
250

International Journal on Advances in Systems and Measurements, vol 11 no 3 & 4, year 2018, http://www.iariajournals.org/systems_and_measurements/

2018, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Investigating Stochastic Dependencies Between Critical Infrastructures

Sandra König
Austrian Institute of Technology GmbH, Center for Digital Safety & Security

Vienna, Austria
Email: sandra.koenig@ait.ac.at

Stefan Rass
Universität Klagenfurt, Institute of Applied Informatics, System Security Group

Klagenfurt, Austria
Email: stefan.rass@aau.at

Abstract—Critical infrastructures (CIs) are essential for the
welfare and prosperity of a society, and failure of one infras-
tructure has a significant impact on our everyday life. However,
a problem in one critical infrastructure is rarely local but often
affects other infrastructures, e.g., limited availability of electricity
affects hospitals, water providers and food suppliers. Even a par-
tial failure of critical infrastructures has consequences that are
hard to predict unless under stringent assumptions. Among other
things, the damage on another infrastructure depends on the
availability of substitutes. While such factors are mostly known,
many external factors such as weather, temporary demand or
load peaks are not precisely predictable so that a stochastic model
is required to describe the state of an infrastructure. The state
of each infrastructure is described by a random variable and
changes its state according to a transition regime that depends
on the state of other CIs but also the type of dependency.
This yields a model of complex interdependencies with unknown
dynamics where the state of a CI is determined by several Markov
chains. Several ways exist to determine the actual state of the
CI under several influences; the most conservative one is to
assume the worst case (by applying the maximum principle).
In this work, we provide a more general view that allows
incorporating dependencies between input providers. Further,
we discuss practical issues such as assessments from several
experts and investigate chances for healing and total failure.
An implementation of the model in R is used to illustrate how
the model may be used in practice to estimate the states of a
dependent CI due to limited availability of a provider. This paper
describes a stochastic model of dependencies between CIs and
discusses issues that arise when applying it.

Keywords-critical infrastructure; stochastic dependencies;
Markov chain; risk propagation; copula.

I. INTRODUCTION

Many Critical infrastructures (CIs) are supply networks
satisfying the basic needs of society, such as power, water,
food, health care or transportation. These CIs naturally depend
on one another, and recent developments such as the increased
use of control systems increase these interdependencies. The
type of dependency is manifold. For example, a hospital
depends on water supply as it needs drinking water for staff
and patients but also cooling water is necessary for smooth
operation. A water provider needs electricity to keep its pumps
running but also for the operation of a Supervisory Control and

Data Acquisition (SCADA) system. These complex interde-
pendencies are not exactly predictable a can thus be regarded
as stochastic [1]. A core characteristic of today’s CIs is the
fact that a failure or limited availability of one CI often has a
considerable impact on CIs depending on it. This has shown in
recent years, for example, the disruption of electric power in
California in 2001 [2] affected several other CIs, a significant
power outage in Italy of about 12 hours [3] resulted in a
financial damage of over one billion euros or the most recent
hacking of the Ukrainian power grid caused a power outage of
several hours [4]. Generally, such dependencies between CIs
can be either continuous, as it is the case of electricity where
a stable supply is required, or instantaneous, for example, if
the CI’s support is just required in an emergency (e.g., police
or fire brigade).

In this work, we consider structures that mutually and
continuously depend on input from several providers, such as
water or electricity (see [5][6] for a more detailed discussion).
Reduced or even missing supply from a critical provider may
cause significant problems for an infrastructure. The actual
damage naturally depends on the degree of failure of the
provider but is also influenced by many other factors such
as availability of substitutes (see [7] for work related to water
supply). Especially consequences of reduced support are usu-
ally not precisely predictable, which is why we use a stochastic
model to describe the condition (state) of a CI based on the
states of its providers. These dependencies may be grouped
depending on nature or importance of the relation. Such an
abstract model can be applied to any infrastructure, as long
as the dependency structure is known and can be classified
qualitatively in terms of “how severe” a provider’s outage is on
a finite scale (say, from 1 to 5; see [8] for a discussion of this
requirement in light of compliance, auditing, and monitoring).
The model thus speaks about different “degrees of failure,”
where the particular meaning of such a “degree” is up to the
specific characteristics of the CI (e.g., status 3 may represent
different things or problems for a water provider than for a
hospital). The basic model is not too complex by considering
only dependencies between two infrastructures at a time and
by grouping infrastructures into different classes with different
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characteristics. However, it is also possible to take into account
dependencies between providers of the same type that could
be used as a substitute in case of limited availability. Making
such a dependence among providers explicit is, for instance,
doable with help of copulas that give the joint probability
distribution as a function of the individual distributions. This
method keeps the complexity still manageable while allowing
for higher flexibility and more accuracy of the model.

