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Abstract—In this paper, we present a conceptual Spatial 

Trajectory Planning (STP) method using Rapid Random Trees 

(RRT) planner, generating visibility motion primitives in 

urban environments using Inverse Reinforcement Learning 

(IRL) approach. Visibility motion primitives are set by using 

Spatial Visibility Clustering (SVC) analysis. Based on the STP 

planning method, we introduce IRL formulation and analysis 

which learns the value function of the planner from 

demonstrated trajectories and generating spatial visibility 

trajectory planning. Additionally, we study the visible 

trajectories planning for patrolling application using 

heterogeneous multi agents in 3D urban environments. Our 

concept is based on spatial clustering method using visibility 

analysis of the 3D visibility problem from a viewpoints in 3D 

urban environments, defined as locations. We consider two 

kinds of agents, with different kinematic and perception 

capabilities. Using simplified version of Traveling Salesman 

Problem (TSP), we formulate the problem as patrolling 

strategy one, with upper bound optimal performances. We 

present a combination of relative deadline UniPartition 

approaches based on visibility clusters. These key features 

allow new planning optimal patrolling strategy for 

heterogeneous agents in urban environment. We demonstrate 

our patrolling strategy method in simulations using 

Autonomous Navigation and Virtual Environment Laboratory 

(ANVEL) test bed environment. 

  
Keywords-Visibility; 3D; Spatial analysis; Motion Planning. 

I.  INTRODUCTION AND RELATED WORK 

Spatial clustering in urban environments is a new spatial 

field from trajectory planning aspects (Gal and Doytsher 

2014). The motion and trajectory planning fields have been 

extensively studied over the last two decades (Bellingham et 

al. 2002; Bortoff 2000; Chitsaz and LaValle 2007; Erdmann 

and Lozano-Perez 1987; Fiorini and Shiller 1998; Fraichard 

1999; Latombe 1990; LaValle 1998; LaValle 2006; LaValle 

and Kuffner 1999; Sasiadek and Duleba 2000).  

 The main effort has focused on finding a collision-free 

path in static or dynamic environments, i.e., in moving or 

static obstacles, using roadmap, cell decomposition, and 

potential field methods (Gal and Doytsher 2013; Obermeyer 

2009; Shaferman and Shima 2008). 

The path-planning problem becomes an NP-hard one, 

even for simple cases such as time-optimal trajectories for a 

system with point-mass dynamics and bounded velocity and 

acceleration with polyhedral obstacles (Donald et al. 1993). 

Efficient solutions for an approximated problem were 

investigated (LaValle and Kuffner 1999), addressing non-

holonomic constraints by using the Rapidly Random Trees 

(RRT) method (LaValle 1998). Over the years, many other 

semi-randomized methods were proposed, using 

evolutionary programming (Capozzi and J. Vagners 2001; 

Lum et al. 2006; Pongpunwattana and Rysdyk 2004). 

The randomized sampling algorithms planner, such as 

RRT, explores the action space stochastically. The RRT 

algorithm is probabilistically complete, but not 

asymptotically optimal (Karaman and Frazzoli 2011). The 

RRT* planner Karaman et al. 2011) challenges optimality by 

a rewiring process each time a node is added to the tree. 

However, in cluttered environments, RRT* may behave 

poorly since it spends too much time deciding whether to 

rewire or not. 

Overall, only a few works have focused on spatial 

analysis characters integrated into trajectory planning 

methods such as visibility analysis or spatial clustering 

methods (Gal and Doytsher 2013; Shaferman and Shima 

2008). 

Our research contributes to the spatial data clustering 

field, where, as far as we know, visibility analysis has 

become a leading factor for the first time. The SVC method, 

while mining the real pedestrians' mobility datasets, enables 

by a visibility analysis to set the number of clusters. 

The efficient computation of visible surfaces and 

volumes in 3D environments is not a trivial task. The 

visibility problem has been extensively studied over the last 

twenty years, due to the importance of visibility in GIS and 

Geomatics, computer graphics and computer vision, and 

robotics. Accurate visibility computation in 3D environments 

is a very complicated task demanding a high computational 

effort, which could hardly have been done in a very short 

time using traditional well-known visibility methods 

(Plantinga and Dyer 1990).  
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The exact visibility methods are highly complex, and 

cannot be used for fast applications due to their long 

computation time. Previous research in visibility 

computation has been devoted to open environments using 

DEM models, representing raster data in 2.5D (Polyhedral 

model), and do not address, or suggest solutions for, dense 

built-up areas.  

Most of these works have focused on approximate 

visibility computation, enabling fast results using 

interpolations of visibility values between points, calculating 

point visibility with the Line of Sight (LOS) method 

(Doytsher and Shmutter 1994; Durand 1999). Lately, fast 

and accurate visibility analysis computation in 3D 

environments has been presented (Gal and Doytsher 2012; 

Gal and Doytsher 2013). 

