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Abstract—Introducing high-definition headlamp systems in the
automotive industry opens up a wide range of possibilities for
improving existing and developing new types of dynamic lighting
functions. Due to the complexity and subjectivity of light distribu-
tions of modern headlamp systems, simulation-based development
is indispensable. Strong restrictions regarding the time of day
and weather conditions as well as the hardly reproducible traffic
situations are further reasons to shift the testing of such systems
as much as possible from reality to simulation. This contribution
presents a first real-time simulation of high-definition systems
in virtual environments. The simulation results are validated
by measuring data and evaluated using validated software for
simulating static light distributions at night. The performance
of the implementation in terms of computational effort is also
discussed. As it turns out, the presented implementation is well
suited in terms of appearance and computational performance
as a basis for a night driving simulation.

Keywords–high-definition headlamp; real-time simulation; night
driving simulation; dynamic light function; shader; lighting.

I. INTRODUCTION

The first implementation of a real-time capable simulation
of high-definition (HD) headlamp systems with dynamically
adjustable light intensity distribution was presented in [1]. This
contribution extends the original paper by a sharper resolution
of luminous intensity, a broader validation and a more detailed
discussion of the implementation.

The introduction of glare-free high beam in 2010 gave
a major boost to headlamp development and highlighted the
benefits of situation-adaptive lighting functions [2]. It allows
driving with permanent high beam, with the headlamp con-
trol unit masking the areas classified as glare-critical by an
environment camera. Figure 1 shows the schematic function
using the example of glare protection for oncoming traffic.
Such lighting functions considerably increase driving safety
and comfort at night. While this new functionality was initially
achieved by mechanically swivelling headlamp components,
the trend towards digitalization has made its way more and
more into the automotive industry in recent years. Even
though the idea of a pixel light was first presented at the
PAL (today ISAL) conference in 2001, it took many years
for it to be implemented due to technical challenges [3].
Since 2013, mechatronic headlamp systems have increasingly
been replaced by light-emitting diodes (LED) matrix solutions
[4]. These work without mechanically moved components
and realize the dynamics of their light distribution through
a considerably higher number of independently controllable
light sources with sharply separated solid angle areas of their
light cones. The light distributions of the individual light
sources add up to the total light distribution weighted by
their respective continuously selectable electrical currents. The
resulting total light distribution can thus be freely selected via
the current values within the limits of the available resolution.

Figure 1. Glare-free highbeam light function cutting off a sharp spatial angle
to avoid glaring oncoming traffic. c© HELLA

After the matrix headlamps initially equipped with approx. 30
LED segments, a system with 84 LEDs was introduced in
2016 [5]. The increased resolution of the HD84 system allows
even more extensive and precise adaptive lighting functions to
be realized. The headlamp systems of future vehicles will be
equipped with even higher resolutions. A specific example of
this is the Liquid Crystal Display (LCD) technology. Only a
few LEDs are still used as backlight. The light distribution of
these LEDs is then primarily adjusted by a downstream LCD,
which filters the light emitted by the LEDs with high local
resolution [6]. With this technology, resolutions of several tens
of thousand up to a million pixels can be achieved.

Compared to other vehicle components, the development
of headlamp systems is characterized by the multidimensional
solution space in terms of possible light distributions and the
highly subjective factor in their evaluation. These properties
require a strongly test-driven development. Because practical
testing requires a dark environment, Original Equipment Man-
ufacturers (OEMs) take a huge amount of time and effort to
build test tracks that are shielded from ambient light. The light
channel of HELLA in Lippstadt, shown in Figure 2, comprises
a straight, 140 m long, two-lane road with road markings,
which is located in a hall.

Due to the high variability of the light distributions and the
situational adaptability of nowadays headlamp systems, static
tests such as can be carried out in the light channel are by
far not sufficient to cover the available functional spectrum
of today’s systems. On the other hand, the development and
testing of dynamic lighting functions by night driving is no
alternative due to safety, time and cost aspects as well as
the limited or non-existent reproducibility of environmental
influences.

Motivated by this, the idea of a simulation-based virtual
night drive was born. In addition to the simulator interface,
this requires in a first step the physically precise simulation of
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Figure 2. HELLA light channel in Lippstadt. c© HELLA

the ego vehicle (vehicle, which defines the driver’s view) and
in particular the headlight emitted by it, the other road users,
the scenery, which includes the road, roadside elements, urban
buildings, etc., and the weather conditions in real-time. Based
on such a solution, very fast virtual headlamp tests are possible
in freely selectable scenarios with complete reproducibility.
Even if virtual night drives cannot completely replace the real
ones, they allow a considerable reduction of test effort and thus
lead not only to a time and cost saving, but also to a safety
gain.

The first implementation of a real-time simulation of
headlamp systems was presented by Lecocq et al. [7]. This
initial realization implements per-vertex-lighting, which means
that the lighting model is only evaluated at the vertices of
scene objects. Subsequently, the pixel colors are determined
by interpolation over all pixels on the basis of their sur-
rounding vertices. The quality of the simulated light distri-
butions therefore depends strongly on the tesselation of the
scene objects. Berssenbrügge et al. present an approach based
on per-fragment-lighting that decouples tesselation from the
resolution of light distribution [8]. In their contribution, the
lighting model is evaluated for each pixel of the output device,
whereby inaccuracies by interpolations can be completely
eliminated. A comparable concept is presented in [9]. It utilizes
a proprietary development for the simulation of night driving
with additional functionalities. For example, they provide a
bird view including a distance grid to assess the light distri-
bution with regard to range, width, homogenity and contrast
sensitivity. Based on such simulations, various publications
exist for testing dynamic lighting functions. In [10], Kemeny
et al. present the simulation of the cornering light function
within the established driving simulation software SCANeR.
Like Berssenbrügge et al. in [11], they implement predictive
cornering light, which calculates the ideal light distribution
on the basis of navigation data and vehicle speed. As it turns
out, this concept leads to better results than making the tilting
of the light cone dependent only on the steering angle. Next
to the cornering light function, Berssenbrügge et al. are also
testing an advanced leveling light system in their simulation
environment [12]. Here, as well, it can be seen that the develop-
ment and testing of new lighting functions and the test-driven
optimization of their design parameters can be considerably
accelerated by virtual night driving simulation. With active
safety light Knoll et al. present the simulative testing of a

new light function for highlighting possible escape ways in
risky driving situations [13]. This contribution represents a
particularly interesting application case for simulation-based
development, as the dangerous driving maneuvers for testing
active safety light can only be performed under enormous
safety precautions, or in some cases not at all.

All of the implementations mentioned above have in com-
mon that the light distributions of the light sources used are
static. In concrete terms, this means that they are indepen-
dent of time. Dynamic functions are mapped exclusively by
means of switching light sources on or off and changing their
orientation angles. HD headlamps, however, realize lighting
functions in a totally different way. In this paper we present the
first real-time simulation and its underlying modelling of HD
headlamp systems. Their outstanding features and their abstract
modelling are described in Section II. In Section III the shader-
based implementation of the light simulation is discussed. The
first Subsection III-A transforms a mathematical representation
of a luminous intensity distribution (LID) into concrete struc-
tures of computer graphics. Based on this, the light rendering
procedure is divided into the determination of the total light
distribution as a weighted sum of the distributions of the
individual light sources in the headlamp (Section III-B) and
the illumination of the scene based on the overall distribution
(Section III-C). In Section IV, the simulation results are
validated with measurement data (Section IV-A), evaluated
using a validated reference simulation tool (Section IV-B) and
their performance on the utilized test hardware is examined
(Section IV-C). The last sections provide a conclusion as well
as an outlook for future work.

II. HD HEADLAMP SYSTEMS

HD systems are characterized by a great number of in-
dependent controllable light sources. Their illumination areas
concentrate on sharply defined solid angle intervals with
small overlapping areas. The total light distribution of such
a headlamp results from the superposition of all the individual
light distributions. This architecture enables the generation of
highly dynamic overall light distributions by independently
controlling the electrical current of each individual light source
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in the headlamp. The variety of the representable light distribu-
tions is limited only by the resolution of the headlamp, which
can range from approx. 100 to several 10,000 pixels, and the
permissible values of the electrical current depending on the
light technology used [14].

