
107

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Multi-Agents Spatial Visibility Trajectory Planning

and Patrolling Using Inverse Reinforcement Learning

Oren Gal and Yerach Doytsher

Mapping and Geo-information Engineering

Technion - Israel Institute of Technology

Haifa, Israel

e-mails: {orengal, doytsher}@technion.ac.il

Abstract—In this paper, we present a conceptual Spatial

Trajectory Planning (STP) method using Rapid Random Trees

(RRT) planner, generating visibility motion primitives in

urban environments using Inverse Reinforcement Learning

(IRL) approach. Visibility motion primitives are set by using

Spatial Visibility Clustering (SVC) analysis. Based on the STP

planning method, we introduce IRL formulation and analysis

which learns the value function of the planner from

demonstrated trajectories and generating spatial visibility

trajectory planning. Additionally, we study the visible

trajectories planning for patrolling application using

heterogeneous multi agents in 3D urban environments. Our

concept is based on spatial clustering method using visibility

analysis of the 3D visibility problem from a viewpoints in 3D

urban environments, defined as locations. We consider two

kinds of agents, with different kinematic and perception

capabilities. Using simplified version of Traveling Salesman

Problem (TSP), we formulate the problem as patrolling

strategy one, with upper bound optimal performances. We

present a combination of relative deadline UniPartition

approaches based on visibility clusters. These key features

allow new planning optimal patrolling strategy for

heterogeneous agents in urban environment. We demonstrate

our patrolling strategy method in simulations using

Autonomous Navigation and Virtual Environment Laboratory

(ANVEL) test bed environment.

Keywords-Visibility; 3D; Spatial analysis; Motion Planning.

I. INTRODUCTION AND RELATED WORK

Spatial clustering in urban environments is a new spatial

field from trajectory planning aspects (Gal and Doytsher

2014). The motion and trajectory planning fields have been

extensively studied over the last two decades (Bellingham et

al. 2002; Bortoff 2000; Chitsaz and LaValle 2007; Erdmann

and Lozano-Perez 1987; Fiorini and Shiller 1998; Fraichard

1999; Latombe 1990; LaValle 1998; LaValle 2006; LaValle

and Kuffner 1999; Sasiadek and Duleba 2000).

 The main effort has focused on finding a collision-free

path in static or dynamic environments, i.e., in moving or

static obstacles, using roadmap, cell decomposition, and

potential field methods (Gal and Doytsher 2013; Obermeyer

2009; Shaferman and Shima 2008).

The path-planning problem becomes an NP-hard one,

even for simple cases such as time-optimal trajectories for a

system with point-mass dynamics and bounded velocity and

acceleration with polyhedral obstacles (Donald et al. 1993).

Efficient solutions for an approximated problem were

investigated (LaValle and Kuffner 1999), addressing non-

holonomic constraints by using the Rapidly Random Trees

(RRT) method (LaValle 1998). Over the years, many other

semi-randomized methods were proposed, using

evolutionary programming (Capozzi and J. Vagners 2001;

Lum et al. 2006; Pongpunwattana and Rysdyk 2004).

The randomized sampling algorithms planner, such as

RRT, explores the action space stochastically. The RRT

algorithm is probabilistically complete, but not

asymptotically optimal (Karaman and Frazzoli 2011). The

RRT* planner Karaman et al. 2011) challenges optimality by

a rewiring process each time a node is added to the tree.

However, in cluttered environments, RRT* may behave

poorly since it spends too much time deciding whether to

rewire or not.

Overall, only a few works have focused on spatial

analysis characters integrated into trajectory planning

methods such as visibility analysis or spatial clustering

methods (Gal and Doytsher 2013; Shaferman and Shima

2008).

Our research contributes to the spatial data clustering

field, where, as far as we know, visibility analysis has

become a leading factor for the first time. The SVC method,

while mining the real pedestrians' mobility datasets, enables

by a visibility analysis to set the number of clusters.

The efficient computation of visible surfaces and

volumes in 3D environments is not a trivial task. The

visibility problem has been extensively studied over the last

twenty years, due to the importance of visibility in GIS and

Geomatics, computer graphics and computer vision, and

robotics. Accurate visibility computation in 3D environments

is a very complicated task demanding a high computational

effort, which could hardly have been done in a very short

time using traditional well-known visibility methods

(Plantinga and Dyer 1990).

108

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The exact visibility methods are highly complex, and

cannot be used for fast applications due to their long

computation time. Previous research in visibility

computation has been devoted to open environments using

DEM models, representing raster data in 2.5D (Polyhedral

model), and do not address, or suggest solutions for, dense

built-up areas.

Most of these works have focused on approximate

visibility computation, enabling fast results using

interpolations of visibility values between points, calculating

point visibility with the Line of Sight (LOS) method

(Doytsher and Shmutter 1994; Durand 1999). Lately, fast

and accurate visibility analysis computation in 3D

environments has been presented (Gal and Doytsher 2012;

Gal and Doytsher 2013).

Multi-agents decision making and control methods can

be divided into two major disciplines, centralized and

decentralized approaches. The basic idea of centralized

approach is to make all the decisions in one place. All tasks

are concentrated by a single entity, named ’Central Task

Planner and Scheduler’ (CTPS).

The CTPS translates the tasks into smaller tasks (sub-

tasks), which will later be sent to the appropriate agents,

according to their capabilities, their assignment and their

workload. Theoretically, the centralized approach appears to

do the trick. It allows knowing in advance all the tasks to be

done and the connections among them, allows choosing the

most fitting disassembling of the problem to sub-tasks.

Indeed, this is a significant advantage, as there is no

disassembling which will be ideal for all missions.

However, this approach does not fit a dynamic

environment, in which unpredictable events may occur.