Multi-agents decision making and control methods can 

be divided into two major disciplines, centralized and 

decentralized approaches. The basic idea of centralized 

approach is to make all the decisions in one place. All tasks 

are concentrated by a single entity, named ’Central Task 

Planner and Scheduler’ (CTPS).   

The CTPS translates the tasks into smaller tasks (sub-

tasks), which will later be sent to the appropriate agents, 

according to their capabilities, their assignment and their 

workload. Theoretically, the centralized approach appears to 

do the trick. It allows knowing in advance all the tasks to be 

done and the connections among them, allows choosing the 

most fitting disassembling of the problem to sub-tasks. 

Indeed, this is a significant advantage, as there is no 

disassembling which will be ideal for all missions. 

However, this approach does not fit a dynamic 

environment, in which unpredictable events may occur. 

Multi-agents in marine environment usually not in a constant 

contact with CTPS nor with each other, even though the 

CTPS requires a continuous stream of data about the 

forthcoming events in order to provide an effective response. 

Solutions to this problem (such as placing multiple sensors in 

the environment) are expensive and hard to apply. 

On the other hand, at the decentralized approach, each 

agent is responsible for a group of tasks, and there is no need 

using entity such as CTPS. A predetermined disassembling is 

applied on the problem, and the agents can try to contact 

each other, in order to improve it. As mentioned above, this 

solution is problematic, as there is no disassembling which 

will be ideal for all problems. 

Despite this fact, the lack of the CTPS allows every 

agent to process the data it collects by itself, and, for 

example, plan its own trajectory using local sensors data and 

decide what the next action is. The benefit of this approach 

is, of course, the speed of reaction and the independence of 

the agents. Moreover, it allows real time reaction to dynamic 

changes in the environment. As said, this is a problematic 

matter in the centralized approach.  

In this paper, we present, for the first time as far as 

know, a unique conceptual Spatial Trajectory Planning 

(STP) method based on RRT planner. The generated 

trajectories are based on visibility motion primitives set by 

SVC Optimal Control Points (OCP) as part of the planned 

trajectory, which takes into account exact 3D visible 

volumes analysis clustering in urban environments. 

The proposed planner includes obstacle avoidance 

capabilities, satisfying dynamics' and kinematics' agent 

model constraints in 3D environments, guaranteeing 

probabilistic completeness. The generated trajectories are 

dynamic ones and are regularly updated during daylight 

hours due to SVC OCP during daylight hours. STP 

trajectories can be used for tourism and entertainment 

applications or for homeland security needs. 

In the following sections, we first introduce the RRT 

planner and our extension for a spatial analysis case, such as 

3D visibility. Later on, we present the STP planner, using 

RRT and SVC capabilities. In the last part of the paper, we 

present the Inverse Reinforcement Learning (IRL) approach 

and algorithm based on the proposed STP planning method, 

learning the value function of the planner from demonstrated 

trajectories. 

II. SPATIAL RAPID RANDOM TREES 

In this section, the RRT path planning technique is briefly 

introduced with spatial extension. RRT can also deal with 

high-dimensional spaces by taking into account dynamic and 

static obstacles including dynamic and non-holonomic 

robots' constraints. 

The main idea is to explore a portion of the space using 

sampling points in space, by incrementally adding new 

randomly selected nodes to the current tree's nodes. 

RRTs have an (implicit) Voronoi bias that steers them 

towards yet unexplored regions of the space. However, in 

case of kinodynamic systems, the imperfection of the 

underlying metric can compromise such behavior. Typically, 

the metric relies on the Euclidean distance between points, 

which does not necessarily reflect the true cost-to-go 

between states. Finding a good metric is known to be a 

difficult problem. Simple heuristics can be designed to 

improve the choice of the tree state to be expanded and to 

improve the input selection mechanism without redefining a 

specific metric. 

A. RRT Stages  

The RRT method is a randomized one, typically growing 

a tree search from the initial configuration to the goal, 

exploring the search space. These kinds of algorithms consist 

of three major steps: 

1. Node Selection: An existing node on the tree is chosen 

as a location from which to extend a new branch. 

Selection of the existing node is based on probabilistic 

criteria such as metric distance. 

2. Node Expansion: Local planning applied a generating 

feasible motion primitive from the current node to the 

next selected local goal node, which can be defined by 

a variety of characters. 



109

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3. Evaluation: The possible new branch is evaluated 

based on cost function criteria and feasible connectivity 

to existing branches. 

These steps are iteratively repeated, commonly until the 

planner finds feasible trajectory from start to goal 

configurations, or other convergence criteria. 