For testing the simulation technique presented in this
contribution, the HD84-Matrix-LED headlamp developed by
HELLA is used. The actual HD component of this headlamp
is realized by a matrix of 84 LEDs, which can be supplied
individually with continuously adjustable electrical current.
The individual light sources are mounted in three lines, with
the lowest line (line 1) illuminating the close range in front of
the vehicle, the middle line (line 2) focusing on the effective
range of the low beam and the upper line (line 3) dedicated to
functions in the high beam range (see upper area of Figure 4).
To compensate for the relatively low resolution of 84 pixels,
the illumination range of the HD module is limited to the
solid angle range with the greatest variability requirements.
Accordingly, additional light sources are provided to illuminate
the vehicle front area, the sides and to support the high beam.
Although the additional light sources are not visualized in
Figure 4 for reasons of clarity, they are processed in the same
way as the 84 LEDs of the matrix. In total, the HD84-Matrix-
LED headlamp therefore contains 95 light sources.

To describe the characteristics of a light source, in light-
ing technology so-called luminous intensity distributions (see
lower area of Figure 3) are used, which describe the luminous
intensity depending on the direction of radiation [15]. The
luminous intensity I measured in Candela [cd] describes the
radiation characteristic of a light source, by resolving the
radiant power or luminous flux Φ (unit: Lumen [lm]) emitted
by it in relation to the through-radiated solid angle Ω (unit:
Steradiant [sr]) according to

I =
Φ

Ω
[cd] =

[ lm
sr

]
(1)

for a homogeneous luminous intensity within the considered
solid angle. Using spherical coordinates the solid angle Ω is
related to the polar angle ϕ and the azimuth angle θ by

Ω =

∫ θ2

θ1

∫ ϕ2

ϕ1

sin(ϕ)dϕdθ, (2)

whereby [ϕ1, ϕ2] is the considered angle interval around the
horizontal axis and [θ1, θ2] corresponds to the interval around
the vertical axis, which forms a square cutout on a spherical
surface. [16]

In context of headlamps, the luminous intensity varies
greatly with the radiation direction. By shrinking the solid
angle to an infinitesimal area, the dependence of the luminous
intensity I on the already mentioned angles ϕ and θ can be
found by

I(ϕ, θ) =
dΦ(ϕ, θ)

dΩ
=

dΦ(ϕ, θ)

sin(ϕ)dϕdθ
. (3)

In the lower half of Figure 3, the low-beam distribution of
the left HD84 headlamp is shown. The direction of radiation
is defined by the polar angle ϕ and the azimuth angle θ. Their
zero-position equals the direction of travel with regard to their
mounting position in the vehicle. Even though Figure 3 does
not show the entire angle range for better recognition, data for
ϕ ∈ [−29.9◦,+19.9◦] and θ ∈ [−89.9◦,+89.9◦] is available

for all light distributions used in the simulation. The values of
luminous intensity are color-coded with a logarithmic scale,
as is usual for those diagrams. They vary over five orders of
magnitude up to 25.000cd. For high-beam distributions, the
range is even greater. Therefore, this is also referred as high
dynamic range information.

These luminous intensity distributions can be obtained
for an existing headlamp by a goniophotometer-measurement
[17]. In this case, the headlamp is mounted in a goniometer
construction, by which it can be swivelled around its vertical
and horizontal axis (see upper left area of Figure 3). The
luminous intensity is usually measured by a fixed sensor at
a distance of 25m (see upper right area of Figure 3). This
distance serves in particular to maintain the photometric limit
distance, under which the light source to be measured can
no longer be approximated as a point source. The rotation
angle around the horizontal and vertical axes of the goniometer
construction correspond to the polar and azimuth angles ϕ and
θ of the luminous intensity distribution.

Alternatively, the light distribution can be determined on
the basis of computer models of the headlamp using ray tracing
methods [18] and elaborate offline simulations, which were
introduced at first by Neumann and Hogrefe in [19]. The
quality of the resulting light distribution depends primarily
on the model quality. Even though the characteristics of a
real headlamp can never be exactly reproduced, this variant
is particularly interesting in early development phases before
the construction of a prototype.

In order to simulate the light distribution of a HD headlamp
in any situation, the characteristics of the emitted light must
be known for each individual light source in it. Therefore,
the luminous intensity distribution is measured for each light
source, in concrete terms 95 times, of the headlamp and espe-
cially for each LED of the HD84-Matrix. In the middle area
of Figure 4, it can be seen exemplary intensity distributions
of LED 1 (line 1, left), LED 45 (line 2, middle) and LED
84 (line 3, right). From the illustrations it becomes clear that
each LED emits exclusively in a certain solid angle. As the
lower line is responsible for the close range, the light intensity
center is also found at negative polar angles. This regularity
can also be applied to the other lines. Similarly, it becomes
visible that the horizontal arrangement of the LEDs within
the matrix corresponds to the horizontal arrangement of their
light intensity centers. In addition, it is noticeable that the light
distributions of the lateral light sources extend over larger areas
than it is the case for light sources in the middle. Decisive for
this are the especially high variability requirements placed on
the central area in front of the vehicle. This area must therefore
be resolved at a particularly high resolution in relation to the
overall light distribution.

The individual light distributions are measured with run-
ning the corresponding LEDs at full power. During normal
operation, the LEDs can be dimmed independently of each
other in the range of 0-100% by specifying their electrical
currents. In the lower left area of Figure 4 the low-beam
distribution of the left HD84-Matrix headlamp is shown. The
outline of the light distribution is also referred to as the light-
dark boundary in the context of automotive headlamps. A
characteristic feature of a low-beam light-dark boundary is
the step in the range of θ = 0◦ in the light distribution. For
negative values of θ, the luminous intensity in the direction of
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Figure 4. Luminous intensity distributions Lk of individual light sources (in this example for k = 1, 45, 84) and their electrical current weighted compositions
to overall distributions, in example low-beam distribution (left) and high-beam distribution (right).

positive ϕ is cut off earlier than is the case for positive θ. In
other words, the lane of oncoming traffic is illuminated less
than the lane of one’s own. This ensures that oncoming traffic
is not glared, but simultaneously there is a good view of one’s
own lane.

In contrast to conventional headlamps, in which the ge-
ometry of the reflector shade makes it possible to achieve a
low-beam light distribution using a single light source, the
overall light distribution of an HD headlamp is obtained by
adding all the light distributions of its individual light sources.
In order to achieve the desired light-dark boundary of low
beam, the headlamp control unit supplies all light sources
with suitable dimming values. In the concrete example, all
the LEDs in line 3, which is intended for the far range, are
completely switched off. Therefore, the light distribution of
LED 84 does not influence the overall light distribution of the
low beam (see dotted lines between the individual and overall
light distributions in Figure 4). In line 2, LEDs are primarily
energized in the right half. LED 45, which is located directly
at the step of the light-dark boundary, is operated at 24% of
its maximum light output, for example. In line 1, all LEDs are
energized, whereby the LEDs in the edge areas are dimmed
more strongly than those in the middle area. This explains
the low value of 3% of LED 1. When driving around bends,
the center of the light distribution could be swivelled in the
direction of the curve by adjusting the electrical current values
to better illuminate the road.

The advantages of generating a light distribution from
many small blocks can be easily seen. While the characteristic
of the light distribution in conventional headlamps is fixed by
the geometry of the reflector, it can be varied over a wide
range in HD headlamps. Two factors limit the variety. On

the one hand, this is the number of pixels and, on the other
hand, the step size of the dimming value discretization, which
plays a minor role. In the example of the HD84 module, the
dimming values are coded by 6 bits. This results in a step
size of about 1.6% relative to the respective maximum light
output. The theoretical total number of light distributions is
unimaginably high ((26)84 ·216, 84 pixels in the HD84 module
with 26 possible dimming values and 16 non-dimmable light
sources).

The lower right part of Figure 4 shows the high beam dis-
tribution of the headlamp. The step in the light-dark boundary
disappears and is replaced by a high beam cone which shifts
the center of light intensity to positive ϕ. In addition, the light
distribution is roughly symmetrical, since unlike in the case of
low beam, no glare suppression of the opposite lane is desired.
In addition, the headlamp shines brighter by a factor of 3,
as can be seen from the false color scales at the bottom of
Figure 4. Just as in the case of the low beam, the high beam
distribution shown is generated exclusively by adjusting the
dimming values. Line 3 is now active and the left half of line
2 is also energized. In addition, the light output of all LEDs is
increased in order to achieve the overall higher light intensity.
For example, the power of LED 45 is raised from 24% at low
beam to 80% at high beam mode.

