 

Transportation 

FDOT’S PRODUCT BUDGET 
Florida Department of 

Transportation 

FEDERAL FUNDS RATE Federal Reserve Systems 

UNEMPLOYMENT RATE U.S. Bureau of Labor Statistics 

FLORIDA UNEMPLOYMENT RATE U.S. Bureau of Labor Statistics 

NUMBER OF EMPLOYEES IN 

CONSTRUCTION 
U.S. Bureau of Labor Statistics 

NUMBER OF EMPLOYEES IN 

CONSTRUCTION IN FL 
U.S. Bureau of Labor Statistics 

AVERAGE WEEKLY HOURS U.S. Bureau of Labor Statistics 

PRIME LOAN RATE Federal Reserve System 

BUILDING PERMITS U.S. Bureau of Census 

MONEY SUPPLY Federal Reserve System 

AVERAGE HOURLY EARNINGS U.S. Bureau of Labor Statistics 

EMPLOYMENT COST INDEX (ECI) 

CIVILIAN 
U.S. Bureau of Labor Statistics 

DOW JONES INDUSTRIAL 

AVERAGE 
Yahoo Finance 

CRUDE OIL PRICE 
U.S. Energy Information 

Administration 

BRENT OIL PRICE 
U.S. Energy Information 

Administration 

PRODUCER PRICE INDEX U.S. Bureau of Labor Statistics 

HOUSINGS STARTS U.S. Bureau of Census 

CONSTRUCTION SPENDING U.S. Census Bureau 
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of literature shows that dependent on the problem and data, 
different models perform better. As a result, a set of different 
models using a systematic approached should be tested to 
make sure an appropriate model is used for the final forecast. 

The scheme used to develop the model is shown in 
Figure 3. The purpose of this scheme is to look for 
characteristics of data, to capture them in the model’s 
projections, and then to check to see if the model reproduces 
them by using the cross-validation tests discussed above. The 
univariate model, being the simplest, was adopted as a 
benchmark against which the more complex multivariate 
models could be compared in terms of forecast accuracy.  

The first step is modeling the main variables through 
univariate modeling methods, such as Autoregressive (AR), 
Moving Averages (MA), Autoregressive Moving Average 
(ARMA), and exponential smoothing. More sophisticated 
approaches such as artificial neural networks can also be 
implemented considering the availability of the necessary 
data size to properly the train neural network. After 
establishing a benchmark, potentially relevant predictors 
were identified to populate a pool of candidate independent 
variables based on a literature review and cognitive theories. 
This introduces the environmental uncertainties to the 
forecast with the aim of improving the accuracy of the 
simulation. These variables are not going to have necessarily 
a causal relationship with the main variables; the only 
concern here is to be helpful in forecasting the dependent 
variable.  

The next step is exploratory data analysis. It starts with a 
graphical comparison of the independent and dependent 
variables, such as scatterplots of pairs of variables. Pearson 
correlation, unit root (stationary or non-stationary test), 
Granger causality (helpful for short term forecasting), and 
cointegration (helpful for long term forecasting) tests are 
among diagnosis techniques that are relevant. 

The last step is to choose a set of multivariate modeling 
approaches based on the result of the exploratory data 
analysis and test whether including explanatory variables and 
models that are more complex can improve the accuracy of 
the forecast. The range of the models should test for linear 
and non-linear relationships based on the result of the 
previous step along with variable selection (pruning), 
parameter optimization and finding the appropriate lag 
between variables. 

 

Figure 3. Model development scheme. 

Models concerning time series data frequently involve 
using the value from one or more previous time steps to 
forecast values at succeeding points in time; in other words, 
they regress based on past values. In conventional modeling, 
the assumption is that the independent values are known, and 
the dependent values are forecast. However, in multivariate 
time series forecasting, even the independent variables’ 
values in the future are unknown and need to be forecast. As 
a result, the model contains a system of equations that 
forecast both independent and dependent variables in the 
future. This system is recursive when all the causal 
relationships are unidirectional and non-recursive 
(simultaneous) when there is reciprocal causation between 
variables. 

Figure 4 shows four of the possible internal structures of 
the model. Figure 4-A shows the dependencies between the 
inputs and output in a univariate AR model with a lag of two. 
In this example, the forecast value at each point in time is 
based on the two preceding past values. Equation (1) shows 
the mathematical relationship in such a model, where each 
value in time is calculated with a linear combination of the 
past two values plus a constant term (β0) and a white noise 
term (ϵt). 