 

 

Figure 1.  The RRT algorithm: (A) Sampling and node selection steps;  

(B) Expansion step. 

A simple case demonstrating the RRT process is shown in 

Figure 1. The sampling step selects Nrand, and the node 

selection step chooses the closest node, Nnear,  as shown in 

Figure 1.A. The expansion step, creating a new branch to a 

new configuration, Nnew, is shown in Figure 1.B. An example 

for growing RRT algorithm is shown in Figure 2. 

 

Figure 2.  Example for growing RRT algorithm. 

B. Spatial RRT Formulation  

We formulate the RRT planner and revise the basic RRT 

planner for a 3D spatial analysis case for a continuous path 

from initial state xinit to goal state xgoal:  

1. State Space: A topological space, X. 

2. Boundary Values: 
init

x X  and 
goal

x X . 

3. Free Space: A function : { , }D X true false→  that determines 

whether ( )
free

x t X where 
free

X consist of the 

attainable states outside the obstacles in a 3D 

environment.  

4. Inputs: A set, U, contains the complete set of attainable 

    control efforts ui, that can affect the state. 

5. Incremental Simulator: Given a current state, ( )x t , and 

input over time interval t , compute ( )x t t+  . 

6. 3D Spatial Analysis: A real value function, f (x; u, OCPi) 

which specifies the cost to the center of 3D visibility 

volumes cluster points (OCP) between a pair of points in

X . 

C. Spatial RRT Formulation  

We present a revised RRT pseudo code described in Table 

I, for spatial case generating trajectory T, applying K steps 

from initial state xinit. The f function defines the dynamic 

model and kinematic constraints,  𝑥̇ = f (x; u, OCPi), where u 

is the input and OCPi  set the next new state and the 

feasibility of following the next spatial visibility clustering 

point. 

 

TABLE I.  SPATIAL RRT PSEUDO CODE 

Generate Spatial RRT (xinit; K; ∆𝑡)  

T.init (xinit); 

For k = 1 to K do 

             xrand ← random.state(); 

             xnear ← nearest.neighbor (xrand; T ); 

             u ← select.input (xrand; xnear); 

             xnew ← new.state (xnear; u; ∆𝑡; f); 

             T.add.vertex (xnew); 

             T.add.edge (xnear; xnew; u); 

End 

Return T 

 

III. SPATIAL TRAJECTORY PLANNING (STP)  

 In this section, we present a conceptual STP method based 

on RRT planner. The method generates visibility motion 

primitives in urban environments. The STP method is based 

on a RRT planner extending the stochastic search to specific 

OCP. These primitives connecting between nodes through 

OCP are defined as visibility primitives. 

 A common RRT planner is based on greedy 

approximation to a minimum spanning tree, without 

considering either path lengths from the initial state or 

following or getting close to specific OCP. Our STP planner 

consist of a tree's extension for the next time step with 

probability to goal and probability to waypoint, where 

trajectories can be set to follow adjacent points or through 

OCP. The planner includes obstacle avoidance capabilities, 

satisfying dynamics' and kinematics' agent model constraints 

in 3D environments. As we demonstrated in the previous 

section, the OCP are dynamic during daylight hours. Due to 

OCP's dynamic character, the generated trajectory is also a 

dynamic one during daylight hours.  

 We present our concept addressing the STP method 

formulating planner for a UGV model, integrating OCP's as 

part of the generated trajectories along with obstacle 

avoidance capability. 

A.  Dynamic Model 

In this section, we suggest an Unmanned Ground Vehicle 

(UGV) dynamic model based on the four-wheeled car 

system (UGV) with rear-wheel drive and front-wheel 

steering (Lewis 2006). This model assumes that only the 

front wheels are capable of turning and the back wheels must 
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roll without slipping, and all the wheels turn around the same 

point (rotation center) which is co-linear with the rear axle of 

the car, as can be seen in Figure 19, where L is the length of 

the car between the front and rear axles. rt is the 

instantaneous turning radius.  

 

 

 

Figure 3.  Four-Wheeled Car Model with Front-Wheel Steering (Lewis 

2006) 

Thus, UGV dynamic model can be described as: 

ẋ = f(x, u) = {

x
ẏ

θ̇

̇

}={

vcos(θ)

vsin(θ)
v
Ltan(∅)

}                                         (1) 

The state vector, x, is composed of two position variables 

(x,y) and an orientation variable, θ. The x-y position of the 

car is measured at the center point of the rear axle. The 

control vector, u, consists of the vehicle’s velocity, v, and the 

angle of the front wheels, ϕ, with respect to the car's heading. 

B. Search Method 

Our search is guided by following spatial clustering 

points based on 3D visible volumes analysis in 3D urban 

environments, i.e., Optimal Control. The cost function for 

each next possible node (as the target node) consists of 

probability to closest OCP, POCPi , and probability to random 

point, Prand . 