Paper Outline

The remainder of this article is organized as follows. After a
recap of selected related work in Section II, Section III intro-
duces a stochastic model for dependencies between critical
infrastructures and its use in practice. Section IV analyzes
the chances of total failure or normal functionality based on
this model, and Section V extends the basic model towards
dependencies between providers of a CI. Section VI shows a
small example, and Section VII provides concluding remarks.

II. RELATED WORK

Several models exist on dependencies among critical in-
frastructures. In [9], a framework for addressing infrastructure
interdependencies is presented that distinguishes five different
classes of critical infrastructure interdependencies (including
dependencies of information and communication technolo-
gies). Recent models consider random failure and stochastic
dependencies, for example, a multi-graph model that analyze
random failures and their effects on critical infrastructures
[10]. Other models explicitly look at interdependencies of
higher order to identify and assess the effect of failures not
only for “consumers” but also for subsequent infrastructures
in the dependency chain [11][12]. Cascading effects have
been investigated in [13] using an Input-Output Inoperability
Model (IIM) based on financial data and Hierarchical Holo-
graphic Modeling (HHM) [14] has been used to describe
the diverse nature of CI networks and to analyze failures
therein. Interdependency graphs are another popular tool for
development of methodologies to describe the propagation of
failures and cascading effects. Examples include the Cross
Impact Analysis (CIA) [15], [16] or the Cross Impact Anal-
ysis and Interpretative Structural Model (CIS-ISM) [17]. The
Input-Output Inoperability Model (IIM) [18], [19], [20] also
provides a detailed view on interdependencies between CIs
where linear equations model the consequences. However,
these effects are in general measured according to economic
aspects, which is only one (and not always the most im-
portant) point of view, especially when looking at critical
infrastructures. Models that include a more detailed description
of the infrastructures are based on Bayesian networks [21]
as, for example, the Hierarchical Coordinated Bayes Model
(HCBM) [22], [23], [24] or other approaches (cf. [25] and
references therein). These models take into account effects
of extreme events as well as events with only spars data but
can also focus on technical dependencies, see, e.g., [26]. Our
basic model is related to various approaches by simulation
and co-simulation [27][28][29][30][31]. Typically, these are

applicable when the analyst is much more informed about
the infrastructure in question since the simulation depicts the
internal dynamics (even up to the level of actual network
packets to be exchanged). Our perspective is much more high-
level and assumes the absence of this detailed information
but rather assumes categorical valuations of interdependencies
(cf. [5][32][33][34] for more comprehensive overviews), as it
is often done in risk management. The stochastic dependency
model used here can also be understood as a part of a classical
risk management analysis [35].

More formal models include coupled complex systems [36]
that are more exposed to large-scale failures or models as
described in [37] that describe the increase and the decrease
of random failures. Most popular among the stochastic models
are Markov chain models. The Interdependent Markov Chain
(IDMC) model describes cascading failures in interdependent
infrastructures [38]. Conditional Markov transition models are
applied in electric power grids [39] and a model including
higher orders by adding memory to the Markov chain is
presented in [40].

III. STOCHASTIC DEPENDENCIES BETWEEN CRITICAL
INFRASTRUCTURES

We first describe a basic probabilistic model of dependen-
cies between critical infrastructures in Section III-A and then
show some issues when applying it. Potential application to the
problem of measuring the resilience of critical infrastructures
is given in [41]. Here we show that this model is capable of
incorporating assessments from several experts, see Section
III-B, and how it can be of use when applying risk man-
agement best practices to increase security in Section III-C.
Finally, we sketch how the model can be implemented in
Section III-D.