 

  Yt=β0+β1Yt−1+β2Yt−2+ϵt.          (1) 
 
Figure 4-B shows a recursive multivariate model, where 

the dependent variable forecast is based on past values of 
itself and the independent variables. However, each 
independent variable is only based on its past values. 
Equation set (2) shows the relationship of such a model with 
only one lag. It should be noted that in practice there can be 
many more lags involved in this model and the next two 
models. 

 

       Yt=β10+β11Yt−1+β12 Xt−1+ β13 X’t−1+ϵt,1.       (2) 

  Xt=β20+β21Xt−1+ϵt,2. 

  X’t=β30+β31X’t−1+ϵt,3. 
 
Figure 4-C shows another recursive model, which differs 

from model 4-B in that the independent variables also act as 
input to each other.  

 

       Yt=β10+β11Yt−1+β12 Xt−1+ β13 X’t−1+ϵt,1.       (3) 

  Xt=β20+β21Xt−1+ β22 X’t−1+ϵt,2. 
  X’t=β30+β31Xt−1+β32X’t−1+ϵt,3. 
 
Figure 4-D shows a sample of a non-recursive 

(simultaneous) model, where all the variables work as inputs 
for each other. There is no discrimination between dependent 
and independent variables in this approach. In this case each 
variable is a function of its past values and other variables 
past values. 

 
        Yt=β10+β11Yt−1+β12 Xt−1+ β13 X’t−1+ϵt,1.       (4) 

   Xt=β20+β21Yt−1+β22Xt−1+β23X’t−1+ϵt,2. 
   X’t=β30+β31Yt−1+β32Xt−1+β33X’t−1+ϵt,3. 
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Figure 5 shows a summary of the possible univariate 
models considered in this study. At a high level in this 
classification are two options, neural networks and time 
series modeling, each with its own set of variations. A long-
short term memory is used as the neural network model and 
AR, MA, ARMA, and different smoothing methods are used 
as the time series methods.  

Figure 6 shows the possible multivariate models that can 
be used in similar studies. The top categories here are 
regression, neural networks, time series, and nonlinear 
autoregressive moving average with exogenous variables 
(NARMAX), which is a combination of neural networks and 
time series models.  

After training and validating different models, some 
diagnostic tests should be conducted to check the stability of 
the best performing model before its implementation. For 
instance, checking to see if there is an autocorrelation 
between the residuals of the forecast is an appropriate tool 
for time series forecasts. Also, checking the way error 
compounds and undertaking a sensitivity analysis to see how 
the values of model parameters affect the model’s output can 
give a deeper insight into the performance of the model. 

 

 

Figure 4. Possible internal structures of the model, illustrating the 

relationship between the dependent and independent variables. A) Sample 

illustration of a univariate model B) Sample illustration of recursive 

multivariate model type 1 C) Sample illustration of recursive multivariate 

model type 2   D) Sample illustration of recursive multivariate model type 

3 

 

Figure 5. Univariate models surveyed through this study. 

 

Figure 6. Multivariate models surveyed through this study. 

A. Modeling Project Frequency 

Before modeling the project frequency, it is necessary to 
conduct some preliminary data analysis to quantify the data’s 
characteristics. Correlogram of autocorrelation and partial 
autocorrelation reveals that lag 8 and 12 exceeds the 
significance bounds, which means extending past 8 and 12 
values in univariate modeling are the most appropriate 
options as they demonstrate significant correlations with the 
original time series under study. 

Testing the stationarity of the project frequency is also 
important. Figure 7 shows the rolling mean and standard 
deviation of project frequency plotted along with the actual 
data. It is visually plausible that the data fluctuate around a 
fixed mean and variance. It can be numerically assessed by 
using an Augmented Dickey–Fuller test (ADF) to see if the 
data is stationary. There are three variations of the ADF test, 
all with the null hypothesis that a unit root is present in a 
time series sample (series is not stationary). If under any of 
the three variations the null hypothesis is rejected it can be 
inferred that the time series is stationary. The ADF test’s 
result (the appropriate lag is chosen based on the Akaike 
Information Criterion (AIC)) shows that the null hypothesis 
can be rejected at a 95 percent confidence level. Therefore, 
the frequency series is considered stationary, meaning it is 
evolving around a constant mean and variance. 