In case of overlap between a selected node and obstacle 

in the environment, the selected node is discarded, and a new 

node is selected based on POCPi and Prand. Setting the 

probabilities as POCPi =0.9 and Prand=0.1, yield to the 

exploration behavior presented in Figure 20. 

 

3.1.1 STP Planner Pseudo-Code 

We present our STP planner pseudo code described in 

Table II, for spatial case generating trajectory T with search 

space method presented in the Section V.B. The search space 

is based on POCPi and Prand. We apply K steps from initial 

state xinit. The f function defines the dynamic model and 

kinematic constraints,  x  ̇= f (x; u), where u is the input and 

OCPi  are local target points between start to goal states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.  STP Search Method: (A) Start and Goal Points; (B) Explored 

Space to the Goal Through OCP 

TABLE II.  STP PLANNER PSEUDO CODE 

STP Planner (xinit; xGoal ;K; ∆𝑡; OCP)  
T.init (xinit); 

xrand ← random.state(); 

xnear ← nearest.neighbor(xrand; T ); 

u ← select.input(xrand; xnear); 

xnew ← new.state.OCP (OCP1; u; ∆𝑡; f); 

While xnew≠ xGoal do 

xrand ← random.state(); 

xnear ← nearest.neighbor(xrand; T ); 

u ← select.input(xrand; xnear); 

xnew ← new.state.OCP (OCPi; u; ∆𝑡; f); 

T.add.vertex(xnew); 

T.add.edge(xnear; xnew; u); 

end  

return T; 
 

Function new.state.OCP (OCPi;u; ∆𝑡; f)  
Set POCPi , Set Prand 

p←uniform_rand[0..1] 

      if    0 < p < POCPi 

       return xnew = f(OCPi,u,∆𝑡); 

else  

      if POCPi < p < Prand+ POCPi 

then 

       return RandomState(); 

       end. 

 

C. Completeness 

Motion-planning and search algorithms commonly 

describe 'complete planner' as an algorithm that always 

provides a path planning from start to goal in bounded time. 

For random sampling algorithms, 'probabilistic complete 

planner' is defined as: if a solution exists, the planner will 

eventually find it by using random sampling. In the same 

manner, the deterministic sampling method (for example, 

grid-based search) defines completeness as resolution 

completeness. 

Sampling-based planners, such as the STP planner, do 

not explicitly construct search space and the space's 

boundaries, but exploit tests with preventing collision with 

obstacles and, in our case, taking spatial considerations into 

Goa

l 
Goa

l OC

P1 

OC

P1 

A) B) 
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account. Similarly, to other common RRT planners, which 

share similar properties with the STP planner, our planner 

can be classified as a probabilistic complete one. 

 

IV. STP-IRL ALGORITHM 

In most Reinforcement Learning (RL) systems, the state 

is basically agent’s observation of the environment. At any 

given state the agent chooses its action according to a policy. 

Hence, a policy is a road map for the agent, which 

determines the action to take at each state. Once the agent 

takes an action, the environment returns the new state and 

the immediate reward. Then, the agent uses this information, 

together with the discount factor to update its internal 

understanding of the environment, which, in our case, is 

accomplished by updating a value function. Most methods 

are using the use well-known simple and efficient greedy 

exploration method maximizing Q-value. 

In case of velocity planning space as part of spatial 

analysis planning, each possible action is a possible velocity 

in the next time step, that also represent a viewpoint. The Q-

value function is based on greedy search velocity, with 

greedy local search method. Based on that, TD and SARSA 

methods for RL can be used, generating visible trajectory in 

3D urban environment. 

 

A. Markov Decision Processes (MDP) 

The standard Reinforcement Learning set-up can be 

described as a MDP, consisting of: 

• A finite set of states S, comprising all possible 

representations of the environment. 

• A finite set of actions A, containing all possible 

actions available to the agent at any given time. 

• A reward function R = ψ(st ,at ,st+1), determining 

the immediate reward of performing an action at 

from a state st, resulting in st+1. 

• A transition model T(st , at , st+1) = p(st+1| st ,at), 

describing the probability of transition between 

states st and st+1when performing an action at. 

B. Temporal Difference Learning  

Temporal-difference learning (or TD) interpolates ideas 

from Dynamic Programming (DP) and Monte Carlo 

methods. TD algorithms are able to learn directly from raw 

experiences without any particular model of the 

environment.  

Whether in Monte Carlo methods, an episode needs to 

reach completion to update a value function, Temporal-

difference learning is able to learn (update) the value 

function within each experience (or step). The price paid for 

being able to regularly change the value function is the need 

to update estimations based on other learnt estimations 

(recalling DP ideas). Whereas in DP a model of the 

environment’s dynamic is needed, both Monte Carlo and TD 

approaches are more suitable for uncertain and unpredictable 

tasks.  