III. IMPLEMENTATION OF HD HEADLAMP SIMULATION

After discussing the essential properties and functional
principles of high-resolution headlamp systems, this section
will focus on the real-time rendering of the headlamp light
in the virtual scene. The implementation presented here sets
the basis for virtual night drives with high-resolution systems
and thus creates the possibility to develop and test these
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simulation-based. For implementing the visualization of the
night drive, we used the development environment Unity3D
(Version 2017.3.1f1 [20]).

Figure 5 shows the logical flow of the presented imple-
mentation. The first step is to convert the previously measured
luminous intensity distributions of the individual headlamp
light sources into a data format that can be efficiently managed
under the real-time requirements of driving simulation. Since
this information does not vary over time, it is sufficient to
perform this conversion as part of preprocessing. In concrete
terms, each luminous intensity distribution is converted into a
texture, as illustrated in the upper left area of Figure 5. This
procedure only has to be carried out once for each headlamp
type and is then available for any simulations. Details on this
process will follow in Section III-A.

In addition to the individual light distributions, the relative
current values of all light sources are necessary to determine
the overall light distribution. The entirety of their values at a
given point in time is referred to below as the intensity list.
These are specified in the real vehicle by the headlamp control
unit, depending on the traffic situation detected by the sensors
(see lower left area of Figure 5). This updates the current
values with a frequency of 50Hz. Within the framework of
the implementation, the behaviour of the control unit is not
simulated, since it will later be integrated into a hardware-
in-the-loop simulation. In this respect, the current values can
be assumed to be given, whereby it must be ensured that the
overall light distribution can be determined within a reasonable
time due to the high update frequency.

Once both, the individual light distributions and the tempo-
rary intensity list, are available, the total light distribution can
be calculated. This can be achieved by adding the individual
light distributions weighted by the relative current values.
Due to the time dependence of the current values, the total
light distribution also varies with time, so that it must be
recalculated with the update rate of the intensity list. To be
able to perform this calculation 50 times per second, it is
carried out in a highly parallel manner using a shader on the
GPU. All shaders presented here are implemented in Cg (C
for graphics) [21]. This shader is called Cookie Combiner and
is described in more detail in Section III-B. The output type of
the Cookie Combiner corresponds to the types of the individual
light distributions. It is also a texture that encodes the luminous

intensity values with respect to the spatial angles.
Finally, all information is available to render the virtual

scene. Here, deferred shading was used [22]. While the light
calculations in the more established forward rendering are
performed individually for each object of the scene, in de-
ferred rendering all objects are first rendered in the base pass
under exclusion of light influences in the so-called G-Buffer
(Geometry Buffer). In the subsequent lighting pass, the light
calculations are applied to the G-Buffer only once per light
source, which generally requires considerably fewer shader
executions than it is the case in forward rendering. Besides
possible standard light sources of the scene, the lighting pass
also activates the Headlight-Shader intended for displaying
headlamp light (see last step of Figure 5). The execution of
the Headlight-Shader is downstream of the standard shader
for deferred shading and is integrated into the Programmable
Rendering Pipeline by a Command Buffer [23]. This uses the
total light distribution determined by the Cookie Combiner
and, using a lighting model, determines the color pixel by
pixel, which results from the object and light properties as
well as the geometric relationships.

A. Digital Representation of LIDs
In order to be able to precisely reference the relevant ele-

ments of the light distributions of HD systems in the following
sections, first of all these are described more formally. A
discretized light distribution can be interpreted as a matrix
whose dimensions depend on the considered angular range
[ϕl, ϕu] or [θl, θu] and the corresponding resolution ∆ϕ or ∆θ
in horizontal or vertical direction, whereby M = ϕu−ϕl

∆ϕ , N =
θu−θl

∆θ with M,N ∈ N must apply. The discrete value ϕm
with 0 ≤ m ≤ M or θn with 0 ≤ n ≤ N then refers to the
horizontal angle ϕl +m ·∆ϕ or the vertical angle θl +n ·∆θ.
The light distribution Lk of the light source k with k ∈ {1,K}
of an HD headlamp with a total of K individual light sources
then has the form Lk ∈ RM×N≥0 . In the concrete case, the values
ϕl = −29.9◦, ϕu = +19.9◦, θl = −89.9◦, θu = +89.9◦ apply
to the measured angular ranges. Resolving both angles with
∆ϕ = ∆θ = 0.2◦ results in matrices of M = 250 rows and
N = 900 columns. In addition, the headlamp examined has a
total of K = 95 light sources.

The entry lk(m,n) of row m and column n of the Lk
matrix now contains the luminous intensity of the light source
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k at full power in the discretized direction of the vertical angle
ϕm and the horizontal angle θn in Candela. For example, the
entry l17(100, 400) contains the luminous intensity of the light
source with index 17 in the direction of the vertical angle
ϕ100 = ϕl + 100 ·∆ϕ = −29.9◦+ 100 · 0.2◦ = −9.9◦ and the
horizontal angle θ400 = θl+400 ·∆θ = −89.9◦+400 ·0.2◦ =
−9.9◦.

After defining the light distributions of individual light
sources, the aggregation of these to the total light distribution
L can be formulated. For this purpose, a system is defined
whose input variables represent the relative electrical current
values ik ∈ [0, 1] of the individual light sources normalized to
their maximum value. In contrast to the matrices L1, . . . , LK ,
these values are time-dependent signals coming from the
headlight control unit at 50 Hz. The output of the system
is the resulting light distribution of the headlamp and thus
a weighted composition of all individual light distributions.
Formally, the output variable corresponds to a L matrix whose
dimensions are identical to the dimensions of the individual
distributions L1, . . . , LK . The current overall light distribution
can be formulated as

L(t) =

K∑
k=1

ik(t) · Lk with L(t) ∈ RM×N≥0 . (4)

The time-dependent matrix L contains all information
describing the light emitted by the headlamp at time t, which
constitutes the basic information for simulation purposes.
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To represent the formally introduced matrices in the com-
puter graphics field, textures are used. A texture is a data
format established in computer graphics which was originally
intended for the realistic coloring of scene objects. In this

role it can be understood as an image which is placed like
a sticker on the surface of a three-dimensional scene object.
The individual entries of the texture encode the color at the
respective place then typically in the 3 RGB channels (red,
green, blue) and a 4th transparency channel (α channel). In this
case, textures are used to encode light intensity distributions.

Now some technical details of the conversion of luminous
intensity distributions to textures shall be described, which are
relevant for the later explanation of Cookie Combiner- and
Headlight-Shader. To minimize interpolation inaccuracies, we
use textures with the same row and column numbers as we
have for the discretized luminous intensity distributions (250
rows, 900 columns). Since the textures have to be square for
technical reasons, it is necessary to increase the number of
rows from 250 to 900. For this purpose, the vertical angle range
is artificially increased from [-29.9, +19.9] to [-89.9, +89.9]
and the luminous intensity values at the non-measured angles
are set to 0. As a consequence, the texture contains 900x900
data points, which are also called texels. Using the same
resolution as the measured luminous intensity distributions,
each texel corresponds directly to a measuring point of the
distribution. In classic color textures the values of the R, G, B
and A channels of a texel are encoded with 8 bit fixed-point,
whereby each texel contains 32 bit information (RGBA32
texture). A luminous intensity distribution, in contrast, contains
only one dimensional information - the luminous intensity.
Here the use of a RGBA32 texture would be inefficient, since
a precision of 8 bit is on the one hand too low for the high
dynamics of a luminous intensity distribution and on the other
hand the remaining 3 channels remain unused. Instead, we use
an RFloat texture format. This supports only one channel (R-
Channel) and uses for this the entire 32 bit available to the
corresponding texel. In addition, the value is coded in floating
point format, which also benefits the high dynamics of the
luminous intensity values.

Another important point is the indexing of textures. Figure
6 can be used for understanding. Texture coordinates or uv
coordinates are always used normalized. In other words, a texel
is not addressed by its absolute row and column number in
the texture, but by the values divided by their total numbers.
u ∈ [0, 1] represents the horizontal axis (corresponds to the
column number) and v ∈ [0, 1] the vertical axis (corresponds
to the row number). The texel at address (u, v) = (0, 0) thus
contains the luminous intensity in the direction of the vertical
angle ϕ = −89.9◦ and θ = −89.9◦ (respectively texel at
(u, v) = (1, 1) corresponds to the luminous intensity value at
ϕ = +89.9◦ and θ = +89.9◦).