Multi-agents in marine environment usually not in a constant

contact with CTPS nor with each other, even though the

CTPS requires a continuous stream of data about the

forthcoming events in order to provide an effective response.

Solutions to this problem (such as placing multiple sensors in

the environment) are expensive and hard to apply.

On the other hand, at the decentralized approach, each

agent is responsible for a group of tasks, and there is no need

using entity such as CTPS. A predetermined disassembling is

applied on the problem, and the agents can try to contact

each other, in order to improve it. As mentioned above, this

solution is problematic, as there is no disassembling which

will be ideal for all problems.

Despite this fact, the lack of the CTPS allows every

agent to process the data it collects by itself, and, for

example, plan its own trajectory using local sensors data and

decide what the next action is. The benefit of this approach

is, of course, the speed of reaction and the independence of

the agents. Moreover, it allows real time reaction to dynamic

changes in the environment. As said, this is a problematic

matter in the centralized approach.

In this paper, we present, for the first time as far as

know, a unique conceptual Spatial Trajectory Planning

(STP) method based on RRT planner. The generated

trajectories are based on visibility motion primitives set by

SVC Optimal Control Points (OCP) as part of the planned

trajectory, which takes into account exact 3D visible

volumes analysis clustering in urban environments.

The proposed planner includes obstacle avoidance

capabilities, satisfying dynamics' and kinematics' agent

model constraints in 3D environments, guaranteeing

probabilistic completeness. The generated trajectories are

dynamic ones and are regularly updated during daylight

hours due to SVC OCP during daylight hours. STP

trajectories can be used for tourism and entertainment

applications or for homeland security needs.

In the following sections, we first introduce the RRT

planner and our extension for a spatial analysis case, such as

3D visibility. Later on, we present the STP planner, using

RRT and SVC capabilities. In the last part of the paper, we

present the Inverse Reinforcement Learning (IRL) approach

and algorithm based on the proposed STP planning method,

learning the value function of the planner from demonstrated

trajectories.

II. SPATIAL RAPID RANDOM TREES

In this section, the RRT path planning technique is briefly

introduced with spatial extension. RRT can also deal with

high-dimensional spaces by taking into account dynamic and

static obstacles including dynamic and non-holonomic

robots' constraints.

The main idea is to explore a portion of the space using

sampling points in space, by incrementally adding new

randomly selected nodes to the current tree's nodes.

RRTs have an (implicit) Voronoi bias that steers them

towards yet unexplored regions of the space. However, in

case of kinodynamic systems, the imperfection of the

underlying metric can compromise such behavior. Typically,

the metric relies on the Euclidean distance between points,

which does not necessarily reflect the true cost-to-go

between states. Finding a good metric is known to be a

difficult problem. Simple heuristics can be designed to

improve the choice of the tree state to be expanded and to

improve the input selection mechanism without redefining a

specific metric.

A. RRT Stages

The RRT method is a randomized one, typically growing

a tree search from the initial configuration to the goal,

exploring the search space. These kinds of algorithms consist

of three major steps:

1. Node Selection: An existing node on the tree is chosen

as a location from which to extend a new branch.

Selection of the existing node is based on probabilistic

criteria such as metric distance.

2. Node Expansion: Local planning applied a generating

feasible motion primitive from the current node to the

next selected local goal node, which can be defined by

a variety of characters.

109

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

3. Evaluation: The possible new branch is evaluated

based on cost function criteria and feasible connectivity

to existing branches.

These steps are iteratively repeated, commonly until the

planner finds feasible trajectory from start to goal

configurations, or other convergence criteria.

Figure 1. The RRT algorithm: (A) Sampling and node selection steps;

(B) Expansion step.

A simple case demonstrating the RRT process is shown in

Figure 1. The sampling step selects Nrand, and the node

selection step chooses the closest node, Nnear, as shown in

Figure 1.A. The expansion step, creating a new branch to a

new configuration, Nnew, is shown in Figure 1.B. An example

for growing RRT algorithm is shown in Figure 2.

Figure 2. Example for growing RRT algorithm.

B. Spatial RRT Formulation

We formulate the RRT planner and revise the basic RRT

planner for a 3D spatial analysis case for a continuous path

from initial state xinit to goal state xgoal:

1. State Space: A topological space, X.

2. Boundary Values:
init

x X and
goal

x X .

3. Free Space: A function : { , }D X true false→ that determines

whether ()
free

x t X where
free

X consist of the

attainable states outside the obstacles in a 3D

environment.

4. Inputs: A set, U, contains the complete set of attainable

 control efforts ui, that can affect the state.

5. Incremental Simulator: Given a current state, ()x t , and

input over time interval t , compute ()x t t+  .

6. 3D Spatial Analysis: A real value function, f (x; u, OCPi)

which specifies the cost to the center of 3D visibility

volumes cluster points (OCP) between a pair of points in

X .

C. Spatial RRT Formulation

We present a revised RRT pseudo code described in Table

I, for spatial case generating trajectory T, applying K steps

from initial state xinit. The f function defines the dynamic

model and kinematic constraints, 𝑥̇ = f (x; u, OCPi), where u

is the input and OCPi set the next new state and the

feasibility of following the next spatial visibility clustering

point.

TABLE I. SPATIAL RRT PSEUDO CODE

Generate Spatial RRT (xinit; K; ∆𝑡)

T.init (xinit);

For k = 1 to K do

 xrand ← random.state();

 xnear ← nearest.neighbor (xrand; T);

 u ← select.input (xrand; xnear);

 xnew ← new.state (xnear; u; ∆𝑡; f);

 T.add.vertex (xnew);

 T.add.edge (xnear; xnew; u);

End

Return T

III. SPATIAL TRAJECTORY PLANNING (STP)

 In this section, we present a conceptual STP method based

on RRT planner. The method generates visibility motion

primitives in urban environments. The STP method is based

on a RRT planner extending the stochastic search to specific

OCP. These primitives connecting between nodes through

OCP are defined as visibility primitives.