Two approaches can be implemented to forecast project 
frequency: univariate and multivariate modeling. ARMA and 
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exponential smoothing are among the most widely used 
methods to model a univariate time series. ARMA is used to 
model stationary time series data and is typically represented 
as ARMA (p,q), where p is the autoregressive order and q is 
the moving average order. The order of autoregressive and 
moving average is selected via autocorrelation and partial 
autocorrelation correlograms. Based on the preliminary data 
analysis of project frequency an ARMA (p=8, q=8) is the 
best choice to model the project frequency series. Also, a set 
of seasonal ARMA models fitted to the data and the best 
model is selected via AIC. Moreover, other univariate time 
series methods such as AR, MA, exponential MA, double 
exponential MA, different variations of ARMA, triple 
exponential smoothing (Holt-Winters, which takes into 
account both seasonal changes and trends) method are 
implemented. This analysis is conducted on the trained and 
validation data set from 2003 to 2015 using both rolling 
origin and rolling window methods. 

The performance on the test set is the critical measure to 
compare the performance of the models. Table II presents 
the summary of the best univariate models and their 
performance to forecast the project frequency measured by 
both rolling origin and rolling window cross-validation 
methods using Root Mean Squared Error (RMSE). Table III 
presents Mean Absolute Error (MAE) of the same models 
and cross-validation methods. It should be noted that the 
results represented here are the average error of the trained 
models tested on the seven test data sets presented in the 
cross validation methods of Figure 1. Each test set consist of 
three different years, so it is safe to assume that there is no 
over-parametrization or over-fitting represented in the 
average errors. The results show that almost all the models 
perform better according to the rolling origin method. This 
could be due to the fact that in this method the training data 
is more than what is being used in the rolling window. Thus, 
the coefficients are calculated more appropriately. 
Comparing the results of the rolling origin cross-validation 
method across different models shows that the ARMA (8,8) 
model outperformed the other models for both the RMSE 
and MAE measures. 

 

 

Figure 7. Rolling mean and standard deviation of project frequency plotted 

against the original data. 

 

 

TABLE II. SUMMARY OF RMSE OF TIME SERIES MODELS. 

Model 
Average 

(rolling origin) 
Average  

(Rolling window) 

AR (8) 10.925 10.993 

AR (12) 10.934 11.063 

MA (8) 11.321 11.343 

MA (12) 11.288 11.308 

Exponential MA (8) 11.404 11.420 

Exponential MA (12) 11.324 11.325 

Double Exponential 
MA (8) 

12.050 12.057 

Double Exponential 
MA (12) 

11.647 11.683 

Auto ARMA 11.057 11.127 

ARMA (8,8) 10.715 11.580 

ARMA (8,12) 10.830 11.252 

ARMA (12,8) 10.870 12.003 

ARMA (12,12) 11.556 42.616 

Exponential smoothing 11.057 11.138 

Holt Winter 10.820 12.814 

 

TABLE III. SUMMARY OF MAE OF TIME SERIES MODELS. 

Model 
Average 

(rolling origin) 
Average  

(Rolling window) 

AR(8) 8.48 8.551 

AR (12) 8.49 8.533 

MA (8) 8.85 8.857 

MA (12) 8.74 8.765 

Exponential MA (8) 9.02 9.040 

Exponential MA (12) 8.89 8.894 

Double Exponential 
MA (8) 

9.75 9.693 

Double Exponential 
MA (12) 

9.3 9.320 

Auto ARMA 8.59 8.611 

ARMA (8,8) 8.45 9.297 

ARMA (8,12) 8.53 9.218 

ARMA (12,8) 8.55 9.739 

ARMA (12,12) 9.23 31.853 

Exponential smoothing 8.59 8.611 

Holt Winter 8.7 10.158 

 
The evaluated models so far presented focus only on 

linear relationships between the inputs. In order to 
investigate the nonlinear relationship between the inputs a 
Long-Short Term Memory (LSTM) neural network is used. 
This method is only implemented with the rolling origin 
cross-validation method as it requires more data for 
comprehensive training and the data limitation of the rolling 
would reduce its performance significantly. Table IV shows 
the summary of the different LSTM models trained and 
tested using a grid search to find the optimal number of 
neurons and lookback number (number of previous values to 
be considered as input). The results show that the net with 
two neurons and one lookback performs better than other 
configurations. 
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TABLE IV. SUMMARY OF LSTM MODELS PERFORMANCE USING ROLLING 