Since TD learns from every transition (state, reward, 

action, next state, next reward) there is no need to 

ignore/discount some episodes as in Monte Carlo algorithms. 

 

C. STP Using Inverse Reinforcement Learning  

In this section, we present Inverse Reinforcement 

Learning (IRL) approach based on the proposed Spatial RRT 

planning method. It considers that the value function f related 

to each point x. The Spatial RRT planner seeks to obtain the 

trajectory T* that based on visibility motion primitives set by 

SVC Optimal Control Points (OCP) as part of the planned 

trajectory, which takes into account exact 3D visible 

volumes analysis clustering in urban environments, based on 

optimizing value function f along T.  

The generated trajectories are then represented by a set of 

discrete configuration points T = {x1,x2,··· ,xN}. 

Without loss of generality, we can assume that the value 

function for each point can be expressed as a linear 

combination of a set of sub-value functions, that will be 

called features c(x) = ∑ cj fj(x). The cost of path T is then 

the sum of the cost for all points in the path. Particularly, in 

the RRT, the value is the sum of the sub-values of moving 

between pairs of states in the path: 

 

(2) 

 

Based on number of demonstration trajectories D, D = 

{ζ1,ζ2,··· ,ζD}, by using IRL, weights ω can be set for 

learning from demonstrations and setting similar planning 

behavior. As was shown by (Abbeel and Ng 2014; Kuderer 

et al. 2015), this similarity is achieved when the expected 

value of the features for the trajectories generated by the 

planner is the same as the expected value of the features for 

the given demonstrated trajectories: 

                        (3) 

     Applying the Maximum Entropy Principle (Ziebart et al. 

2008) to the IRL problem leads to the following form for the 

probability density for the trajectories returned by the 

demonstrator: 

                           (4) 
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where Z(ω) is a normalization function that does not depend 

on ζ. One way to determine ω is maximizing the (log-) 

likelihood of the demonstrated trajectories under the 

previous model: 

L(D|ω) = −Dlog(Z(ω))        +∑  (−𝑤𝑇𝑓(𝜁𝑖))𝐷
𝑖=1       (5) 

    

The gradient of the previous log-likelihood with respect to 

ω is given by: 

       (6) 

 

      As mentioned in (Kuderer et al. 2015), this gradient can 

be intuitively explained. If the value of one of the features 

for the trajectories returned by the planner are higher from 

the value in the demonstrated trajectories, the corresponding 

weight should be increased to increase the value of those 

trajectories. 

     The main problem with the computation of the previous 

gradient is that it requires to compute the expected value of 

the features E(f(ζ)) for the generative distribution (4).  

     We suggest setting large amount of D cased, setting the 

relative w values for our planner characters. 

 

TABLE III.  STP-IRL PLANNER PSEUDO CODE 

STP - IRL Planner  
Setting Trajectory S Examples D, D= T*.init (xinit); 

Calculate function features Weight, w  

fD ← AverageFeatureCount(D); 

w ← random_init(); 

Repeat 

                   for each T* do 

           for rrt_repetitions do 

       ζi ← getRRTstarPath(T*,ω) 

      f(ζi) ← calculeFeatureCounts(ζi) 

  end for 

              fRRT (T*)←∑ 𝑓(
𝑟𝑟𝑡_𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠
𝑖=1  ζi))/rrt_repetitions 

            end for 

           fRRT ←( ∑ 𝑓𝑅𝑅𝑇
𝑆
𝑖=1 )/s 

          ∇𝐿 ← fRRT - fD 

                    w ←UpdatedWeigths (∇𝐿)            
 Until convergence 

Return w  

 

 

V. PATROLLING PLANNING USING STP 

     In this section, we study the visible trajectories planning 

for patrolling application using heterogeneous multi agents 

in 3D urban environments. Our concept is based spatial 

clustering method using visibility analysis of the 3D 

visibility problem from a viewpoints in 3D urban 

environments, defined as locations. We consider two kinds 

of agents, with different kinematic and perception 

capabilities. Using simplified version of Traveling Salesman 

Problem (TSP), we formulate the problem as patrolling 

strategy one, with upper bound optimal performances. We 

present combination of relative deadline UniPartition 

approaches based on visibility clusters. These key features 

allow new planning optimal patrolling strategy for 

heterogeneous agents in urban environment. We 

demonstrate our patrolling strategy method in simulations 

using Autonomous Navigation and Virtual Environment 

Laboratory (ANVEL) test bed environment. 