 A common RRT planner is based on greedy

approximation to a minimum spanning tree, without

considering either path lengths from the initial state or

following or getting close to specific OCP. Our STP planner

consist of a tree's extension for the next time step with

probability to goal and probability to waypoint, where

trajectories can be set to follow adjacent points or through

OCP. The planner includes obstacle avoidance capabilities,

satisfying dynamics' and kinematics' agent model constraints

in 3D environments. As we demonstrated in the previous

section, the OCP are dynamic during daylight hours. Due to

OCP's dynamic character, the generated trajectory is also a

dynamic one during daylight hours.

 We present our concept addressing the STP method

formulating planner for a UGV model, integrating OCP's as

part of the generated trajectories along with obstacle

avoidance capability.

A. Dynamic Model

In this section, we suggest an Unmanned Ground Vehicle

(UGV) dynamic model based on the four-wheeled car

system (UGV) with rear-wheel drive and front-wheel

steering (Lewis 2006). This model assumes that only the

front wheels are capable of turning and the back wheels must

110

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

roll without slipping, and all the wheels turn around the same

point (rotation center) which is co-linear with the rear axle of

the car, as can be seen in Figure 19, where L is the length of

the car between the front and rear axles. rt is the

instantaneous turning radius.

Figure 3. Four-Wheeled Car Model with Front-Wheel Steering (Lewis

2006)

Thus, UGV dynamic model can be described as:

ẋ = f(x, u) = {

x
ẏ

θ̇

̇

}={

vcos(θ)

vsin(θ)
v
Ltan(∅)

} (1)

The state vector, x, is composed of two position variables

(x,y) and an orientation variable, θ. The x-y position of the

car is measured at the center point of the rear axle. The

control vector, u, consists of the vehicle’s velocity, v, and the

angle of the front wheels, ϕ, with respect to the car's heading.

B. Search Method

Our search is guided by following spatial clustering

points based on 3D visible volumes analysis in 3D urban

environments, i.e., Optimal Control. The cost function for

each next possible node (as the target node) consists of

probability to closest OCP, POCPi , and probability to random

point, Prand .

In case of overlap between a selected node and obstacle

in the environment, the selected node is discarded, and a new

node is selected based on POCPi and Prand. Setting the

probabilities as POCPi =0.9 and Prand=0.1, yield to the

exploration behavior presented in Figure 20.

3.1.1 STP Planner Pseudo-Code

We present our STP planner pseudo code described in

Table II, for spatial case generating trajectory T with search

space method presented in the Section V.B. The search space

is based on POCPi and Prand. We apply K steps from initial

state xinit. The f function defines the dynamic model and

kinematic constraints, x ̇= f (x; u), where u is the input and

OCPi are local target points between start to goal states.

Figure 4. STP Search Method: (A) Start and Goal Points; (B) Explored

Space to the Goal Through OCP

TABLE II. STP PLANNER PSEUDO CODE

STP Planner (xinit; xGoal ;K; ∆𝑡; OCP)
T.init (xinit);

xrand ← random.state();

xnear ← nearest.neighbor(xrand; T);

u ← select.input(xrand; xnear);

xnew ← new.state.OCP (OCP1; u; ∆𝑡; f);

While xnew≠ xGoal do

xrand ← random.state();

xnear ← nearest.neighbor(xrand; T);

u ← select.input(xrand; xnear);

xnew ← new.state.OCP (OCPi; u; ∆𝑡; f);

T.add.vertex(xnew);

T.add.edge(xnear; xnew; u);

end

return T;

Function new.state.OCP (OCPi;u; ∆𝑡; f)
Set POCPi , Set Prand

p←uniform_rand[0..1]

 if 0 < p < POCPi

 return xnew = f(OCPi,u,∆𝑡);

else

 if POCPi < p < Prand+ POCPi

then

 return RandomState();

 end.

C. Completeness

Motion-planning and search algorithms commonly

describe 'complete planner' as an algorithm that always

provides a path planning from start to goal in bounded time.

For random sampling algorithms, 'probabilistic complete

planner' is defined as: if a solution exists, the planner will

eventually find it by using random sampling. In the same

manner, the deterministic sampling method (for example,

grid-based search) defines completeness as resolution

completeness.

Sampling-based planners, such as the STP planner, do

not explicitly construct search space and the space's

boundaries, but exploit tests with preventing collision with

obstacles and, in our case, taking spatial considerations into

Goa

l
Goa

l OC

P1

OC

P1

A) B)

111

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

account. Similarly, to other common RRT planners, which

share similar properties with the STP planner, our planner

can be classified as a probabilistic complete one.

IV. STP-IRL ALGORITHM

In most Reinforcement Learning (RL) systems, the state

is basically agent’s observation of the environment. At any

given state the agent chooses its action according to a policy.

Hence, a policy is a road map for the agent, which

determines the action to take at each state. Once the agent

takes an action, the environment returns the new state and

the immediate reward. Then, the agent uses this information,

together with the discount factor to update its internal

understanding of the environment, which, in our case, is

accomplished by updating a value function. Most methods

are using the use well-known simple and efficient greedy

exploration method maximizing Q-value.

In case of velocity planning space as part of spatial

analysis planning, each possible action is a possible velocity

in the next time step, that also represent a viewpoint. The Q-

value function is based on greedy search velocity, with

greedy local search method. Based on that, TD and SARSA

methods for RL can be used, generating visible trajectory in

3D urban environment.

A. Markov Decision Processes (MDP)

The standard Reinforcement Learning set-up can be

described as a MDP, consisting of:

• A finite set of states S, comprising all possible

representations of the environment.