Since u and v can be specified from a continuous value
range, u, v pairs can also address places of the texture that
do not match exactly to a texel but lie in the intermediate
areas. Such accesses are possible and are answered with the
bilinear interpolation between the surrounding texel values,
which is visualized in Figure 7. In general, the return r of
a texture access at the coordinates (u, v) can be traced back
to the luminous intensity distribution as follows:

If the uv coordinates correspond exactly to a texel of the
texture, its value can be returned unchanged. The condition
for this is that u ·M and v · N are elements of the natural
numbers. In the other case, the neighboring texels of the access
coordinates (u, v) must be found first, which are designated by
tll, tlr, tul and tur in Figure 7. As also noted in Figure 7, these
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Figure 7. Bilinear interpolation on texture access at coordinate (u, v).

can be addressed by simply rounding u ·M and v ·N up and
down. Afterwards, one interpolation is performed between the
upper neighbor texels and one interpolation between the lower
neighbor texels along the u-axis, yielding the values tl and tu.
Formally these result to

tl = lerp(tll, tlr,∆u) and
tu = lerp(tul, tur,∆u)

with ∆u = u ·M − bu ·Mc
lerp(v1, v2, c) = v1 · (1− c) + v2 · c,
v1, v2 ∈ R, c ∈ [0, 1]

(5)

The return value r is now obtained from the bilinear
interpolation by interpolating the interpolations along the u
coordinate again along the v coordinate:

r = lerp(tl, tu,∆v)

with ∆v = v ·N − bv ·Nc (6)

Finally, in order to clarify the relationship between textures
and the original luminous intensity distributions, the way back
from a texture T to luminous intensity l in the direction of
vertical angle ϕ ∈ [ϕl, ϕu] and horizontal angle θ ∈ [θl, θu] is
shown:

l(ϕ, θ) = T (u, v) with

u =
ϕ− ϕl
ϕu − ϕl

, ϕ ∈ [ϕl, ϕu]

v =
θ − θl
θu − θl

, θ ∈ [θl, θu]

(7)

whereby T (·, ·) means a texture lookup at T at the u and v
coordinates given in this order as operands.

B. Cookie Combiner-Shader
Once a way has been found to digitally map luminous

intensity distributions to a graphics card compatible manner,
the next step is to determine the total light distribution from
the individual ones. The result can then be used to adjust
the light intensity in the lighting pass, more precisely in the
Headlight-Shader executed in it (see Section III-C), depending
on the direction. Vividly, this realization is comparable to a
dynamic transparency film, by which a homogeneous light
source is filtered to produce the desired radiation characteristic.

Texturing of light sources to vary the luminous intensity in
different beam directions is already established. Such light
textures are called cookies, explaining the name of the Cookie
Combiner-Shader. Its task is to combine the textures of the
individual light distributions into a total light distribution
texture according to Equation (4). Figure 9 illustrates the data
flow of the combining procedure on a mathematical level.

The implementation of this calculation as a shader enables
the highly parallel execution on the graphics card, which
is necessary to fulfill the real-time requirements. Within the
scope of this work, only vertex and fragment shaders are
used. Vertex shaders process vertices and the information
associated with them of the three-dimensional geometries in
the scene. Afterwards the scene is rasterized object by object
and transformed into a two-dimensional image. Then fragment
shaders work on the fragments of this image and determine the
pixel colors. Comprehensive information about shaders can be
looked up in [23].

In the case of the Cookie Combiner, the vertex shader is
trivial, since only two-dimensional data (luminous intensity
distributions) is processed and no vertex operations are per-
formed. Its whole logic is placed in the fragment program. The
operations are visualized by the following pseudo code on the
one hand and by Figure 8 in a graphical way on the other hand.
While in the rendering pipeline a fragment program writes into
the screen output and the pixels of the screen slip into the role
of the fragments, we define a texture, which is reused in the
rendering pipeline in a later step, as the render target for our
application. More precisely, the render target of the Cookie
Combiner-Shader is a texture Tcomb with the same type and
dimensions as the textures of the individual light distributions
- a scalar floating point texture with 900x900 texels.

Tk

ik

Cookie Combiner

u, v Texture
Lookup

tuv

Weighting

luv

Additive
Blending

Tcomb

pr
ev

io
us

te
xe

l
va
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e
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Figure 8. Logic diagram of the technical Cookie Combining Procedure.

Require: u, v ∈ [0, 1] normalized coordinates of current
render target texel, Tk scalar floating point texture corre-
sponding to luminous intensity distribution Lk and relative
current value ik ∈ [0, 1] of individual light source k

1: tuv = Tk(ptarget.u, ptarget.v) // texture lookup
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Figure 9. Data flow of Cookie Combining during a single frame.

2: luv ← ik · tuv // weighting
3: return luv // additive blending into render target

The fragment program of the Cookie Combiner-Shader
expects two parameters (see upper left area of Figure 8). One is
the texture Tk, which represents the light intensity distribution
Lk of the individual light source k. The other parameter
represents the relative intensity ik with which this light source
is currently operated. Its code is executed for each texel of
the render target Tcomb in parallel (see lower area of Figure
8), whereby the individual threads can be distinguished by
further inherent parameters u and v constituting the normalized
coordinates of the thread specific texel of the render target.

In the first step within processing, the shader reads the light
intensity value tuv of the given individual light texture Tk at
position (u, v) corresponding to the texel to be written to in
the render target (line 1). This simple method of addressing is
made possible because both the individual light distributions
and the target texture encode the light intensity distribution
over the same angular ranges, even if their resolutions were
different. Considering the intensity with which the light source
k is currently operated, the multiplication of the maximum
luminous intensity tuv with the relative current value ik takes
place at line 2. Even if the relationship between the electric
current and the luminous intensity is not linear, it can be
assumed to be linear here by compensating the non-linearity
with the real control unit. The product luv as actual luminous
intensity in the direction represented by the u and v coordinates
of the current texel according to 7 represents the output of the
shader (line 3).

After completion of the shader operations for all texels, the
target texture contains the contribution of the light source k
within the total light distribution, whereby a single component
of the sum in the data flow visualized by Figure 9 is mapped. In
order to obtain the complete light distribution of the headlamp,
all texels of the render target Tcomb are first initialized with
0. Then the Cookie Combiner is applied to the target texture
repeatedly with iterating through all individual light sources
by changing the parameters Tk and ik. The rendering is done
with additive blending (see Figures 8 and 9), so the previous
values in the render target are not overwritten by the returns
of the shader but added to it [23].

After applying the Cookie Combiner to all individual light

sources k = 1, . . . ,K, the render target Tcomb contains the
total luminous intensity distribution, in which the texels can
still be interpreted as in Section III-A. Due to its dependence
on the time-varying relative currents i1, . . . , iK , this texture is
only valid for the current time step. The K times execution
of the Cookie Combiner must therefore take place with the
update rate of the headlight control unit for each simulated
headlamp, which is 50 Hz. The determined total light distri-
bution represents a central parameter of the Headlight-Shader
presented below.

C. Headlight-Shader
The implementation of the Headlight-Shader is much more

extensive. Berssenbrügge et al. solved a similar problem for
static light distributions in [8] by using a built-in spotlight
and mapping the light distribution to its cookie scheme. In
this contribution, the lighting is done by a custom shader
using the deferred shading pipeline, whose implementation
is oriented to Unity’s built-in lighting shader for deferred
rendering. Moreover, High Dynamic Range (HDR) Rendering
is used. This technique allows a more detailed resolution of the
color information by using higher memory resources, whereby
especially with high-contrast images their details are preserved
in the best possible way and come closer to the perception of
the human eye [24]. Even if the color information has to be
reduced to 255 brightness levels (8 bit per color channel) for
output on a monitor, the colors can be dynamically scaled
instead of just setting too bright areas to white, as is the
case with Standard Dynamic Range (SDR). Especially in the
context of headlamp simulation, the use of HDR colors leads
to visibly higher quality images.

Figure 10 illustrates a very simplified pipeline run in
deferred rendering. The concept of deferred shading is char-
acterized by the strict division of rendering into a first step
of projecting the 3-dimensional scene information to a 2-
dimensional image (G(eometry)-Buffer) and the subsequent
lighting on the basis of this G-Buffer. The main advantage
here is that lighting only has to be applied to all pixels of the
2-dimensional G-Buffer instead of every object in the scene,
as is the case with conventional forward rendering. Thus, the
computational complexity of a scene with m objects and n
lights can be reduced from O(m · n) to O(m+ n).
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Figure 10. Deferred rendering pipeline.