A. The Model

Dependencies are often modeled through a directed graph
where the nodes represent the various components, and a
directed edge describes that the target node depends on the
start node. This simple model can also be used to describe
interdependencies between critical infrastructures. A high-
level view on a system of CIs lets nodes represent the different
CIs and a directed edge from CI 1 to CI 2 indicates that
CI 2 depends on CI 1, e.g., a hospital depends on a water
provider for drinking, but also waste management and fire
extinguishing. A more detailed analysis lets nodes represent
components of a CI, e.g., a pump or a well as parts of a water
utility, and investigates how these depend on one another and
other CIs. In either case, the visualization of dependencies
provides a basis to understand how limitations in one provider
affect dependent CIs and how this effect changes over time. A
simulation tool for these cascading effects that is also able to
distinguish between short- medium and longtime dependencies
is presented in [42]. CIs that support other CIs are called
provider in the following. In the basic model of stochastic
dependencies among CIs [1] we represent the CIs as directed
graphs whose nodes, also called components, can be in various
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states that represents their degree of functionality. Whenever
one component changes its change from 1 (“working prop-
erly”) into a state that represents limited functionality (up to
state k that represents total failure), this may cause a state
change in every CI depending on it.

More formally, suppose that a CI S depends on a set of
n providers, enumerated as P1, . . . , Pn (all being perhaps
themselves CIs). We assume that S will not endogenously
experience any state changes since keeping S up and running
is a matter of S’s business continuity management. The model
we describe thus centers on exogenous triggers for S to change
its state, namely upon problems with one of S’s providers
P1, . . . , Pn, drawn as the lower layer of nodes in the bipartite
right graph shown in Figure 1. Specifically, we let each of them
maintain its own state of functionality, which is communicated
(or generally observed) by S, and S can react on a change.
This change is governed probabilistically by the state of the
provider, or more formally, let Si be the condition, i.e., state,
that Pi can cause for S. This is a random variable distributed
over the state space {1, 2, . . . , k} ' {ok, . . . , total failure},
and described as a conditional distribution Pr(Si = x|Pi = y),
where Pi = y ∈ {1, . . . , k} is the current state of provider Pi,
and x ∈ {1, 2, . . . , k} is the state that Pi may drive S into.
The exact way in which S now depends on the provider Pi can
then be specified by a value pi,x,y , which can, for example,
be set following considerations like these:

• Pi is of vital importance for S, so if i is in a bad
condition, S is highly likely to be in trouble as well. Thus,
Pr(Si = 5|Pi = 5) ≈ 1, indicating that Si will become
unavailable if Pi becomes unavailable, since there may
be no compensation for Pi’s service.

• Pi may only be of minor importance, and an outage of
Pi can be bridged by backup resources that S maintains.
In that case, we could define Pr(Si = 5, Pi = 5) ≈ 0,
modeling that an outage of S is very unlikely even if Pi

no longer provides its service.

More fine-grained considerations like the above examples are
possible and in a practical instance depend on the application
at hand. We leave the two examples here only for illustration
and now turn back to the formal description of the model.

Since the dependence of S on two providers may be quite
individually different, we internally let S’s state be a vector of
random states (S1, . . . , Sn), each Si determined by the cor-
responding provider Pi. These nodes S1, . . . , Sn correspond
to the colored upper layer in the bipartite graph shown in
Figure 1, and the actual state of S that it communicates as
a provider to other CIs is a single value in {1, 2, . . . , k}
compiled (aggregated) from the vector, i.e., node states, Si.

This aggregation follows the maximum principle of system
security, defining the risk in a system by the highest indi-
vidual risk therein. Likewise, we compute the state of S as
max {S1, . . . , Sn}, corresponding to S being in trouble if at
least one of its providers reports a bad condition (by having
a state close or equal to k). In terms of Boolean or fuzzy
logic, we would thus define S’s state as the (logical) OR
of its provider’s states. Adopting this view but changing the

perspective, any more complex aggregation function to define
the state of S from the variables S1, . . . , Sn is imaginable,
including the use of copulas [43] or triangular norms (from
multivalued- and fuzzy logic [44]); we postpone this discus-
sion until Section V. The simulation model studied in this
work uses the max-aggregation hereafter.

...

...

Status nodes 

(color represents 

state)

Input nodes, getting 

states from parent 

nodes

Fig. 1. Model of the inner structure of a critical infrastructure [1]

With k states for each of the n providers, and k states of S
itself, the overall specification of the state transition is a set
of n stochastic (k × k) transition matrices with entries being
the conditional likelihoods as described above. According to
these transition matrices, provider i yields a state Si of the
dependent CI. In case different providers yield different states,
the final state S is determined by S = max{S1, . . . , Sn}, i.e.,
we consider the worst case.