ORIGIN METHOD. 

lookback neurons Average (RMSE) Average (MAE) 

1 1 10.79 8.56 

1 2 10.75 8.58 

1 3 10.76 8.61 

1 4 10.76 8.61 

1 5 10.79 8.63 

1 10 10.76 8.59 

1 20 10.77 8.61 

3 1 11.18 8.81 

3 2 11.52 9.15 

3 3 11.22 9.12 

3 4 11.42 9.12 

3 5 11.33 9.22 

3 10 12.01 9.65 

3 20 12.36 9.70 

5 1 11.81 9.37 

5 2 11.54 9.05 

5 3 11.36 9.09 

5 4 11.66 9.26 

5 5 11.27 9.01 

5 10 12.78 10.28 

5 20 14.25 11.00 

8 1 12.43 10.01 

8 2 13.21 10.74 

8 3 15.80 12.45 

8 4 15.81 12.70 

8 5 16.78 13.25 

8 10 18.71 14.55 

8 20 21.27 15.85 

12 1 17.75 13.02 

12 2 17.78 13.51 

12 3 17.81 13.99 

12 4 19.54 15.41 

12 5 18.19 14.85 

12 10 15.98 13.16 

12 20 16.94 13.40 

 
The difference between the performance of the models 

might seem small. However, considering that it is an average 
of seven test sections based on the cross validation methods 
discussed earlier, even small differences are meaningful. 
Comparing results of the time series model and the LSTM 
model shows that ARMA (8,8) is the best approach for 
modeling project frequency. Table V presents a quantitative 
summary of the training and test set of the last cross 
validation section for a better understating of how the model 

compares to the actual data. The mean and median match 
very well for both the training and test sets. However, the 
model’s variance, standard deviation and range are less than 
the actual data. Figure 8 provides a more in-depth 
understanding of the results by a visual illustration of the 
performance of the ARMA model, illustrating the difference 
between the actual data and the best performing model. The 
predicted values are shown in blue, and the actual data are 
plotted in red. Visual inspection of Figure 8 shows that the 
model performs better forecasting later values (after 2008) 
and, likewise, better captures the variance of the actual data 
in these later years. However, it is evident that the model’s 
variance (blue) is less than the actual data (red) through the 
whole data set. The gray area represents the prediction 
intervals for the test data set. The dark grey shows the 80% 
interval and light grey shows the 95% interval. 

Based on the literature [24], [34], [35] including 
explanatory variables and using multivariate models can 
yield more accurate results. As a result, following the 
scheme illustrated in Figure 3 (using multivariate methods to 
improve project frequency forecast) is part of future work in 
this study. 

B. Modeling Cost and Duration 

Cost and duration are the two variables to be sampled 
from a fitted distribution from past projects. Checking for the 
correlation between the two variables is essential. A Pearson 
correlation test shows 0.662 correlation coefficient with 0.00 
P-value between the duration and cost at the project level 
(0.00 P-value shows that the correlation is significant, and it 
is not due to the chance). This shows a moderately linear 
relationship between the two variables, and it should be 
incorporated in the model. 

Each member in a set of continuous distributions 
(consisting of the Inverse Gaussian, Pearson, Fréchet, 
Normal, Lognormal, Dagum, Fatigue Life, Logistic, 
Loglogistic, Gamma, Exponential, Triangular, Uniform, 
Student, and Weibull distributions) has been parametrically 
fitted to the cross-validation data sections using the 
maximum likelihood estimation (MLE) method and ranked 
via AIC.  Table VI shows the results from the rolling 
window cross-validation while Table VII shows the result 
for the rolling origin cross-validation method. From these 
tables it can be seen that the distributions that were 
consistently among the best were the Inverse Gaussian 
distribution for duration, and the Lognormal distribution for 
cost.  