At first, the 3-dimensional scene objects are rendered in the
base path into the G-Buffer, whereby the scene information is
reduced to two dimensions. Since the lighting calculations are
done in a deferred step, it is not possible to render directly
the final pixel colors. Therefore, all relevant information for
later lighting calculations has to be contained in the G-Buffer.
In detail, this could be color information (often distinguished
in colors for ambient, diffuse and specular components, see
left image of middle left area of Figure 10), depth values in
terms of the distance between camera and object (encoded by
grayscale at center area of Figure 10) or surface orientations
defined by normal vectors (normal directions color-coded at
middle left area of Figure 10).

Given the G-Buffer, the lighting pass can be initiated.
This is the pipeline step, where the integration of Headlight-
Shader next to Unity’s standard shader takes place. Using
Unity’s Graphics Command Buffer [26], its integration is done
subsequently to the ’Lighting’-Block in Figure 11, where stan-
dard lighting by the built-in shader takes place. A Command
Buffer holds list of rendering commands, which can be injected
between all boxes in Figure 11 to the conventional rendering
pipeline. Integrating the Headlight-Shader this way instead of
modifying the built-in shader, preserves compatibility to all
standard light sources in the scene.

Within the lighting pass, there is one shader called per
light source. Their common render target is the light buffer,
visualized in the lower area of Figure 10. After finishing all
light shaders, the light buffer contains the final scene image,
ready for displaying on the output device. While the standard
shader is called for Unity’s built-in lights (directional, point or
spot light), the Headlight-Shader is called for each headlamp.
In both cases, for each light source there is a predefined light

Camera Rendering

Forward Rendering

Depth Texture

DepthNormals

Opaque Objects

Deferred Rendering

G-Buffer

Lighting

Headlight-Shader

Opaque Effects

Skybox

Transparencies

Image Effects

Figure 11. Injection of Graphics Command Buffer in Unity’s rendering
pipeline (created in accordance with [25]).

volume describing the volume, which is potentially affected
by it, relative to the light position and orientation. For this
purpose, we choose a half sphere, approximated by a mesh
of 65 vertices (see Figure 13), in contrast to a pyramid,
used by Unity’s spotlight. With reference to the luminous
intensity distributions measured at an angular range of 180◦ in
horizontal and vertical directions, a half sphere is much more
suitable for this application. The light source is located in the
spherical center and is oriented vertically to the plane half-
spherical surface in the direction of the curvature (see center
area of Figure 10). While processed by the vertex program of
the Headlight-Shader, the light volume is rotated and translated
to get its correct position in the scene. This ensures that the
subsequent rasterization of the light volume can be understood
as a marking of the pixels of the G-Buffer that may have
been influenced by the light, which are illustrated by the white
dotted outline in the light buffer of Figure 10. The following
fragment program of the Headlight-Shader operates on all of
these marked fragments of the light buffer, calculating their
colors by accessing relevant information of the illuminated
fragment stored in the G-Buffer. To consider all light sources,
whose light volumes cover the current light buffer pixel, the
return values of all light shaders are written in the light buffer
by additive blending. After passing through all shaders in the
lighting pass, the light buffer contains the completely rendered
scene image.

At this point, the vertex and fragment program of the
Headlight-Shader will be explained in more detail along its
pseudo code. For better understanding, Figure 12 shows a
very reduced scene and illustrates the essential components
and coordinate systems for rendering. The relative positions
of all components are described in the world space w. A
further important space is the view space v (also common:
’eye space’), describing the scene from camera’s point of
view. All points in the scene, visible for the camera, can be
limited by a pyramid frustum with the tip in the center of
v and the floor and top area perpendicular to the viewing
direction (see blue thick dashed lines in Figure 12). This
geometry is known in computer graphics as view frustum. Its
top area with distance n to camera position is called ’near
clipping plane’, while its floor area with distance f to camera
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is termed ’far clipping plane’. With the lighting pass, the light
source becomes relevant for the first time during the rendering
process. Figure 12 shows the headlamp to be simulated with
its local light space l. As already mentioned, the illumination
range of a headlamp is described by a light volume in the form
of a half-sphere, which is illustrated by yellow lines in Figure
12. Furthermore, important for the following considerations are
the local spaces of all objects within the scene. As an example,
Figure 12 shows a cylindrical object with the local coordinate
system o.

According to the schema of lighting pass in deferred
rendering, the vertices of the light volume are first processed
by the vertex program. In this sense, during the lighting pass,
the light volume slips into the role of a scene object in
the base pass. Implementing per-fragment-lighting, the vertex
program can be realized by a few lines of code, since all light
calculations are done in the subsequent fragment program.
Essentially, three parameters are generated. First, a vertex lp

′

of the light volume mesh, passed in homogeneous coordinates
[27], is transformed from the light space l into the clip space
c of the camera (line 1). The transformation from l to the
world space w is done by the matrix L, from w to the view
space v by the matrix V and from v to the clip space c by
the matrix P (see Figure 12). c has the same origin as v,
but distorts the coordinates in perspective for easier mapping
to the screen. The vertex coordinates in the clip space cp

′

form the basis of the rasterization and must be included in
the return of the vertex shader. Furthermore, the clip space
position in the lines 2 and 3 is transformed so that the x
and y coordinates are normalized to [0, 1] for vertices in the
view frustum in accordance with the perspective division in
the fragment program. These values are then used as texture
coordinates to correctly address the G-Buffer and form the
second output of the vertex shader. Finally, the vector from
the camera to the vertex in view space vp

′ is calculated by
multiplying the vertex lp

′ in l by L and V (line 4). This value
is needed next to cp

′
uv to reconstruct the 3-dimensional position

of the fragment in w within the fragment shader and forms the
third return of the vertex shader. This way all vertices of the
half sphere are processed by the shader.
Require: lp

′ ∈ R4 vertex of light volume as homogeneus
coordinates in l

1: cp
′ ← P · V · L · lp′ // vertex in c

2: cp
′
uv.x← 1

2 · cp
′.x+ 1

2 · cp
′.w // transform to screen space

3: cp
′
uv.y ← 1

2 · cp
′.y + 1

2 · cp
′.w // transform to screen space

4: vp
′ ← V · L · lp′ // vertex in v

5: return cp
′, cp

′
uv, vp

′

Afterwards the rasterization is effected based on the clip
space coordinates cp

′. The remaining vertex program returns
are bilinear interpolated to the fragments according to their
distances to the vertices. The fragment shader processes all
fragments in the light buffer covered by the light volume with
the respective interpolation results cp

′
uv, vp

′ as parameters.
Require: cp

′
uv ∈ R4 transformed coords in c and vp

′ ∈ R3

coords in v of vertex p′ of light volume
1: vp

′′ ← f

vp′.z
· vp′ // scale to far clipping distance (f)

2: buv ← 1
cp′uv.w

· cp′uv.xy // buffer coords of p′ (same for p)
3: zuv ← Gdepth(buv) // norm. depth at screen position buv
4: vp← zuv · vp′′ // position of p in v
5: wp← V −1 · vp // position of p in w

6: wvc,o ← wpc − wpo // vector p→camera in w
7: wnc,o ← wvc,o

|wvc,o| // direction p→camera in w

8: wl← L[1 : 4, 4] // position of light in w
9: wvl,o ← wl − wp // vector p→light in w

10: wnl,o ← wvl,o
|wvl,o| // direction p→light in w

11: lp← L−1 · wp // vector light→p in l
12: adeg.x←atan2(lp.x, lp.z) // horiz. and vert. angle be-
13: adeg.y ←atan2(lp.y, lp.z) // tween light axis and lp

14: tuv ← adeg+90◦

180◦ // Light-Cookie coordinates
15: luv ← Tcookie(tuv) // light power in specific direction

16: att← 1
l.range2 · wvl,o · wvl,o // light attenuation

17: att← att · luv // consider light power
18: l.color ← att · l.color // attenuated light color

19: return lightingModel(co,wno,wnc,o,wnl,o, l.color)

The shader code can be divided into five logical blocks.
The first block (line 1 to 7) reconstructs the three dimensional
surface point p of the scene object o visible on the current
fragment. This reconstruction is enabled by the additional
information provided by the vertex shader. Outgoing from p′,
which triggers the current fragment program call as it is part
of the light volume surface, it can be seen, p′ is mapped to
the same screen position as p (see dashed line through p, p′
and p′′ in Figure 12). p in turn represents a surface point of a
physical scene object for which lighting has to be performed
in the following. According to the figure, vp′ describes the
cameras view direction to p in v. The G-Buffer created in the
base path of deferred rendering can be used to determine the
exact position of p on the corresponding line. It encodes the z
coordinate (or depth value) in v for each fragment in addition
to other data. To read the correct value from the depth buffer,
the buffer coordinates must be determined first. Therefore, the
vector cp′uv is defined in the vertex shader, whose x- and y-
coordinates lie in the interval [0, cp

′
v.w = cp

′
uv.w] for points

within view frustum. After the perspective division by the
homogeneous component in line 2 the coordinates buv are in
the value range [0, 1] (line 3) used for texture/buffer access.
The depth buffer encodes depth zuv normalized on distance
f to the far clipping plane in the interval [0, 1]. The coords
of p in v result from scaling of vp′ to the far clipping plane
receiving vp

′′ (line 1) and the subsequent multiplication with
the normalized depth zuv (line 4). Multiplication by the inverse
of V transfers the object point p from v to w. For the evaluation
of the lighting model, the normalized direction vector from the
object point to the camera (eye vector) in world space wno,c
(see Figure 12) is needed (line 6 and 7).