While a stochastic model is convenient (actually natural) to
describe uncertain consequences, it is often challenging to put
it in practice. The main issue in this regard is estimation of
transmission probabilities since experts often feel uncomfort-
able or feel unable to provide concrete and reliable values.
Several aids exist, however:

1) allow an expert to give qualitative values, e.g., on a 5-tier
scale

2) ask an expert to tell a level of confidence with every
estimate (also qualitative, such as “very sure”, “somewhat
unsure” or “’just guessing’)

3) ask several experts for their individual (subjective) as-
sessments

The last point may allow experts assess only some transitions
(depending on their expertise) but also raises the question
of how to deal with several expert opinions. We will focus
on this below. The second point seems to blow up the data
needed but can be put into practice in a way that actually in
most cases reduced the amount of input data. For each state
of the provider, it is necessary to find an entire distribution
over all possible states of the dependent CI. This can be
done by determining the most likely value as a subjective
prediction, and interpreting the level of confidence in the told
opinion as some kind of variance. Practically, that means that
for confidence “very high” we choose a distribution that puts
mass 1 on the predicted value and 0 elsewhere, while we
choose a uniform distribution over all state for a confidence
“just guessing”. Intermediate assessments such as “somewhat
unsure” put some probability mass on states close to the
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specified one but no positive probability on values that are
too far from the opinion. For the case of three different states
of a CI this mapping is illustrated in [45], including a short
discussion on the interpretation of “totally sure” assessments.
For the case of five possible states (as used in our example later
on) we get the mapping given in Table I, where the resulting
vectors make up one row of the corresponding transitions
matrix.

TABLE I. DISTRIBUTION OVER STATES OF DEPENDENT CI BASED
ON EXPERT ASSESSMENT (PREDICTION, CONFIDENCE)

prediction very sure somewhat unsure just guessing
1 (1,0,0,0,0) (2/3, 1/3, 0, 0, 0) (1/5,1/5,1/5,1/5,1/5)
2 (0,1,0,0,0) (1/4, 2/4, 1/4, 0, 0) (1/5,1/5,1/5,1/5,1/5)
3 (0,0,1,0,0) (0, 1/4, 2/4, 1/4, 0) (1/5,1/5,1/5,1/5,1/5)
4 (0,0,0,1,0) (0, 0, 1/4, 2/4, 1/4) (1/5,1/5,1/5,1/5,1/5)
5 (0,0,0,0,1) (0, 0, 0, 1/3, 2/3) (1/5,1/5,1/5,1/5,1/5)

Assessments of this kind yield an entire row of the trans-
mission matrix (i.e., a discrete distribution) and we will denote
it by F to represent this fact.

B. Several Expert Opinions

So far we have assumed that each dependency has been
assessed by one expert only. We stress that, however, not nec-
essarily the same person is required to rate all dependencies.
In case we have more than one expert assessment for a connec-
tion, all opinions should be taken into account to increase the
data quality underlying the subjective assessments, as well as
to reduce the pressure on each expert to be responsible solely
for the given assessment. In our setting, a number of K experts
opinions yield to multiple distributions over the possible states
of the dependent CI. We denoted these as F1, . . . , FK and
aggregate the distribution to find the estimate

F = α1 · F1 + . . .+ αK · FK

for one edge in the bipartite graph in Figure 1, where
α1, . . . , αK satisfy

α1 + . . .+ αK = 1.

The parameter αi can be interpreted as the weight (influence)
of expert i’s opinion in the overall assessment. In case we do
not distinguish between different expertise, we choose uniform
weights, i.e., αi = 1/K for all i.

C. Impact Estimation as a Part of Risk Management

One step in risk analysis and risk management [46][35]
is to estimate the impact due to a security incident. There
exist several ways to do that, and the choice of a specific
method depends on the situation at hand, see, e.g., [47] for
co-simulation applied to power distribution grids, [48] for an
application of agent-based simulation or [49] for the spreading
of ransomware. This impact estimation is not only needed
for an analysis of effects of an incident (such as a malware
attack) but can also help to test the use of countermeasures
(such as patching a computer). Whenever actions are taken to
reduce the damage on a CI due to a problem in a provider,