Figure 9 shows the histogram, and the corresponding 
fitted distribution for the duration and cost of the projects. 
An Inverse Gaussian distribution with µ= 244.67 and λ= 
273.93 was found to provide the best fit using AIC for the 
duration. A lognormal distribution with (mean log) µ= 
14.413319 and (standard deviation log) σ = 1.524961 was 
found to provide the best fit using AIC for the cost. Through 
sampling from these distributions, a cost and a duration can 
be assigned to each forecasted project. As a result, the output 
of the framework would be the number of projects for each 
month and a cost and a duration assigned to each project. 
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TABLE V. QUANTITATIVE SUMMARY OF ARMA MODEL AND ACTUAL DATA 

 
Training set Test set 

 
ARMA model Actual data ARMA model Actual data 

Mean 19.83 19.82 19.92 18.56 

Variance 31.33 104.97 38.89 121.57 

Std. Dev. 5.60 10.25 6.24 11.03 

Median 20.58 21.00 20.96 20.00 

Minimum 1.09 0.00 6.87 0.00 

Maximum 30.78 48.00 30.75 39.00 

Range 29.69 48.00 23.87 39.00 

 

Figure 8. ARIMA (8,0,8) model illustration using 9 years for training and 3 years for testing. 

 

TABLE VI. DISTRIBUTION FIT RESULTS USING ROLLING WINDOW DATA SECTIONS 

  2003-2008 2004-2009 2005-2010 2006-2011 2007-2012 2008-2013 2009-2014 

Cost 

Best 
distribution 

Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal 

AIC 45,368.30 46,444.59 47,136.99 46,065.73 45,450.35 45,732.72 45,863.51 

Duration 

Best 
distribution 

Inverse 
Gaussian 

Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
AIC 17,724.74 18,115.82 18,322.96 17,963.08 17,821.47 17,933.65 18,022.70 

  

TABLE VII. DISTRIBUTION FIT RESULTS USING ROLLING ORIGIN DATA SECTIONS 

  2003-2008 2003-2009 2003-2010 2003-2011 2003-2012 2003-2013 2003-2014 

Cost Best 
distribution 

Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal Lognormal 

AIC 45,368.30 53,914.56 62,259.21 69,807.80 76,323.25 84,308.77 91,330.68 

Duration Best 
distribution 

Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
Inverse 

Gaussian 
AIC 17,724.74 21,099.32 24,383.72 27,346.81 29,928.68 33,040.76 35,774.54 
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Figure 9. Duration (Left) and Cost (Right) fitted distributions

The performances of the various model components 
presented in this section indicate the viability of an 
integrated project stream forecaster that predicts, within a 
simulation environment, the frequencies of projects and 
empirical distributions of project duration and cost. 
Specifically, the generator will produce stochastic streams 
of unknown future FDOT projects. 

V. CONCLUSION AND FUTURE WORK. 

This paper has proposed an extension to the body of 

existing project portfolio planning models and discussed a 

methodology for its development. The proposed model 

will extend the horizon for portfolio and strategic planning 

by enabling users to look further into the future and 

consider unknown (but statistically quantifiable) projects 

alongside the known and current projects in their planning 

process.  
The proposed model provides an additional component 

to the current portfolio management models. A general 
modeling approach with different possible training and 
validating methods is discussed and results of the research 
on developing, validating and testing a stream generator to 
forecast FDOT projects, in terms of time of occurrence, 
expected duration and expected cost, is presented. It is 
shown how univariate models can be used to forecast 
project frequency, and a discussion is provided of the 
representing distributions for project cost and duration 
along with their relationship. Results of project frequency 
univariate modeling showed that ARMA was the best 
performing model in this case, outperforming the LSTM 
neural network. This could be explained by the excessive 
need of such neural networks for large sample datasets. 
Furthermore, among the tested distributions, the Inverse 
Gaussian was found to be the most representative of 
project duration, and the Lognormal distribution was 
found to be the most representative distribution for project 
costs. 

A set of potentially relevant predictors including the 

macroeconomics metrics and construction indices have 

been identified to enable future improvement of the model 

using multivariate methods. This approach can be applied 

in different contexts and is not confined to the specific 

case study discussed in this paper. It is also proposed to 

expand the scope of the research by adding other 

characteristics to the project stream generator (such as 

different project types) and implementing it within various 

environmental contexts.  
The complete framework will allow the user to 

examine different bidding and project selection strategies 
to see the impact on a company’s portfolio and the future 
resource demands. Furthermore, it will lead to the 
selection of a closer to optimal strategy and optimal 
resource distribution for a user. Finally, taking into 
account uncertainties in future project streams might 
decrease the required extent of continuous adjustments to a 
company’s portfolio plan resulting from new projects 
being added to the portfolio. 