In addition to the eye vector, the incidence of light on the
object plays a central role in the lighting model, too. The light
vector is defined in lines 8 to 10. First, the position of the
light source in world space wl is extracted from the matrix L
(line 8). Since the Headlight-Shader only renders the mesh of
the light volume into the light buffer, the transformation matrix
L from current object space l to w is constant across all calls
of the vertex program and contains the translation, rotation
and scaling of the light volume mesh into w. In general, the
world space coordinates ws of a point s can be achieved by
multiplying its light space coordinates ls by the homogeneous
transformation matrix L from l to w according to
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Figure 12. Simple scene to be rendered with coordinate systems for world space (w), view space (v), light space (l) and an exemplarily object with its local
space (o).

ws = L · ls with L =

l11 . . . l14

...
...

l41 . . . l44

 , (8)

whereby l14, l24 and l34 contain the translation from l to w
along the x-, y- and z-directions [23]. Since the light source is
in the coordinate origin of l, the translation in L corresponds
to the position of the light in w and can be read from the
fourth column of L. Now the normalized direction vector from
the object point to the light source in world space wnl,o (see
Figure 12) can be determined by the lines 9 and 10 similar to
the previous section.

In the lines 11 to 15, the luminous intensity distribution
Tcomb determined by the Cookie Combiner-Shader is taken
into account. In order to determine the luminous intensity to
be applied to the current fragment from the light distribution,

the horizontal (θ) and vertical (ϕ) angles of the incident light
beam with respect to the light center axis must be calculated.
For this purpose, the object point belonging to the fragment
is transferred to the light space l by multiplying with L−1.
The position of this point in l, in whose coordinate origin
the light source is located and oriented along the z axis,
simultaneously corresponds to the light beam lp from the
source to the object. Its angle to the light center axis or z axis
in l can then be determined with the atan2 function (line 12
and 13). The cookie Tcomb must be addressed with normalized
texture coordinates. Therefore, the angles moving in the range
[−90◦,+90◦] due to the used light volume are transformed by
line 14 to texture coordinates tuv according to Equation (7).
Thereby, the applicable value can finally be read from the light
distribution texture Tcomb (line 15).

After the positions of the relevant elements and the lumi-
nous intensity of the light are already known, the distance to
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the light source must be taken into account in the lines 16 to
18. The intensity of light decreases square with the distance to
the shined object [16]. This square distance can be formulated
most efficiently as a scalar product of the vector from object
to light wvl,o with itself. The distance between object and
light is referred to a freely selectable positive light parameter
l.range, which allows the user to adjust the range respectively
the intensity of the light (line 16). It applies att = 1 if the
distance between light source and object corresponds to the
parameter l.range, and att→∞ for increasing distances. To
take into account the directional luminous intensity luv , it is
multiplied by att to the final light attenuation. The calculated
attenuation can finally be mapped by the light color in line 18
through multiplying the color of the light defined by the user
by att. Assuming a white light, this multiplication corresponds
to a shift on the grayscale.

Finally, the lighting model can be evaluated. At this point,
no separate solution has been implemented yet, but an Unity-
internal local lighting model has been used. This receives
the previously determined normals wno,c,wnl,o, the surface
normal wno (see Figure 12) and material data co of the object
from the G-Buffer at buffer coordinates buv and the light color
l.color, which already considers attenuation. Based on these
data, the lighting model delivers the resulting color for the
currently considered fragment and thus generates the finished
image of the scene on the output medium.

IV. RESULTS

After the implementation details, the images resulting from
the rendering will be presented and discussed on their appear-
ance. By selecting a suitable scene, it is in particular possible
to validate the rendering results with respect to underlying
measurement data (see Section IV-A). In the second part a
comparison with the software LightDriver will be done. The
LightDriver is an established tool for headlamp simulation
from HELLA that has been in use for many years. It is
successfully applied to support the development process and
can therefore be regarded as validated. For this reason, it serves
to validate the solution presented here using more realistic
scenes as in Section IV-A. In addition, Section IV-C contains
some remarks on the real-time capability of the simulation.
Due to the dependence on countless factors (hardware and
software configuration used, complexity of the scene and the
depth of detail of the objects in it, number of simulated
vehicles and other light sources, etc.), no general statement can
be made here about the required calculation time per frame.
The basic usability of the implementation for the night driving
simulation should nevertheless be proven.

A. Validation
As described in Section II, the radiation characteristics of a

light source can be defined by plotting the luminous intensity
over the angles ϕ and θ in the spherical coordinate system.
In this way, the luminous intensity can be represented in a
plot, in which it is coded by false colors. In order to validate
the rendered light based on the actual light distribution of the
simulated headlamp, the artificial scene shown in Figure 13 is
used.

It contains only three elements - a gray sphere, a left-side
HD84 headlamp in the center of it and a camera defining the
rendering perspective. Position and orientation of camera and
light source are equal. They can be localized at the origin

Figure 13. Artificial validation scene to compare the rendered headlight with
measurement data.

of coordinate system represented by the blue, red and green
arrows, whereby the blue arrow defines the viewing direction
of the camera as well as the light axis (ϕ = θ = 0◦). The field
of view of the camera is chosen to 60◦, which corresponds to
a view frustum tip angle of 120◦ in the horizontal plane. The
already mentioned half-spherical light volume approximated
by a mesh of 65 vertices is visualized by the yellow wireframe.

According to this scene definition, the observer is in the
center of the gray sphere and sees the light as it is emitted by
the light source onto the inner wall of the sphere according to
the implementation presented here. Running the headlamp with
electrical current values to generate a low beam distribution,
the rendering process produces the image shown in the upper
part of Figure 14.

In rendered light, classic properties of a low beam dis-
tribution can already be perceived. In particular, the level of
the light-dark boundary line along the vertical central axis
should be mentioned here. The considerably greater horizontal
spread of light compared with vertical spread can also be
observed. For the complete validation of the implemented
solution, however, the alignment with the measured data is
necessary. For this purpose, it is shown in the lower part
of Figure 14. In a direct comparison, the similarity of shape
between rendering and measurement can be well demonstrated.
At the same time, however, it is observed that the limited
contrast of the light resolved linearly in gray scales is neither
sufficient to perceive intensity differences in the bright area of
the light distribution nor to perceive curtains in the edge area.

For this reason, the illuminance of the light on the ele-
ments of the scene was rendered logarithmically with another
shader and coded in false colors. Luminous intensity I and
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Rendered Scene - Standard View

Rendered Scene - Logarithmic Illuminance E

Measurement Data - Logarithmic Luminous Intensity I

Figure 14. Comparison of rendered light (top) of left HD84 headlamp in low
beam mode (false color coded illuminance on the spherical wall for better
comparabilimty shown in the center area) and measured data of the same

configuration (bottom).

illuminance E are related according to

E =
I

r2
· cos(ε), (9)

where r is the distance between the light source and the illumi-
nated object and ε is the angle between the light beam and the
surface normal of the illuminated object [16]. In the specially
selected scene, the distance between the light source and the
illuminated object is constant at each pixel with the sphere
radius. At the same time, each illuminated area is perpendicular
to the incident light beam. This means that illuminance and
luminous intensity have the same characteristics, as there is a
linear relationship between them, making it particularly easy
to compare the image produced with the measured data.