this changes the dependency between the two, in particular, it
reduced the probability that the dependent CI changes into a
severe state (if the countermeasure is effective). The network
itself does not change but the effect of reduced availability of a
provider on the dependent CI changes, which yields a different
transitions matrix. The simulation is then be rerun with a
different set of transition matrices to see if the resulting losses
reduce. These estimates of damages for various scenarios build
up a generalized payoff matrix that allows finding an optimal
way to protect the system at hand. The important point is that
the assessment as we outline here is exactly the same as what is
done along a conventional risk management process anyway:
following standard frameworks like the IT Grundschutz (by
the German federal office for information security (BSI) [50]),
or the ISO 27k standard, a typical step is an assessment
of how assets or components depend on one another. The
pure information of a dependence then naturally defines the
dependency graph topology. Our method then goes further
in asking what would happen to one component if another
component fails. That is, we propose a mere “additional use”
of the artifacts from risk management in the here proposed
simulation framework to aid the impact assessment to gain
some “objectivity.”

D. Simulation

The stochastic dependency model between critical infras-
tructures has a straightforward implementation in software
such as the freeware R. This makes it handy to use in any
field due to the high interoperability of R with other systems.

The simulation starts with an incident affecting one node,
which subsequently (directly and indirectly) triggers descen-
dant CIs to change their status according to the likelihoods
in their inner bipartite graphs. In that way, the simulation
reveals how far an incident will propagate through the network
of CIs (within the runtime of the simulation), and can thus
be used to estimate the effect a problem in one component
has on a specific critical infrastructure or generally on other
components. Further, it allows an empirical estimation of the
number of components that are in a critical state (i.e., reach
the highest status k) or the relative frequency of one specific
CI being in a critical state.

More explicitly, we model the network of infrastructures as
a graph G = (V,E) with vertices v ∈ V that represent the
infrastructures and edges e ∈ E representing the dependencies
between them. A common difficulty in specifying such prob-
abilistic models is the issue of where to get the conditional
probabilities from (that we already mentioned in Section III-A,
along with hints on how to think about these values). To relieve
this practical challenge, we let the conditional likelihood
specification be discrete and replace the poll for probabilities
by the question to specify, resp. assign, a certain edge class c
instead (the edge again being one in the bipartite inner graph
modeling a CI; cf. Figure 1). An edge classification is hereby
chosen from a set of candidates {1, 2, . . . , C}. Each edge class
represents a fixed type of inner or mutual dependency which
carries the sought probabilities with them. The information in
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the edge class can also include different levels of importance of
a CI for its successor CI (provider consumer dependency), and
other explanatory information or data useful for the simulation.
Each edge v → w is then associated with a representative
number for its class c that carries an attribute being the
probability for the simulation.

This allows the model parameterization to be done upfront
and independently of the concrete CI, and eases matters of
model parameterization in the absence of empirical data to
estimate conditional probabilities. Depending on this class c
the state i of v influences the state of w through a multinomial
distribution MN(pi,c). That is, the j-th component of the vector
pi,c gives the probability that w will be in state j in this
situation. Figure 2 shows an algorithm in pseudo-code, which
simulates T time steps.

1: t← 0
2: while t < T
3: for each node v, set N(v) = {w ∈ V : (v, w) ∈ E}
4: for each neighboring node w ∈ N(v)
5: let c be the class of v → w,
6: let i be the current state of node v,
7: draw the status of w from MN(pi,c)
8: t← t+ 1.
9: endfor
10: endfor
11:endwhile

Fig. 2. Simulation algorithm

Just as the input, the result of this simulation is a network
of connected critical infrastructures where each CI is in
one specific state. For a better understanding of the results,
visualization with use color codes (e.g., ranging from green
to indicate a working state to red, alerting about a critical
condition) is helpful. Numerically, the results of the simulation
can be summarized as a table that lists how many components
are on average in any of the possible states.

An implementation of the dependency model in the event
simulation tool OMNeT++ is presented in [42]. The prototype
described therein enables modeling the network of CIs as
a directed graph whose nodes are colored to represent its
state (ranging from green to red to represent several levels
of functionality). External events can trigger the simulation
by changing the states of one or more components. The
propagation through the network is implemented as a message
exchange over a fictitious communication channel. After a
predefined running time, the tool yields a chronological record
of the state changes for each component of the network. An
illustrative example is included.