• A finite set of actions A, containing all possible

actions available to the agent at any given time.

• A reward function R = ψ(st ,at ,st+1), determining

the immediate reward of performing an action at

from a state st, resulting in st+1.

• A transition model T(st , at , st+1) = p(st+1| st ,at),

describing the probability of transition between

states st and st+1when performing an action at.

B. Temporal Difference Learning

Temporal-difference learning (or TD) interpolates ideas

from Dynamic Programming (DP) and Monte Carlo

methods. TD algorithms are able to learn directly from raw

experiences without any particular model of the

environment.

Whether in Monte Carlo methods, an episode needs to

reach completion to update a value function, Temporal-

difference learning is able to learn (update) the value

function within each experience (or step). The price paid for

being able to regularly change the value function is the need

to update estimations based on other learnt estimations

(recalling DP ideas). Whereas in DP a model of the

environment’s dynamic is needed, both Monte Carlo and TD

approaches are more suitable for uncertain and unpredictable

tasks.

Since TD learns from every transition (state, reward,

action, next state, next reward) there is no need to

ignore/discount some episodes as in Monte Carlo algorithms.

C. STP Using Inverse Reinforcement Learning

In this section, we present Inverse Reinforcement

Learning (IRL) approach based on the proposed Spatial RRT

planning method. It considers that the value function f related

to each point x. The Spatial RRT planner seeks to obtain the

trajectory T* that based on visibility motion primitives set by

SVC Optimal Control Points (OCP) as part of the planned

trajectory, which takes into account exact 3D visible

volumes analysis clustering in urban environments, based on

optimizing value function f along T.

The generated trajectories are then represented by a set of

discrete configuration points T = {x1,x2,··· ,xN}.

Without loss of generality, we can assume that the value

function for each point can be expressed as a linear

combination of a set of sub-value functions, that will be

called features c(x) = ∑ cj fj(x). The cost of path T is then

the sum of the cost for all points in the path. Particularly, in

the RRT, the value is the sum of the sub-values of moving

between pairs of states in the path:

(2)

Based on number of demonstration trajectories D, D =

{ζ1,ζ2,··· ,ζD}, by using IRL, weights ω can be set for

learning from demonstrations and setting similar planning

behavior. As was shown by (Abbeel and Ng 2014; Kuderer

et al. 2015), this similarity is achieved when the expected

value of the features for the trajectories generated by the

planner is the same as the expected value of the features for

the given demonstrated trajectories:

 (3)

 Applying the Maximum Entropy Principle (Ziebart et al.

2008) to the IRL problem leads to the following form for the

probability density for the trajectories returned by the

demonstrator:

 (4)

112

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

where Z(ω) is a normalization function that does not depend

on ζ. One way to determine ω is maximizing the (log-)

likelihood of the demonstrated trajectories under the

previous model:

L(D|ω) = −Dlog(Z(ω)) +∑ (−𝑤𝑇𝑓(𝜁𝑖))𝐷
𝑖=1 (5)

The gradient of the previous log-likelihood with respect to

ω is given by:

 (6)

 As mentioned in (Kuderer et al. 2015), this gradient can

be intuitively explained. If the value of one of the features

for the trajectories returned by the planner are higher from

the value in the demonstrated trajectories, the corresponding

weight should be increased to increase the value of those

trajectories.

 The main problem with the computation of the previous

gradient is that it requires to compute the expected value of

the features E(f(ζ)) for the generative distribution (4).

 We suggest setting large amount of D cased, setting the

relative w values for our planner characters.

TABLE III. STP-IRL PLANNER PSEUDO CODE

STP - IRL Planner
Setting Trajectory S Examples D, D= T*.init (xinit);

Calculate function features Weight, w

fD ← AverageFeatureCount(D);

w ← random_init();

Repeat

 for each T* do

 for rrt_repetitions do

 ζi ← getRRTstarPath(T*,ω)

 f(ζi) ← calculeFeatureCounts(ζi)

 end for

 fRRT (T*)←∑ 𝑓(
𝑟𝑟𝑡_𝑟𝑒𝑝𝑒𝑡𝑖𝑡𝑖𝑜𝑛𝑠
𝑖=1 ζi))/rrt_repetitions

 end for

 fRRT ←(∑ 𝑓𝑅𝑅𝑇
𝑆
𝑖=1)/s

 ∇𝐿 ← fRRT - fD

 w ←UpdatedWeigths (∇𝐿)
 Until convergence

Return w

V. PATROLLING PLANNING USING STP

 In this section, we study the visible trajectories planning

for patrolling application using heterogeneous multi agents

in 3D urban environments. Our concept is based spatial

clustering method using visibility analysis of the 3D

visibility problem from a viewpoints in 3D urban

environments, defined as locations. We consider two kinds

of agents, with different kinematic and perception

capabilities. Using simplified version of Traveling Salesman

Problem (TSP), we formulate the problem as patrolling

strategy one, with upper bound optimal performances. We

present combination of relative deadline UniPartition

approaches based on visibility clusters. These key features

allow new planning optimal patrolling strategy for

heterogeneous agents in urban environment. We

demonstrate our patrolling strategy method in simulations

using Autonomous Navigation and Virtual Environment

Laboratory (ANVEL) test bed environment.

VI. PROBLEM FORMULATION

 The definition of the problem commonly set according to

a predefined strategy planning. Patrolling strategy deals

with different situations and hence yields different

formulation. We demonstrate these differences using the

following division:

 1. Force Planning - with a given set of locations that

should be protected, we have to determine what is the

minimal number of agents (K) with patrolling strategy

which meets all constraints. That becomes the common

case, when we do not have any available agents compatible

to the patrolling mission and we need to decide how many

agents should be used in order to meet mission constraints.