 

VI. PROBLEM FORMULATION 

     The definition of the problem commonly set according to 

a predefined strategy planning. Patrolling strategy deals 

with different situations and hence yields different 

formulation. We demonstrate these differences using the 

following division:   

    1.  Force Planning - with a given set of locations that 

should be protected, we have to determine what is the 

minimal number of agents (K) with patrolling strategy 

which meets all constraints. That becomes the common 

case, when we do not have any available agents compatible 

to the patrolling mission and we need to decide how many 

agents should be used in order to meet mission constraints.  

    2.  Force Division - The locations are situated in different 

areas in urban environment. We need to decide how to 

allocate the agents to all the areas in such way that it will be 

possible to find a patrolling strategy that meets all 

constraints in all the areas.  

    In our case, we deal with force division problem 

combining relative deadline and visibility clustering. Given 

a set of N locations and K different types of agents (which 

available for patrol in a given moment), we are focusing on 

finding patrolling strategy, where each route for an agent 

passes through a number of locations. Patrolling strategy 

aims to minimize cost function which based on 3D visible 

volumes and meets the relative deadline constraints. 

A. Locations 

     We set on our urban environment number of assets that 

should be protected, named as our Locations. Each location 

is characterized by:   

     1. Coordinates - its actual location in the 

environment generated from Visibility Clustering based on 

3D visible volumes analysis.  

     2.  Required Protection - different locations have 

different characteristics and therefore may differ in their 

protection needs. As will be discussed later, we refer to the 

type of agent required for protection.  

     3.  Relative Deadline - which is the maximum time 

that may pass between consecutive visits for optimal 
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patrolling (for example, reduce the probability for being 

attacked beneath a certain threshold).  

 

B. Agents 

     Our Agents are modeled as Unmanned Ground Vehicles 

(UGVs). We will generalized and differentiate between two 

types of these kind of agents:   

    1.  Large - Agent with long range patrolling capabilities, 

sensing and target engaging abilities.  

    2.  Small – Agent with limited ranges in the aspects 

described above.  

     Each of the agent's type has different average speed, 

dynamic and kinemtic constraints with hourly operational 

cost of its own and perception capabilities related to 

visibility analysis. There are many other factors to be 

considered but it is also beyond the scope of this paper. 

 

VII. PATROLLING STRATEGY 

    We define collection of routes for all agents (one route 

per agent) which cover all the locations, by one agent or 

another, as Patrol Strategy. The total patrol cost defined as 

sum of all the routes cost, where route cost includes 3D 

visible volumes aspect integrated into visibility clusters.  

 

A. Main Assumptions 

 We have assumed the following assumptions:   

    1. Agent Type - Each location requires different type of 

protection, and each type of agent has unique and different 

capabilities. Therefore, we will assume that each location 

can be protected by only one type of agent: large or small 

one. These assumptions split our problem into two 

independent problems, each with its relevant locations and 

relative deadlines.  

    2. Disjoint routs for each agent - In order to simplify our 

problem, we assume that each agent is allocated to patrol on 

a specific subset of locations. The subsets are disjoint sets 

which create disjoin routes for each agent. The union of 

those subsets is the initial set of locations.  

    3. Single visit to locations - Another simplification of the 

problem is the assumption that along the route each location 

can be visited only once, and the problem can be described 

as TSP private case. Due to this assumption, when we have 

locations with a relatively short deadlines, there might be 

cases where no solution will be found. This will be 

addressed in the review of the solution technique.  

 

    4. Patrolling along a cyclic path - We assume that each 

patrol route is a cyclic path. The definition of cyclic path is 

a path which start and end at the same location.  

    5. Traveling time between locations - Shortest traveling 

time - The given traveling times are the shortest possible 

times between given two locations, based on agent's 

dynamic model. 

B. Program Inputs 

The inputs of the program are as follows:   

    • N- number of locations  

    • K- number of agents  

    • Size of patrolling area  

    • Agent's average speed and physical dimensions 

    • C- The cost per one operational hour  

    • F- The cost per one hour of deviation from the deadlines 

(the fine cost)  

     We assumed 10 locations in total (N=10) and 3 agents in 

total (K=3), C=100$, F=1000$ and average speed of the 

agent is 65 km/h. We randomly generated the relative 

deadline of each location (9h in average) and also the 

coordinates of the N locations in the patrolling area (500 

km2 ). 

     The problem has the following dimensions: ten locations 

for small agents, six locations for large agents, and three 

small agents patrol. Our testbed urban environment can be 

seen in Figure 5. We set two large agents on patrol and one 

small agent in a given time. Agents in simulation 

environment can be seen in Figure 6. Perception capabilities 

of each agent can be seen in Figure 7 and Figure 8. 

Locations are changed according to the initial position of the 

agents as each simulation. The locations are set as the 

outcome of our visibility clustering analysis as can be seen 

in Figure 9 and Figure 11. 