IV. CHANCES OF HEALING AND TOTAL FAILURE

Technically speaking, the changes between the states of the
CIs based on the state of its provider is described by a Markov
chain, whose states correspond to the states of the CI. We
adopt an ordered numeric representation for the nominal scale
of health, ranging from “good” ' state 1, up to state “failure”

' state k. The rich theory related to Markov chains then
enables us to compute the chances that a CI fails completely
(i.e., is in state k) or remaining in good shape (i.e., is in state
1) for a certain period. We will denote the i-th unit vector by
ui to represent the situation where an asset is in state i with
likelihood 1.

As before, let Si denote the state of the dependent CI due
to the state of its i-th provider. In the classical model from
Section III-A, we assumed a worst case scenario, i.e., the
overall state S of the dependent CI is S = max{S1, . . . , Sn}.
Under this assumption, a CI is in state 1 only if every provider
causes a switch to state 1 (or a stay in state 1). That is:

Pr(S = 1) = FS1,...,Sn(1, . . . , 1), (1)

where F is the joint distribution over all CI states. Unfortu-
nately, this only simplifies in the case of i.i.d. variables (where
we get a product). However, it can generally be decomposed
into the individual, i.e., marginal, distributions uncondition-
ally describing the state of each CI, plus an outer function
capturing the interdependence. This outer function is a copula
and essentially is the mathematical function describing the
dependencies visualized in the graph G = (V,E). Formally,
we have FS1,...,Sn

(1, . . . , 1) = C(FS1
(1), . . . , FSn

(1)). In
case of stochastic independence, the last term simplifies to∏n

i=1 Pr(Si = 1), i.e., we have C(x1, . . . , xn) = x1·x2 · · ·xn.

Since we assume that at the beginning every asset is working
properly (i.e., in state 1) we know that the likelihood of
returning to that state after t time steps is u1P

t. Further,
the Markov Chain returns to the starting distribution if it is a
limiting distribution, i.e., if u1 = u1P holds. So, equation (1)
is fulfilled if the vector u1 is a stationary distribution of each
of the involved Markov chains.

In case k is an absorbing state (i.e., if there is no recovery
from a failure, say, if the CI is irreparably destroyed) for all
involved Markov chains, we find that Pr(Si = k) = 1 and
thus Pr(S = k) = 1. Otherwise, the probabilities Pr(Si = k)
can be determined by the law of total probability

Pr(Si = k) =

k∑
j=1

Pr(Si = k|vi = j) · Pr(vi = j)

where vi is the i-th provider that yields to state Si according
to the transition probability pjk = Pr(Si = k|vi = j). The
probabilities Pr(vi = j) depend in turn on the providers of
the provider vi, which makes an explicit analysis challenging.

V. DEPENDENCIES BETWEEN PROVIDERS

The basic model introduced in Section III assumes that
providers are independent and the effect of a limited avail-
ability is in not influenced by the state of other providers.
However, the effect of a problem in one provider might be
limited as long as there is another one of the same type that is
fully working. The basic model can be extended to capture
a certain degree of dependency between providers, e.g., if
they are of the same or very similar kind and can be used
as substitutes. This particularly applies to the situation where
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a CI has contracts with several providers to reduce the damage
in case the provider is not available.

Let S1, . . . , Sn denote the states of a CI due to the state of
the corresponding providers according to the transition matri-
ces. Until now we have assumed that the state S communicated
to other CIs is determined by the maximum principle, yielding

S = max{S1, . . . , Sn}. (2)

However, this is a very conservative view, as it ignores the fact
that due to dependencies between providers the overall state
may be better than caused by a single provider. For example,
some critical infrastructures use several providers of the same
type to avoid this strong dependency, e.g., they have contracts
with more than one telecommunication provider. In that case,
we may replace the relation given in (2) by the more general
form

S = f(S1, . . . , Sn)

where f is any function that aggregates the n values into
one “overall” state. If we know about dependencies between
providers of the same type (e.g., one may be a substitute) we
can reformulate this as

S = f(C(St1 , . . . , Sty ), Sr1 , . . . , Srm) (3)

where providers t1, . . . , ty are of the same type and thus
assumed to be dependent to some extent (while providers
r1, . . . , rm are not of this type). We model their joint dis-
tribution with a suitable copula or a more general function.
Possibilities include the following here at least:

• min-operator: this is a copula, and in setting the overall
state of a CI to the minimum state of all its providers,
our convention that “healthy” has a state representation
number less than that for “failure”, we end up with the
following semantic:
A CI will not change into failure state unless all its
providers have failed. This is an “OR-aggregation” since
the CI remains intact if any of its providers is intact.