REFERENCES 

[1] A. Shojaei and I. Flood, “Extending the Portfolio and 
Strategic Planning Horizon by Stochastic Forecasting of 
Unknown Future Projects,” in The Seventh International 
Conference on Advanced Communications and 
Computation, INFOCOMP 2017, pp. 64–69. 

[2] B. S. Blichfeldt and P. Eskerod, “Project portfolio 
management - There’s more to it than what management 
enacts,” Int. J. Proj. Manag., vol. 26, no. 4, pp. 357–365, 
May 2008. 

[3] J. A. Araúzo, J. Pajares, and A. Lopez-Paredes, 
“Simulating the dynamic scheduling of project portfolios,” 
Simul. Model. Pract. Theory, vol. 18, no. 10, pp. 1428–
1441, Nov. 2010. 

[4] R. G. Cooper, S. J. Edgett, and E. J. Kleinschmidt, 
“Portfolio management in new product development: 
Lessons from the leaders—I,” Res. Manag., vol. 40, no. 5, 
pp. 16–28, 1997. 

[5] H. Markowitz, “PORTFOLIO SELECTION*,” J. Finance, 
vol. 7, no. 1, pp. 77–91, Mar. 1952. 

[6] W. F. McFarlan, “Portfolio approach to information 
systems,” Harv. Bus. Rev., vol. 59, no. 5, pp. 142–150, 
1981. 

 

 



46

International Journal on Advances in Systems and Measurements, vol 11 no 1 & 2, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[7] T. R. Browning and A. A. Yassine, “Resource-constrained 
multi-project scheduling: Priority rule performance 
revisited,” Int. J. Prod. Econ., vol. 126, no. 2, pp. 212–228, 
Aug. 2010. 

[8] A. F. Carazo, T. Gómez, J. Molina, A. G. Hernández-Díaz, 
F. M. Guerrero, and R. Caballero, “Solving a 
comprehensive model for multiobjective project portfolio 
selection,” Comput. Oper. Res., vol. 37, no. 4, pp. 630–639, 
Apr. 2010. 

[9] M. Engwall, “No project is an island: Linking projects to 
history and context,” Res. Policy, vol. 32, no. 5, pp. 789–
808, May 2003. 

[10] B. Wang and Y. Song, “Reinvestment Strategy-Based 
Project Portfolio Selection and Scheduling with Time-
Dependent Budget Limit Considering Time Value of 
Capital BT - Proceedings of the 2015 International 
Conference on Electrical and Information Technologies for 
Rail Transportat,” 2016, pp. 373–381. 

[11] B. Canbaz and F. Marle, “Construction of project portfolio 
considering efficiency, strategic effectiveness, balance and 
project interdependencies,” Int. J. Proj. Organ. Manag., vol. 
8, no. 2, p. 103, 2016. 

[12] M. Lehnert, A. Linhart, and M. Röglinger, “Value-based 
process project portfolio management: integrated planning 
of BPM capability development and process 
improvement,” Bus. Res., vol. 9, no. 2, pp. 377–419, Aug. 
2016. 

[13] V. Mohagheghi, S. M. Mousavi, B. Vahdani, and M. R. 
Shahriari, “R&D project evaluation and project portfolio 
selection by a new interval type-2 fuzzy optimization 
approach,” Neural Comput. Appl., vol. 28, no. 12, pp. 
3869–3888, Dec. 2017. 

[14] F. Faezy Razi and S. Hooman Shariat, “A hybrid grey 
based artificial neural network and C&R tree for project 
portfolio selection,” Benchmarking An Int. J., vol. 24, no. 
3, pp. 651–665, 2017. 

[15] M. Shariatmadari, N. Nahavandi, S. H. Zegordi, and M. H. 
Sobhiyah, “Integrated resource management for 
simultaneous project selection and scheduling,” Comput. 
Ind. Eng., vol. 109, pp. 39–47, 2017. 

[16] J. M. Hummel, M. D. Oliveira, C. A. B. e Costa, and M. J. 
IJzerman, “Supporting the Project Portfolio Selection 
Decision of Research and Development Investments by 
Means of Multi-Criteria Resource Allocation Modelling,” 
in Multi-Criteria Decision Analysis to Support Healthcare 
Decisions, Springer, 2017, pp. 89–103. 

[17] S.-S. Liu and C.-J. Wang, “Optimizing project selection 
and scheduling problems with time-dependent resource 
constraints,” Autom. Constr., vol. 20, no. 8, pp. 1110–1119, 
Dec. 2011. 