 

 

 
                                               (a) 

 
(b) 

Figure 5.  Our test bed urban environment model in ANVEL, (a) 

Sideview; (b) Topview. 
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Figure 6.  Three agents in our simulation, two large agents on the right 

side and a small agent to the left. 

 

Figure 7.   Perception sensor; LIDAR sensor for large agents and camera 

sensor for a small agent. 

 

   

Figure 8.  LIDAR perception capabilities during time 

 

C. Simulations Results 

      We will preset several examples of the program results, 

based on spatial clustering and patrolling strategy.  

      In the first case, coordinates of the 10 locations are 

presented in Figure 9. 

 

Figure 9.  Location Coordinates based on Visibility Clustering 

The patrolling graph can be seen in Figure 10.  

 

Figure 10.  Patrolling Strategy Trajectories According to Problem 

Constraints 

     Patrol #1 [10, 1, 2, 10], Patrol #2 is [6, 4, 7, 6] and Patrol 

#3 [8, 5, 3, 9, 8]. Total time of the solution is (h) 48.885, 

and the total deviation from deadlines is (h) 0. Total cost of 

the solution is 4888.5. The total time of the solution is the 

sum of the total traveling time of all three patrols. For 

example, the total traveling time of patrol #3 is the time to 

arrive and return to location 8 plus the traveling time 

between the locations in the cluster, meaning the traveling 

time from location 8 to 5, 5 to 3, 3 to 9 and 9 to 8.  

      Our second simulation demonstrate patrol strategies that 

are non-feasible. Coordinates of the 10 locations are 

presented in Figure 11. 

 

Figure 11.   Location Coordinates based on Visibility Clustering in Second 

Simulation 
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The patrolling graph can be seen in Figure 12.  

 

 

Figure 12.  Patrolling Strategy Trajectories According to Problem 

Constraints 

 

      The program prints the following results: Patrol #1 [3, 1, 

3], Patrol #2 [10, 4, 2, 6, 5, 10], Patrol #3 [9, 7, 8, 9], as can 

be seen in Figure 12. Total time of the solution is (h) 48.65, 

total deviation from deadlines is (h) 4.53. The total 

deviation from deadlines is the sum of the deviations of the 

patrol strategies that are non-feasible  (it is not necessary 

that all the 3 patrol strategies have a deviation).  

     Other interesting example of a case in which one of the 

patrol strategy containing only one location. The reason for 

that is the coordinates of this location which are far away 

from all the other locations.  

In the first case, coordinates of the 10 locations are 

presented in Figure 13. 

  

Figure 13.  Location Coordinates based on Visibility Clustering in Third 

Simulation 

 

Figure 14.  Patrolling Strategy Trajectories According to Problem 

Constraints 

 

The program prints the following results: Patrol #1 [8, 9, 1, 

7, 3, 10, 4, 8], Patrol #2 [2, 6, 2], Patrol #3 [5], as can be 

seen in Figure 14. Total time of the solution is (h) 46.88, 

total deviation from deadlines is (h) 0. 

     

D. Discussion  

     Our research tackled simplified version (given our 

assumptions) to a problem as described in the introduction.       

In this section we would like to discuss other complicated 

cases which are received by eliminating one or more of our 

assumptions and cases which are received by different 

problem definition. We suggest a general solution approach 

for those cases and summarize with recommendation for 

possible research extensions.   

    1.  Finding a patrol strategy when repeated visits are 

allowed - as we described in the second step of our solution 

technique (detailed in section (4)), the patrol strategy in 

each cluster will be found by using TSP technique which 

does not allow repeated visits apart from the first location in 

the path. Naturally, there might be a path with repeated 

visits which is a feasible solution (all the relative deadlines 

are met), but the TSP technique will "miss" this solution. 

Using the TSP technique is one of the alleviations that we 

have made, and we are aware to the fact that we might miss 

feasible solutions. In order to deal with the case in which 

there are no feasible solution at all, we added the fine 

calculation, but here we would like to shortly present a 

heuristic approach for finding a patrol strategy with repeated 

visits.  

     This approach is based on general idea as follows: For 

each cluster, the patrol strategy receives a feasible solution. 

Given a starting location (which is also the end location), 

the method uses the following algorithms:   

        - Forward Checking - given the last location in the 

patrol forming strategy   this algorithm finds all the possible 

locations for that will satisfy the second and third 

constraints. All those locations are added to a location 

vector.  

        - Recursive call - given the last location in the patrol 

forming strategy and the index of the following step, it 

checks if the patrol have not ended with all constraints 

satisfied. If that is not the case, it calls Forward checking 

and run itself recursively on every location in   and the 

index   until a patrol strategy is achieved. Meaning, we have 

a route which is a closed path and every location was visited 

at least once. When   the algorithm backtracks till a different 

location can be chosen and continue that route.  