• max-operator: this provides the reverse semantic as above
since a CI will go into failure state if at least one of its
providers fails. Logically, they are in that sense “AND-
connected”.

• Combinations of the two, where a complex Boolean term
can have each its connectives represented by an artificial
intermediate node with min or max aggregations to model
AND or OR operations therein. We leave this as a simple
extension and not go into formal details at this point1.

The decomposition in equation (3) can be further refined by
using several copulas for several types of providers, i.e.,

S = f(Ct(St1 , . . . , Sty ), . . . , Cs(Ss1 , . . . , Ssz ))

for copulas Ct, . . . , Cs.

1Extending this Boolean approach further, we can even model a logical
negation by setting the conditional probabilities for a state change accordingly:
suppose that S has only a single provider P , then we can have S to “invert”
the state of P by specifying that Pr(S = 5|P = 1) = 1 and Pr(S =
1|P = 5) = 1, meaning that S is in a good/bad condition if and only if P
is in a bad/good condition. Intermediate states k = 2, . . . , 4 would herein be
triggered with the likewise defined conditional probabilities.

VI. AN ILLUSTRATIVE EXAMPLE

To illustrate the application of the presented model, we
evaluate a small example of high-level dependencies between
a few critical infrastructures. When applying the model to
real use cases, one needs to decide on the granularity of the
network representation that corresponds to the degree of detail
in the description. If the aim of the analysis is getting an
overview of dependencies between critical infrastructures (as
we do in this small example), then each node represents a
single CI. Dependencies are assessed on a general level, and
the results are accordingly general. If more data on a CI are
available, then this CI can, in turn, be represented as an entire
network where components represent significant components
of the network (this approach has been illustrated in [45]).

Let us consider a subnetwork of dependent CIs, which
consists of a hospital that depends on a water provider, an
electricity provider as well as transportation infrastructures
(roads). The dependencies between the different components
in the network are classified as either “minor”, “normal” or
“critical” depending on how important the service provisioning
is for the CI. In this small example, we classified input from
the electricity provider as “normal” (as we assume existence
of an emergency power system), input from a water provider
as “critical” (substitution by bottled water is usually just
possible for a limited period of time, but substituting water
for waste management or fire extinguishing systems is even
more problematic to replace; we do not cover these details
hereafter), and the transport connection as “minor”, since
even if roads are temporarily congested or blocked, aerial
transportation remains possible for critical patients.

The effects of an outage of each provider may be different,
and to ease matters as before with the edge classes, we
propose specifying transition matrices per dependency criti-
cality level, i.e., transitions from working into a failure state
become more likely the more critical the dependency on the
respective provider is. Consequently, we will below specify
three transition matrices for dependencies of levels “minor”,
“normal” and “critical”.

In [1], we considered transmission matrices that are esti-
mated with certainty. Dropping this assumption now, we show
a case where experts are not certain about their assessments,
i.e., they provide information as described in Section III-B.
Further, we assume that two experts do the assessment for the
critical dependency on water with potentially different back-
grounds. For this example, we consider 5 possible states for
each node, where 1 represents the situation where everything
works smoothly, while 5 stands for serious problems including
total failure.

Suppose for example that data, as shown in Table II, has
been collected, where we represent the confidence levels by
numbers ranging from 1 (”totally unsure”) to 3 (”totally sure”).

We assign the same weight (importance) to both experts
doing assessments of the dependency on water, that is we
chose α1 = α2 = 0.5. This yields individual transmission
matrices Tdependency-criticality-level = (tij)

5
i,j=1, in which the ij-th
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(a) EXPERT ASSESSMENT FOR ELECTRICITY

State of Provider Predicted Value Confidence Level
1 1 2
2 1 1
3 1 1
4 4 1
5 4 1

(b) EXPERT ASSESSMENT FOR TRANSPORT

State of Provider Predicted Value Confidence Level
1 1 2
2 1 2
3 1 2
4 1 1
5 1 1

(c) FIRST EXPERT ASSESSMENT FOR WATER

State of Provider Predicted Value Confidence Level
1 1 1
2 2 1
3 4 1
4 4 2
5 5 2

(d) SECOND EXPERT ASSESSMENT FOR WATER

State of Provider Predicted Value Confidence Level
1 1 2
2 2 1
3 4 2
4 5 2
5 5 3

TABLE II. ASSESSMENTS FOR ELECTRICITY AND TRANSPORT

entry corresponds to the conditional likelihood tij := Pr(CI
gets into state j | provider is in state i and given the respective
criticality of the dependency). We choose