As it turns out, the correspondence of the simulated light
distribution (center area of Figure 14) with the measured
data (lower area of Figure 14) is even more convincing in
the logarithmic false color representation. The gradations of
intensity in the center of the light cone as well as the light
curtains in the edge area can be found in both figures in the
same way. These checks were also carried out for other light
distributions and led to the same observations, so that the
implementation can be considered as validated.

B. LightDriver
Even if the correctness of the implementation in terms

of the mathematically correct reproduction of the luminous
intensity distribution has already been carried out in Section
IV-A, the appearance of the light distribution on the road
should also be evaluated. In such an investigation, significantly
more factors have an influence. The limitations of the output
device (especially with regard to luminance and contrast), the
modeling accuracy of the scene (textures, normal maps, reflec-
tion properties, ...) and the complexity of the lighting model

used (reflections, ray tracing, ...) are just a few examples. Since
the approximate reconstruction of a real environment is not an
acceptable effort, the HELLA LightDriver (64 Bit Version built
on July, 2017) should be used as a reference instead. This
is HELLA’s own development for night driving simulation,
which has been used successfully for several years in the
development process of new headlamp systems and lighting
functions. In contrast to the implementation presented here,
the LightDriver is not able to change the light distribution of
a headlamp dynamically, as is necessary for the simulation
of an HD system. Nevertheless, this fact does not limit its
suitability for validating this implementation. The desired light
distributions can be calculated in advance and then loaded into
the LightDriver as a static total light distribution.

Figure 15 compares the low beam distribution of the HD84-
Matrix-LED headlight (left and right headlamp) as calculated
by Cookie Combiner- and Headlight-Shader (top) with the low
beam distribution of the LightDriver as reference (bottom) in a
simple street scene. In the right area of the figure, the scene is
complemented by a white measuring wall with red control lines
at a distance of 10m from the vehicle. This is a classic analysis
tool for the evaluation of light distributions, as their shapes are
more recognizable on this. The two vertical control lines are
aligned with the mounting positions of the headlamps. While
in the presented implementation only the electrical current
values of the individual light sources belonging to this light
distribution are specified, the LightDriver requires a complete
light distribution as input, which is therefore calculated in
advance. The scene for this comparison could not be taken
directly from the LightDriver and was therefore recreated. As
a consequence the textures and colors of scene objects are not
exactly the same, but should suffice for a plausibility check.

If one compares the low beam distributions in the left
area of Figure 15, they match well overall. A closer look
reveals slight differences. On the one hand, the basic color
or brightness on the street appears not quite uniform in both
representations. In addition, it seems that the light curtains
directly in front of the vehicle are of different brightness. The
reasons for the deviations mentioned can be many and varied
due to the large number of influencing factors already men-
tioned. However, despite its successful use in the development
process, the LightDriver should not be regarded as an exclusive
measure of optimality. The differences in the images result to a
large extent from the use of HDR colors in the implementation
presented, while the LightDriver uses classic SDR colors. In
particular, the more clearly visible light curtains in front of
the vehicle in this implementation are caused by this. Further
differences may result from slightly different definitions of the
lighting model and the scene objects.

In addition to these minimal differences, however, both
simulations match, so that the rendering method presented here
can also be checked for plausibility in realistic scenes. With
the help of the road markings, the qualitative form equality
of the illuminated road areas of both implementations can be
recognized. In addition, the different light ranges for the left
and right lanes are clearly visible in both representations. For
this reason, the white control areas at the edges of the road on
the right-hand side are illuminated at a greater distance than on
the left-hand side. This characteristic is typical for low beam
distributions and ensures the best possible illumination of one’s
own lane without glaring oncoming traffic.
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LightDriver

HD Headlamp Simulation

Figure 15. Comparison of the implementation presented (top) and HELLA LightDriver (bottom) simulating a low beam distribution in a simple street scene
(left) and with a measuring wall in 10m distance (right).

LightDriver

HD Headlamp Simulation

Figure 16. Comparison of the implementation presented (top) and HELLA LightDriver (bottom) simulating a high beam distribution in a simple street scene
(left) and with a measuring wall in 10m distance (right).

Even if the light distribution on the road is the central
evaluation criterion for the driver, the observation of light
distributions on a vertical measuring wall has proven to be
useful especially for comparison purposes. The contours of
the light distribution, which are called the light-dark boundary
in this context, become clear through the close projection of
distant areas. The varying illumination distances of the lanes,
which could already be observed through the control surfaces,
become even clearer on the measuring wall. They can be found
in the typical low beam distribution step in the upper middle
area of the light-dark boundary. As can be seen from the
simulation images, these steps form in the middle of the left
and right headlamps, which can be identified by the vertical
red control lines.

After comparing the low beam distributions in both simula-
tions, Figure 16 shows a similar comparison for the high beam
as a second light distribution of central importance. For the
LightDriver the light intensity distribution was precalculated
again and loaded as static total light distribution. As in the
case of low beam, a good overall agreement can be observed

in addition to differences in detail between the images.
As was to be expected, the illumination of the distant areas

has increased in comparison with the low beam in Figure 15.
The difference is particularly noticeable on the opposite lane
and the control surfaces positioned along it. This effect is
achieved by a fundamental change in the shape of the light
distribution, as can be observed on the measuring walls on
the right-hand side of Figure 16. The step in the light-dark
boundary of the low beam disappears when high beam is used.
Instead, a symmetrical light distribution is generated with a so-
called high beam cone, which illuminates the distant areas in
front of the vehicle.

C. Computational Effort
With regard to the application of the implementation pre-

sented here in an interactive night driving simulation, compli-
ance with the real-time requirements must be considered. In
order to give the viewer the impression of a dynamic scene,
at least 30 frames per second (fps) should be calculated. The
optimal case is 60 fps, which corresponds to the refresh rate
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of most output devices [28]. A further optimization of the
computing time does not lead to any benefit after this limit.

At the same time, however, it should be mentioned that a
computer with a Windows operating system is not a real-time
system. Due to the uninfluenceable scheduling of all running
processes, measurements of calculation times are always rough
approximations and can be subject to strong fluctuations.

In addition, the calculation times naturally depend heav-
ily on the hardware and software configuration. The results
discussed below were recorded on a mobile PC, whose speci-
fication can be found in Table I.

TABLE I. HARD- AND SOFTWARE-CONFIGURATION OF THE
MEASURMENT PC

Operating System Windows 10 Pro 64-bit (10.0, Build 16299)
Used Graphics Engine Unity3D, Version 2017.3.1f1
Model Dell Precision 7710
Processor Intel(R) Core(TM) i7-6820HQ CPU @2.7GHz
Memory 16384 MB RAM
DirectX Version DirectX 12
Graphic NVIDIA Quadro M3000M
Video Memory 4062 MB VRAM (+ 8133 MB Shared)

In order to comply with real-time requirements, only those
processes are relevant that are constantly being executed at
runtime. In this application, these are Cookie Combining
and lighting. Both can be examined in isolation from each
other. The Profiler available in Unity is used to measure the
calculation times. With this profiler, the calculation times of
the CPU and GPU can be broken down frame by frame with
regard to the operations performed.

First, the performance of the cookie combining is exam-
ined. It depends only on the number of single light sources and
the resolution of the floating point textures describing their
luminous intensity distribution (here: 95 32bit floating point
textures with 900x900 texels). To exclude possible influences
of the program start and caching, the total light distribution is
calculated many times. All relative current values are randomly
selected between 0% and 100% for each calculation.

The analysis in the profiler shows that combining the 95
floating point textures on the CPU requires an average of
0.45ms (min: 0.27ms, max: 0.64ms). With cookie combining,
however, the CPU acts primarily as the client of the GPU. It
instructs the graphics card to execute the Cookie Combiner
shader by creating draw calls and defines the relevant context
information, such as the render target or the current individual
light distribution. So it is not surprising that the GPU has a
significantly higher average calculation time of 4.61ms (min:
4.44ms, max: 4.73ms).

In addition to cookie combining, the calculation time of the
headlight shader must also be examined. Due to the deferred
rendering pipeline used here, this is called only once per light
source and frame. The effort of the lighting therefore does not
depend on the scene complexity, but only on the resolution of
the output and thus of the light buffer, which is selected here
as 1430x780 pixels. On the CPU, the lighting of a spotlight
simulation requires an average of 0.02ms (min: 0.01ms, max:
0.04ms). The calculation time on the GPU measures approxi-
mately 0.097ms (min: 0.095ms, max: 0.114ms). In this respect,
the effort of the actual lighting can be neglected compared to
the calculation time of the Cookie Combining.