[18] W. R. Scott, Organizations: Rational, Natural, and Open 
Systems, 5th Editio. Prentice Hall, 2002. 

[19] M. Martinsuo, “Project portfolio management in practice 
and in context,” Int. J. Proj. Manag., vol. 31, no. 6, pp. 
794–803, Aug. 2013. 

[20] R. B. Duncan, “Characteristics of Organizational 
Environments and Perceived Environmental Uncertainty,” 
Adm. Sci. Q., pp. 313–327, 1972. 

[21] R. L. Daft, “Organziation Theory and Design,” in South-
Western Cengage Learning, 2009, pp. 138–157. 

[22] M. M. Farshchian and G. Heravi, “Probabilistic 
Assessment of Cost, Time, and Revenue in a Portfolio of 
Projects Using Stochastic Agent-Based Simulation,” J. 
Constr. Eng. Manag., vol. 144, no. 5, p. 04018028, May 
2018. 

[23] Y. Petit and B. Hobbs, “Project portfolios in dynamic 
environments: Sources of uncertainty and sensing 
mechanisms,” Proj. Manag. J., vol. 41, no. 4, pp. 46–58, 
Sep. 2010. 

[24] S. M. Shahandashti and B. Ashuri, “Highway Construction 
Cost Forecasting Using Vector Error Correction Models,” 
J. Manag. Eng., vol. 32, no. 2, p. 04015040, Mar. 2016. 

[25] A. Shojaei and I. Flood, “Stochastic forecasting of project 
streams for construction project portfolio management,” 
Vis. Eng., vol. 5, no. 1, p. 11, 2017. 

[26] A. Shojaei and I. Flood, “Stochastic Forecasting of 
Unknown Future Project Streams for Strategic Portfolio 
Planning,” in Computing in Civil Engineering 2017, 2017, 
pp. 280–288. 

[27] C. Cargnoni, P. Müller, and M. West, “Bayesian 
Forecasting of Multinomial Time Series through 
Conditionally Gaussian Dynamic Models,” J. Am. Stat. 
Assoc., vol. 92, no. 438, pp. 640–647, Jun. 1997. 

[28] C. Voyant, G. Notton, C. Darras, A. Fouilloy, and F. Motte, 
“Uncertainties in global radiation time series forecasting 
using machine learning: The multilayer perceptron case,” 
Energy, vol. 125, pp. 248–257, Apr. 2017. 

[29] J. Li and W. Chen, “Forecasting macroeconomic time 
series: LASSO-based approaches and their forecast 
combinations with dynamic factor models,” Int. J. 
Forecast., vol. 30, no. 4, pp. 996–1015, Oct. 2014. 

[30] P. Exterkate, P. J. F. Groenen, C. Heij, and D. van Dijk, 
“Nonlinear forecasting with many predictors using kernel 
ridge regression,” Int. J. Forecast., vol. 32, no. 3, pp. 736–
753, Jul. 2016. 

[31] X. Yu and S.-Y. Liong, “Forecasting of hydrologic time 
series with ridge regression in feature space,” J. Hydrol., 
vol. 332, no. 3–4, pp. 290–302, Jan. 2007. 

[32] B. Choubin, S. Khalighi-Sigaroodi, A. Malekian, and Ö. 
Kişi, “Multiple linear regression, multi-layer perceptron 
network and adaptive neuro-fuzzy inference system for 
forecasting precipitation based on large-scale climate 
signals,” Hydrol. Sci. J., vol. 61, no. 6, pp. 1001–1009, 
Apr. 2016. 

[33] L. J. Cao and F. E. H. Tay, “Support vector machine with 
adaptive parameters in financial time series forecasting,” 
IEEE Trans. Neural Networks, vol. 14, no. 6, pp. 1506–
1518, Nov. 2003. 

[34] S. Thomas Ng, S. O. Cheung, R. Martin Skitmore, K. C. 
Lam, and L. Y. Wong, “Prediction of tender price index 
directional changes,” Constr. Manag. Econ., vol. 18, no. 7, 
pp. 843–852, Oct. 2000. 

[35] J. M. W. Wong and S. T. Ng, “Forecasting construction 
tender price index in Hong Kong using vector error 
correction model,” Constr. Manag. Econ., vol. 28, no. 12, 
pp. 1255–1268, 2010. 

 

 