Tminor =


2/3 1/3 0 0 0
2/3 1/3 0 0 0
2/3 1/3 0 0 0
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5

 ,

Tnormal =


2/3 1/3 0 0 0
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5
1/5 1/5 1/5 1/5 1/5


and

Tcritical =


13/30 8/30 3/30 3/30 3/30
1/5 1/5 1/5 1/5 1/5
8/80 8/80 18/80 28/80 18/80
0 0 3/24 10/24 11/24
0 0 0 1/6 5/6,

 ,

where Tcritical is the linear combinations of the two matrices
induced by the two expert assessments.

Figure 3 (left side) displays the dependencies graphically,
with arrows annotated according to the criticality of the
dependency. The right part of Figure 3 shows how the inner
model of Figure 1 corresponds to a dependency and is instan-
tiated according to the matrices above. For example, if the
dependency’s criticality is “minor” and the respective provider
is in state 4 (i.e., it has rather serious problems), this will yield

to a state 5 of the critical infrastructure that depends on it with
a likelihood of 1/5 = 0.2.

Hospital

Electricity Water Transport

Tcritical TminorTnormal

State j of 

the hospital

State i of 

the transport

1 3 4

2 3 5

2

1

5

4

Fig. 3. Example instance

The results of our analysis can be interpreted in (at least)
two ways. On one hand, it provides information on a specific
node in the network (such as it frequency of failure), including
information about which node caused the failure. On the other
hand, it provides an overview on the average number of nodes
in a specific state, so in particular on the expected number of
failing components.

Initially, we assumed that all components are in state 1
(i.e., operate smoothly) except for the water provider that
is in state 2 facing some (maybe temporary) problems. This
scenario yielded to a critical state for the hospital in 201 out
of 1000 cases. Note that in this example, this critical state
can only be caused by the state of the water provider since
a CI of normal or even minor importance will never cause a
critical level while being in state 1 (i.e., both entries in the
transition matrices are zero). In a more elaborated example
with numerous dependencies and other components facing
problems state changes may be caused by other components
as well. The simulation may then be used to track which
provider caused the worse state (if this information is stored as
well). This information may help providers to identify critical
dependencies and indicates where future investments may be
useful (e.g., it might make sense to have a substitute for a
provider that often causes problems).

Table III shows the average number of nodes (CIs) that are
in each of the 5 possible states. This gives a general overview
on the situation of the entire network, e.g., it can be seen that
on average 1.921 nodes are in a state worst than 1 (indicating
that they have a problem). Further, it gives an estimate of the
number of components in the worst case, which might help
planing resources needed to fix problems. Additionally, such
information may be used to measure resilience of a component
[41].

TABLE III. AVERAGE NUMBER OF AFFECTED NODES DUE TO
INCREASED LEVEL OF CRITICALITY

Criticality 1 2 3 4 5
Nodes 2.079 1.313 0.201 0.206 0.201

VII. CONCLUSION

A basic stochastic model of dependencies between critical
infrastructures can capture issues such as the impossibility
of exact predictions in a network of interdependent critical
infrastructures. It describes the degree of availability of a
provider by different states and let this potentially cause a
state change in the dependent CI. In the simplest case, the
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actual state of a CI depending on many providers is assumed
to be the worst of all states caused by any supporting CI,
corresponding to a worst-case view.

In this work, we addressed practical issues when apply-
ing the model by describing how experts assessment can
be incorporated without the need of an agreement between
several experts. Instead, opinions of different experts might
be combined, and each expert is asked to rate the confidence
in his prediction. Further, we illustrated how to implement the
simulation either in the statistical software R or in the event
simulation tool OMNeT++ and exemplified the approach with
a small example.

The basic model can be extended to take into account
dependencies between providers. Further, we explained how
the model fits into a risk analysis as a tool to estimate the
impact of an incident affecting parts of a network of CIs and
how it can be used to compare the current situation with a
scenario in which countermeasures have been implemented
before.
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