 2. Force Division - The locations are situated in different

areas in urban environment. We need to decide how to

allocate the agents to all the areas in such way that it will be

possible to find a patrolling strategy that meets all

constraints in all the areas.

 In our case, we deal with force division problem

combining relative deadline and visibility clustering. Given

a set of N locations and K different types of agents (which

available for patrol in a given moment), we are focusing on

finding patrolling strategy, where each route for an agent

passes through a number of locations. Patrolling strategy

aims to minimize cost function which based on 3D visible

volumes and meets the relative deadline constraints.

A. Locations

 We set on our urban environment number of assets that

should be protected, named as our Locations. Each location

is characterized by:

 1. Coordinates - its actual location in the

environment generated from Visibility Clustering based on

3D visible volumes analysis.

 2. Required Protection - different locations have

different characteristics and therefore may differ in their

protection needs. As will be discussed later, we refer to the

type of agent required for protection.

 3. Relative Deadline - which is the maximum time

that may pass between consecutive visits for optimal

113

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

patrolling (for example, reduce the probability for being

attacked beneath a certain threshold).

B. Agents

 Our Agents are modeled as Unmanned Ground Vehicles

(UGVs). We will generalized and differentiate between two

types of these kind of agents:

 1. Large - Agent with long range patrolling capabilities,

sensing and target engaging abilities.

 2. Small – Agent with limited ranges in the aspects

described above.

 Each of the agent's type has different average speed,

dynamic and kinemtic constraints with hourly operational

cost of its own and perception capabilities related to

visibility analysis. There are many other factors to be

considered but it is also beyond the scope of this paper.

VII. PATROLLING STRATEGY

 We define collection of routes for all agents (one route

per agent) which cover all the locations, by one agent or

another, as Patrol Strategy. The total patrol cost defined as

sum of all the routes cost, where route cost includes 3D

visible volumes aspect integrated into visibility clusters.

A. Main Assumptions

 We have assumed the following assumptions:

 1. Agent Type - Each location requires different type of

protection, and each type of agent has unique and different

capabilities. Therefore, we will assume that each location

can be protected by only one type of agent: large or small

one. These assumptions split our problem into two

independent problems, each with its relevant locations and

relative deadlines.

 2. Disjoint routs for each agent - In order to simplify our

problem, we assume that each agent is allocated to patrol on

a specific subset of locations. The subsets are disjoint sets

which create disjoin routes for each agent. The union of

those subsets is the initial set of locations.

 3. Single visit to locations - Another simplification of the

problem is the assumption that along the route each location

can be visited only once, and the problem can be described

as TSP private case. Due to this assumption, when we have

locations with a relatively short deadlines, there might be

cases where no solution will be found. This will be

addressed in the review of the solution technique.

 4. Patrolling along a cyclic path - We assume that each

patrol route is a cyclic path. The definition of cyclic path is

a path which start and end at the same location.

 5. Traveling time between locations - Shortest traveling

time - The given traveling times are the shortest possible

times between given two locations, based on agent's

dynamic model.

B. Program Inputs

The inputs of the program are as follows:

 • N- number of locations

 • K- number of agents

 • Size of patrolling area

 • Agent's average speed and physical dimensions

 • C- The cost per one operational hour

 • F- The cost per one hour of deviation from the deadlines

(the fine cost)

 We assumed 10 locations in total (N=10) and 3 agents in

total (K=3), C=100$, F=1000$ and average speed of the

agent is 65 km/h. We randomly generated the relative

deadline of each location (9h in average) and also the

coordinates of the N locations in the patrolling area (500

km2).

 The problem has the following dimensions: ten locations

for small agents, six locations for large agents, and three

small agents patrol. Our testbed urban environment can be

seen in Figure 5. We set two large agents on patrol and one

small agent in a given time. Agents in simulation

environment can be seen in Figure 6. Perception capabilities

of each agent can be seen in Figure 7 and Figure 8.

Locations are changed according to the initial position of the

agents as each simulation. The locations are set as the

outcome of our visibility clustering analysis as can be seen

in Figure 9 and Figure 11.

 (a)

(b)

Figure 5. Our test bed urban environment model in ANVEL, (a)

Sideview; (b) Topview.

114

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 6. Three agents in our simulation, two large agents on the right

side and a small agent to the left.

Figure 7. Perception sensor; LIDAR sensor for large agents and camera

sensor for a small agent.

Figure 8. LIDAR perception capabilities during time

C. Simulations Results

 We will preset several examples of the program results,

based on spatial clustering and patrolling strategy.

 In the first case, coordinates of the 10 locations are

presented in Figure 9.

Figure 9. Location Coordinates based on Visibility Clustering

The patrolling graph can be seen in Figure 10.

Figure 10. Patrolling Strategy Trajectories According to Problem

Constraints

 Patrol #1 [10, 1, 2, 10], Patrol #2 is [6, 4, 7, 6] and Patrol

#3 [8, 5, 3, 9, 8]. Total time of the solution is (h) 48.885,

and the total deviation from deadlines is (h) 0. Total cost of

the solution is 4888.5. The total time of the solution is the

sum of the total traveling time of all three patrols. For

example, the total traveling time of patrol #3 is the time to

arrive and return to location 8 plus the traveling time

between the locations in the cluster, meaning the traveling

time from location 8 to 5, 5 to 3, 3 to 9 and 9 to 8.

 Our second simulation demonstrate patrol strategies that

are non-feasible. Coordinates of the 10 locations are

presented in Figure 11.

Figure 11. Location Coordinates based on Visibility Clustering in Second

Simulation

115

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The patrolling graph can be seen in Figure 12.