In comparison with the much simpler implementation of
cookie combining, this result may seem astonishing. However,
the GPU can perform the lighting calculations for all pixels of

the light buffer in parallel. The Cookie Combiner shader, on
the other hand, must be called repeatedly in one frame for all
light sources with changing context information.

As a result, both shaders are performant enough to be
used in the night driving simulation of a single vehicle with
two headlamps. If the simulation of several vehicles with HD
headlamps is intended, Cookie Combining will reach the limits
of available computing power even for small vehicle quantities.
If dynamic HD headlights are desired on all vehicles, more
powerful graphics cards can be used to shift these limitations
within certain bounds. On the other hand, the question arises
whether dynamic lighting functions are required. If this is not
the case, the precalculation of static light distributions (e.g.
dipped beam) is a sensible alternative for third-party vehicles.
In this way, they retain the basic light characteristics of an HD
headlamp without making significant use of resources. The ego
vehicle can still be simulated with dynamic lighting functions
using cookie combining.

V. CONCLUSION
This contribution presents an approach for real-time simu-

lation of dynamic HD headlamp systems and thus lays the
foundation for the simulation-based development of high-
resolution dynamic light functions. The implementation re-
produces the real light distribution accurately and is also
executable on average hardware for today’s standards.

This contribution is motivated by the completely missing
possibility of real-time simulation of high-resolution headlamp
systems, which is indispensable for a systematic and verifiable
procedure of development. In addition, there is the need
for darkness and suitable weather conditions during real test
drives, which cannot be completely eliminated by using a
simulation, but can be significantly reduced.

Before the simulation of HD headlamp systems is pre-
sented, their technical structure and functionality are described
in Section II. During the course, the light intensity distributions
established in the context of headlamp measurement will also
be introduced. They describe the luminous intensity emitted
by a light source depending on the spatial direction. The
HD84-Matrix-LED headlamp type under consideration here
consists of a matrix with 84 LEDs and 11 further light sources
(apron area lights, bend lights, additional high beam lights).
The luminous intensity distribution is known for each of these
light sources. They can be operated with current control, which
results in corresponding scaling of the luminous intensity
values. By locally separating their illumination areas, it is
possible to build the overall light distribution summing up
the individual distributions, whereby their shape variability is
limited only by the resolution of the headlamp. An overview
of this procedure is illustrated by Figure 4.

The following Section III describes the implementation, the
overall scheme of which is shown in Figure 5. First of all, the
digital representation of a luminous intensity distribution by a
texture is defined in Section III-A. In particular, 32bit floating
point textures are used to capture the high light dynamics in
a night driving scene in detail. Since the underlying measure-
ment data are available with an angular resolution of 0.2◦ over
a range of 180◦ in horizontal and 50◦ in vertical direction,
textures with 900x900 texels are selected. The measuring
points can thus be mapped unchanged onto the texels (see
Figure 6 and Equation (7)). Light intensity values between
the measuring points are bilinearly interpolated according to
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Figure 7 and Equations (5) and (6). In preprocessing, the
measured luminous intensity distributions for all light sources
in the headlamp can be converted into floating point textures
and thus used for subsequent rendering.

The rendering of the headlight is divided into two steps. In
the first step, the current total light distribution is determined
as described in Section III-B. It is the weighted sum of the 95
individual light distributions of all adjustable light sources of
the HD84-Matrix-LED headlamp. In the technical implemen-
tation, the light distributions are represented by textures and
superimposed by blending the results of the Cookie Combiner-
Shader applied to them as shown in Figure 8. Mathematically
formulated, the total light distribution is formed as a linear
combination of the matrices or textures of the individual light
distributions (see Figure 9). Each individual light distribution
is weighted with the present relative current value. In order to
provide the optimum overall light distribution in every driving
situation, the current values can be adjusted with a frequency
of 50 Hz. The output of the Cookie Combiner-Shader is a
floating point texture of the overall light distribution, which is
structurally no different from that of the individual distribu-
tions.

The total light distribution initiates the second rendering
step as input for the Headlight-Shader discussed in Section
III-C. This is integrated into the deferred rendering pipeline
by using Unity’s Graphics Command Buffer. As Figure 11
illustrates, it is downstream of the standard operations in the
lighting pass. In this way, compatibility with all standard lights
in the scene is maintained. In addition, HDR rendering is used
to reproduce the high contrasts of a night drive scene with the
existing limitations of the output device as detailed as possible.
Along the pseudo code the procedure in the headlight shader is
discussed, whose final task is the determination of a color value
for the respective pixel of the light buffer or the output under
consideration of the current light source. The essential spaces,
geometric correlations and vector operations can be understood
by Figure 12. After finding all relevant information for the
determination of the pixel color, this is transferred to a Unity-
internal lighting model. This model finally returns the resulting
color, which corresponds to the output of the Headlight-Shader.

Section V concludes the contribution by presenting the
results. In the first step, the simulated luminous intensity
distribution is validated on the basis of the measurement data.
For this purpose, an artificial scene is created which serves this
purpose exclusively. It contains only a sphere and in its center a
HD84-Matrix-LED headlamp to be simulated. The background
of this scene definition is the linear relationship between the
luminous intensity of the headlamp and the illuminance on the
spherical surface, as can be seen from Equation (9). In this
way, in Figure 14, the simulated illuminance on the spherical
surface and the measured luminous intensity distribution can
be compared. The agreement of these data is convincing.

After the proof for the mathematically correct reproduction
of the real light intensity distribution has been provided, the
light impression in a more realistic scene is evaluated in
Section IV-B. In such an evaluation, far more influences come
into play than can be controlled within the framework of
the implementation presented here. For this reason, the night
driving simulation software LightDriver developed by HELLA
serves as orientation for evaluating the rendering results. As
a tool for headlamp development that has been established

for years, it is suitable as reference, even if it is not an
incontestable optimum. As Figures 15 (low beam) and 16 (high
beam) show, the implemented simulation is very similar to
the LightDriver. The differences can mainly be traced back
to the unequal scenes and light models, as well as the higher
luminous intensity resolution and HDR rendering used here.
Consequently, they do not represent a quality defect of the
presented implementation.

The performance analysis shows that the major share of the
computing effort is attributable to Cookie Combining. Even if
the simulation of a vehicle on the mobile PC with which the
computing time measurements were carried out does not pose
a problem, it should be noted that Cookie Combining quickly
reaches the limits of computing power when simulating sev-
eral vehicles. These can be moved upwards by using better
hardware (in particular graphics card). As an alternative, the
application of static light distributions for external traffic is
proposed. In this case, the Cookie Combining must only be
carried out for the ego vehicle.

VI. FUTURE WORK

In view of the good rendering results, future work will
focus less on the further development of the presented im-
plementation. Nevertheless, the lighting model, for which the
Unity standrad BRDF model has been used so far, could be
replaced by an own implementation in the future, depending on
the resulting improvements. In addition, it should be checked
whether Cookie Combining, which represents the bottleneck
of the implementation in terms of computing time, provides
potential for further performance improvement.

The presented work should serve much more as a basis for
the night driving simulation, for the implementation of which
various follow-up work is necessary. First of all, the previously
manual setting of the current values for the individual light
sources must be replaced by the integration of the headlamp
control unit. This integration is divided into two steps. On the
one hand, the outputs of the control unit must be received
by the visualization system and transferred to an intensity list
(see Figure 5) that is compatible with the Cookie Combiner.
This step could already be performed at the current time with
the necessary requirement of 50 Hz. On the other hand, the
connection of the control unit only makes sense if it knows
about the current traffic situation in order to select the light
distribution based on it. For this purpose, the real sensors in
the vehicle must be simulated by virtual sensors. The central
role is played by the surrounding camera. Various approaches
to implementation are currently being investigated, including
machine learning methods on the images rendered from the
point of view of the surrounding camera.

A third approach for further work is the use of analysis
tools to assess the headlight in the scene. For this purpose,
false color and iso-line representations have already been
implemented. These can be applied to pixel brightness or
illuminance. Their scaling to physical quantities and their
adaptation to legal or customary standards will still have to
take place in the future.
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[9] J. Löwenau and M. Strobl, “Advanced Lighting Simulation (ALS) for
the Evaluation of the BMW System Adaptive Light Control (ALC),” In-
ternational Body Engineering Conference & Exhibition and Automative
& Transportation Technology Conference, 2002.

[10] A. Kemeny et al., “Application of real-time lighting simulation for
intellignet front-lighting studies,” Driving Simulation Conference, 2000.
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