 

    2.  Non disjoint routes - one of the alleviations that we 

made is to assume that the route of each agent is disjoint 

from all other routes. The reason for that was to avoid 

collisions between the agents and to simplify our problem. 

Obviously, in reality, the routes does not have to be disjoint. 

When eliminating this assumption the complexity of the 

problem rises due to the fact that there are a great deal more 

cluster partition options. We suggest a heuristic approach to 

try and find a solution to the problem. First preform the 
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same partition of the location into clusters (or similar 

partition method based on geographical proximity) and then 

check if there is a solution with disjoint routes. If there is no 

such solution, find the locations that for them the relative 

deadline constraint is not met. Then, try and add each of 

those locations to another cluster based on a proximity 

criteria, such as the shortest average distance to all locations 

in the cluster and so forth. Now these locations are visited 

by more then one agent and therefore the time between 

consecutive visits is reduced to a point that may yield a 

feasible solution.  

    3.  Joint routes for a number of agents while the goal 

is to minimize the maximal idle time of all locations - 

This is the approach mentioned in the introduction (see 

section (1)). Well known heuristic algorithms solve the 

following problem:   

        - Create an Outer-planner Graph from all given 

locations. This is done by connecting all the locations with 

arcs that does not cross one another. Allocate all agents to 

this graph and calculate the maximal idle time.  

        - By removing two arcs at a time from the graph we are 

creating two separated graphs. Remove all possible pairs of 

arcs and for each graph pair created find the agent allocation 

(meaning the number of agents allocated to each graph) that 

minimizes the maximal idle of both graphs.  

        - Find the division that yields the minimal maximal 

idle time and for each graph preform the same process 

described in the previous stage.  

        - Continue until the maximal idle time can not be 

reduced or when the only possible allocation is single agent 

to a graph.  

     4.  Locations that require protection from both type 

of agents - in our solution, we assumed that each agent can 

be protected by only one type of agent. The reason for that 

was to separate the initial problem into two disjoin problem. 

That way, we can solve each problem separately. Obviously, 

in reality, there exist locations that require protection by 

both types of agents (we will refer to them as hybrid 

locations). While there are different relative deadlines for 

each type of agent then we can continue referring to the 

problem as two separated problems. The complication 

begins when the relative deadline is unified meaning the 

maximal time that may pass between consecutive visits of 

any type of agent. A possible way of approaching this case 

without unifying the problems (which may yield a large 

dimension problem that is harder to solve) is as follows:   

        - Solve the separated problems.  

        - If no feasible solution exists for one of the problems, 

and that is due only to a problem in meeting one or more 

hybrid locations relative deadline constraints. Continue to 

the next stage  

        - Combine the solution with the total minimal deviation 

from the relative deadlines of the hybrid locations with 

feasible solutions (or such with minimal deviation as well) 

for the other type of agents and update the time between 

consecutive visits to hybrid locations accordingly. Check if 

now the relative deadlines are met.  

        - If no feasible solution can be found that way, the fine 

method we introduced in this paper may be used. 

VIII. CONCLUSIONS 

In this paper, we have presented a unique planner concept, 

STP, generating trajectory in 3D urban environments based 

on UGV model. The planner takes into account obstacle 

avoidance capabilities and passes through optimal control 

points calculated from spatial analysis. The spatial analysis 

defines the number of clusters in a dataset based on an 

analytic visibility analysis, named SVC. 

Based SVC and STP analysis, we presented an Inverse 

Reinforcement Learning (IRL) approach based on the 

proposed STP planning method, learning the value function 

of the planner from demonstrated trajectories. 

We also presented visible trajectories planning for 

patrolling application using heterogeneous multi agents in 

3D urban environments. Using ANVEL simulation 

environment, we demonstrated spatial clustering method 

using visibility analysis of the 3D visibility problem from a 

viewpoints in 3D urban environments. As part of our 

simulations we modeled two kinds of agents, with different 

kinematic and perception capabilities. Patrolling strategy 

formulated as Traveling Salesman Problem (TSP), with 

relative deadline UniPartition approaches based on visibility 

clusters.  

We showed implementation of differences cases, using 

large and small agents in urban environment scenarios where 

sometime trajectory can no be found. Some other problem 

formulation discussed with suggested solution for further 

research, such as: finding a patrol strategy when repeated 

visits are allowed; non disjoint routes as part of our patrol 

graph; joint routes for a number of agents while the goal is to 

minimize the maximal idle time of all locations and other 

cases of locations that require protection from both type of 

agents. 

Future research will also include performances and 

algorithm complexity analysis for STP and SVC methods. 
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