Figure 12. Patrolling Strategy Trajectories According to Problem

Constraints

 The program prints the following results: Patrol #1 [3, 1,

3], Patrol #2 [10, 4, 2, 6, 5, 10], Patrol #3 [9, 7, 8, 9], as can

be seen in Figure 12. Total time of the solution is (h) 48.65,

total deviation from deadlines is (h) 4.53. The total

deviation from deadlines is the sum of the deviations of the

patrol strategies that are non-feasible (it is not necessary

that all the 3 patrol strategies have a deviation).

 Other interesting example of a case in which one of the

patrol strategy containing only one location. The reason for

that is the coordinates of this location which are far away

from all the other locations.

In the first case, coordinates of the 10 locations are

presented in Figure 13.

Figure 13. Location Coordinates based on Visibility Clustering in Third

Simulation

Figure 14. Patrolling Strategy Trajectories According to Problem

Constraints

The program prints the following results: Patrol #1 [8, 9, 1,

7, 3, 10, 4, 8], Patrol #2 [2, 6, 2], Patrol #3 [5], as can be

seen in Figure 14. Total time of the solution is (h) 46.88,

total deviation from deadlines is (h) 0.

D. Discussion

 Our research tackled simplified version (given our

assumptions) to a problem as described in the introduction.

In this section we would like to discuss other complicated

cases which are received by eliminating one or more of our

assumptions and cases which are received by different

problem definition. We suggest a general solution approach

for those cases and summarize with recommendation for

possible research extensions.

 1. Finding a patrol strategy when repeated visits are

allowed - as we described in the second step of our solution

technique (detailed in section (4)), the patrol strategy in

each cluster will be found by using TSP technique which

does not allow repeated visits apart from the first location in

the path. Naturally, there might be a path with repeated

visits which is a feasible solution (all the relative deadlines

are met), but the TSP technique will "miss" this solution.

Using the TSP technique is one of the alleviations that we

have made, and we are aware to the fact that we might miss

feasible solutions. In order to deal with the case in which

there are no feasible solution at all, we added the fine

calculation, but here we would like to shortly present a

heuristic approach for finding a patrol strategy with repeated

visits.

 This approach is based on general idea as follows: For

each cluster, the patrol strategy receives a feasible solution.

Given a starting location (which is also the end location),

the method uses the following algorithms:

 - Forward Checking - given the last location in the

patrol forming strategy this algorithm finds all the possible

locations for that will satisfy the second and third

constraints. All those locations are added to a location

vector.

 - Recursive call - given the last location in the patrol

forming strategy and the index of the following step, it

checks if the patrol have not ended with all constraints

satisfied. If that is not the case, it calls Forward checking

and run itself recursively on every location in and the

index until a patrol strategy is achieved. Meaning, we have

a route which is a closed path and every location was visited

at least once. When the algorithm backtracks till a different

location can be chosen and continue that route.

 2. Non disjoint routes - one of the alleviations that we

made is to assume that the route of each agent is disjoint

from all other routes. The reason for that was to avoid

collisions between the agents and to simplify our problem.

Obviously, in reality, the routes does not have to be disjoint.

When eliminating this assumption the complexity of the

problem rises due to the fact that there are a great deal more

cluster partition options. We suggest a heuristic approach to

try and find a solution to the problem. First preform the

116

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

same partition of the location into clusters (or similar

partition method based on geographical proximity) and then

check if there is a solution with disjoint routes. If there is no

such solution, find the locations that for them the relative

deadline constraint is not met. Then, try and add each of

those locations to another cluster based on a proximity

criteria, such as the shortest average distance to all locations

in the cluster and so forth. Now these locations are visited

by more then one agent and therefore the time between

consecutive visits is reduced to a point that may yield a

feasible solution.

 3. Joint routes for a number of agents while the goal

is to minimize the maximal idle time of all locations -

This is the approach mentioned in the introduction (see

section (1)). Well known heuristic algorithms solve the

following problem:

 - Create an Outer-planner Graph from all given

locations. This is done by connecting all the locations with

arcs that does not cross one another. Allocate all agents to

this graph and calculate the maximal idle time.

 - By removing two arcs at a time from the graph we are

creating two separated graphs. Remove all possible pairs of

arcs and for each graph pair created find the agent allocation

(meaning the number of agents allocated to each graph) that

minimizes the maximal idle of both graphs.

 - Find the division that yields the minimal maximal

idle time and for each graph preform the same process

described in the previous stage.

 - Continue until the maximal idle time can not be

reduced or when the only possible allocation is single agent

to a graph.

 4. Locations that require protection from both type

of agents - in our solution, we assumed that each agent can

be protected by only one type of agent. The reason for that

was to separate the initial problem into two disjoin problem.

That way, we can solve each problem separately. Obviously,

in reality, there exist locations that require protection by

both types of agents (we will refer to them as hybrid

locations). While there are different relative deadlines for

each type of agent then we can continue referring to the

problem as two separated problems. The complication

begins when the relative deadline is unified meaning the

maximal time that may pass between consecutive visits of

any type of agent. A possible way of approaching this case

without unifying the problems (which may yield a large

dimension problem that is harder to solve) is as follows:

 - Solve the separated problems.

 - If no feasible solution exists for one of the problems,

and that is due only to a problem in meeting one or more

hybrid locations relative deadline constraints. Continue to

the next stage

 - Combine the solution with the total minimal deviation

from the relative deadlines of the hybrid locations with

feasible solutions (or such with minimal deviation as well)

for the other type of agents and update the time between

consecutive visits to hybrid locations accordingly. Check if

now the relative deadlines are met.

 - If no feasible solution can be found that way, the fine

method we introduced in this paper may be used.

VIII. CONCLUSIONS

In this paper, we have presented a unique planner concept,

STP, generating trajectory in 3D urban environments based

on UGV model. The planner takes into account obstacle

avoidance capabilities and passes through optimal control

points calculated from spatial analysis. The spatial analysis

defines the number of clusters in a dataset based on an

analytic visibility analysis, named SVC.

Based SVC and STP analysis, we presented an Inverse

Reinforcement Learning (IRL) approach based on the

proposed STP planning method, learning the value function

of the planner from demonstrated trajectories.

We also presented visible trajectories planning for

patrolling application using heterogeneous multi agents in

3D urban environments. Using ANVEL simulation

environment, we demonstrated spatial clustering method

using visibility analysis of the 3D visibility problem from a

viewpoints in 3D urban environments. As part of our

simulations we modeled two kinds of agents, with different

kinematic and perception capabilities. Patrolling strategy

formulated as Traveling Salesman Problem (TSP), with

relative deadline UniPartition approaches based on visibility

clusters.

We showed implementation of differences cases, using

large and small agents in urban environment scenarios where

sometime trajectory can no be found. Some other problem

formulation discussed with suggested solution for further

research, such as: finding a patrol strategy when repeated

visits are allowed; non disjoint routes as part of our patrol

graph; joint routes for a number of agents while the goal is to

minimize the maximal idle time of all locations and other

cases of locations that require protection from both type of

agents.

Future research will also include performances and

algorithm complexity analysis for STP and SVC methods.

IX. REFERENCES

O. Gal and Y. Doytsher, (2014) "Spatial Visibility Clustering
Analysis In Urban Environments Based on Pedestrians'
Mobility Datasets," The Sixth International Conference on
Advanced Geographic Information Systems, Applications,
and Services, pp. 38-44.

J. Bellingham, A. Richards, and J. How, (2002) "Receding Horizon
Control of Autonomous Aerial Vehicles," in Proceedings
ofthe IEEE American Control Conference, Anchorage, AK,
pp. 3741–3746.

A. Borgers and H. Timmermans, (1996) "A model of pedestrian
route choice and demand
for retail facilities within inner-city shopping areas,"
Geographical Analysis, vol. 18, No. 2, pp. 115-128.

S. A. Bortoff, (2000) "Path planning for UAVs," In Proc. of the
American Control Conference, Chicago, IL, pp. 364–368.

117

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

O. Brock and O. Khatib, (2000) "Real time replanning in high-
dimensional configuration spaces using sets of homotopic
paths," In Proc. of the IEEE International Conference on
Robotics and Automation, San Francisco, CA, pp. 550-555.

R. B. Calinski and J. Harabasz, (1974) “A Dendrite Method for
Cluster Analysis,” Communications in Statistics, vol. 3, pp.
1–27.

B. J. Capozzi and J. Vagners, (2001) “Navigating Annoying
Environments Through Evolution,” Proceedings of the 40th
IEEE Conference on Decision and Control, University of
Washington, Orlando, FL.

H. Chitsaz and S. M. LaValle, (2007) "Time-optimal paths for a
Dubins airplane," in Proc. IEEE Conf. Decision. and Control.,
USA, pp. 2379–2384.

B. Donald, P. Xavier, J. Canny, and J. Reif, (1993) “Kinodynamic
Motion Planning,” Journal of the Association for Computing
Machinery, pp. 1048–1066.

Y. Doytsher and B. Shmutter, (1994) "Digital Elevation Model of
Dead Ground," Symposium on Mapping and Geographic
Information Systems (Commission IV of the International
Society for Photogrammetry and Remote Sensing), Athens,
Georgia, USA.

F. Durand, (1999) "3D Visibility: Analytical Study and
Applications," PhD thesis, Universite Joseph Fourier,
Grenoble, France.

M. Erdmann and T. Lozano-Perez, (1987) "On multiple moving
objects," Algorithmica, Vol. 2, pp. 477–521.

V. Estivill-Castro and I. Lee, (2000) "AMOEBA: Hierarchical
Clustering Based on Spatial Proximity Using Delaunay
Diagram," In Proceedings of the 9th International Symposium
on Spatial Data Handling, Beijing, China.

P. Fiorini and Z. Shiller, (1998) "Motion planning in dynamic
environments using velocity obstacles," Int. J. Robot. Res.
vol. 17, pp. 760–772.

W. Fox, D. Burgard, and S. Thrun, (1997) "The dynamic window
approach to collision avoidance," IEEE Robotics and
Automation Magazine, vol. 4, pp. 23–33.

T. Fraichard, (1999) "Trajectory planning in a dynamic workspace:
A ’state-time space’ approach," Advanced Robotics, vol. 13,
pp. 75–94.

E. Frazzoli, M.A. Daleh, and E. Feron, (2002), "Real time motion
planning for agile autonomous vehicles," AIAA Journal of
Guidance Control and Dynamics, vol. 25, pp. 116–129.

O. Gal and Y. Doytsher, (2012) "Fast and Accurate Visibility
Computation in a 3D Urban Environment," in Proc. of the
Fourth International Conference on Advanced Geographic
Information Systems, Applications, and Services, Valencia,
Spain, pp. 105-110.

P. Arabie and L. J. Hubert, (1996) "An Overview of Combinatorial
Data Analysis," in Arabie, P., Hubert, L.J., and Soete, G.D.
(Eds.) Clustering and Classification, pp. 5-63.

O. Gal and Y. Doytsher, "Fast Visibility Analysis in 3D Procedural
Modeling Environments," in Proc. of the, 3rd International
Conference on Computing for Geospatial Research and
Applications, Washington DC, USA, 2012.

O. Gal and Y. Doytsher, (2013) "Fast Visibility in 3D Mass
Modeling Environments and Approximated Visibility
Analysis Concept Using Point Clouds Data," Int. Journal of
Advanced Computer Science, IJASci, vol. 3, no. 4, April
2013, ISSN 2251-6379.

O. Gal and Y. Doytsher, (2013) "Fast and Efficient Visible
Trajectories Planning for Dubins UAV model in 3D Built-up
Environments," Robotica, FirstView, Article pp. 1-21
Cambridge University Press 2013.

A. Gordon, (1999) Classification (2nd ed.), London: Chapman and
Hall/CRC Press.

S. Guha, R. Rastogi, and K. Shim, (1998) "CURE: An efficient
clustering algorithm for large databases," In Proceedings of
the ACM SIGMOD Conference, Seattle, WA, pp. 73-84.

M. Haklay, D. O’Sullivan, and M.T. Goodwin, (2001) "So go
down town: simulating pedestrian movement in town
centres," Environment and Planning B: Planning & Design,
vol. 28, no. 3, pp. 343-359.

D. Harel and Y. Koren, (2001) "Clustering spatial data using
random walks," In Proceedings of the 7th ACM SIGKDD,
San Francisco, CA, pp. 281-286.

J. Hartigan, (1975) "Clustering Algorithms". John Wiley & Sons,
New York, NY.

J. Hartigan and M. Wong, (1979) "Algorithm AS136: A k-means
clustering algorithm," Applied Statistics, vol. 28, pp. 100-108.

S. P. Hoogendoorn and P. H. L. Bovy, (2001) "Microscopic
pedestrian way finding and dynamics modelling," In
Schreckenberg, M., Sharma, S.D. (eds.) Pedestrian and
Evacuation Dynamics. Springer Verlag: Berlin, pp. 123-154.

D. Hsu, R. Kindel, J-C. Latombe, and S. Rock, (2000)
"Randomized kinodynamic motion planning with moving
obstacles," Algorithmics and Computational Robotics, vol. 4,
pp. 247–264.

B. Jiang, (1999) "SimPed: Simulating pedestrian flows in a virtual
urban environment," Journal of Geographic Information and
Decision Analysis, vol. 3, no. 1, pp. 21-30.

S. Karaman and E. Frazzoli, (2011) “Sampling-based algorithms
for optimal motion planning,” Int. J. Robot. Res., vol. 30, no.
7, pp. 846–894.

S. Karaman, M. Walter, A. Perez, E. Frazzoli, and S. Teller, (2011)
“Anytime motion planning using the RRT*,” in Proc. IEEE
Int. Conf. Robot. Autom., Shanghai, pp. 1478–1483, May.

L. Kaufman and P. Rousseeuw, (1990) "Finding Groups in Data:
An Introduction to Cluster Analysis," John Wiley and Sons,
New York, NY.

N.Y. Ko and R. Simmons, (1998) "The lane-curvature method for
local obstacle avoidance," In International Conference on
Intelligence Robots and Systems.

W. J. Krzanowski and Y. T. Lai, (1985) “A Criterion for
Determining the Number of Groups in a Data Set Using Sum
of Squares Clustering,” Biometrics, vol. 44, pp. 23–34.

M.P. Kwan, (2000) "Analysis of human spatial behavior in a GIS
environment: recent developments and future prospects,"
Journal of Geographical System, no. 2, pp. 85-90, 2000.

J. C, Latombe, (1990) "Robot Motion Planning,", Kluwer
Academic Press.

S. M. LaValle, (1998) "Rapidly-exploring random trees: A new
tool for path planning," TR 98-11, Computer Science Dept.,
Iowa State University.

S. M. LaValle, (2006) "Planning Algorithms," Cambridge, U.K.:
Cambridge Univ. Press.

S. M. LaValle and J. Kuffner. (1999) "Randomized kinodynamic
planning," In Proc. IEEE Int. Conf. on Robotics and
Automation, Detroit, MI, pp. 473–479.

L.R. Lewis, (2006) "Rapid Motion Planning and Autonomous
Obstacle Avoidance for Unmanned Vehicles," Master's
Thesis, Naval Postgraduate School, Monterey, CA,
December.

C. W. Lum, R. T. Rysdyk, and A. Pongpunwattana, (2006)
“Occupancy Based Map Searching Using Heterogeneous
Teams of Autonomous Vehicles,” Proceedings of the 2006
Guidance, Navigation, and Control Conference, Autonomous
Flight Systems Laboratory, Keystone, CO, August.

G.W. Milligan and M. C. Cooper, (1985) “An Examination of
Procedures for Determining the Number of Clusters in a Data
set,” Psychometrika, vol. 50, pp. 159–179.

118

International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http://www.iariajournals.org/systems_and_measurements/

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

J. Minguez and L. Montano, (2000) "Nearest diagram navigation. a
new realtime collision avoidance approach," In International
Conference on Intelligence Robots and Systems.

J. Minguez, N. Montano, L. Simeon, and R. Alami, (2002) "Global
nearest diagram navigation," In Proc. of the IEEE
International Conference on Robotics and Automation.

B. Moulin, W. Chaker, and J. Perron, (2003) "MAGS project:
Multi-Agent GeoSimulation and Crowd Simulation," Kuhn,
W., Worboys, M.F. and Timpf, S. (Eds.): LNCS 2825, pp.
151–168.

K. J. Obermeyer, (2009) “Path Planning for a UAV Performing
Reconnaissance of Static Ground Targets in Terrain,” in
Proceedings of the AIAA Guidance, Navigation, and Control
Conference, Chicago.

S. Okazaki and S. Matsushita, (1993) "A study of simulation
model for pedestrian movement with evacuation and
queuing," Proceedings of the International Conference on
Engineering for Crowd Safety, London, UK, pp. 17-18.

A.Pongpunwattana and R.T. Rysdyk, (2004) “Real-Time Planning
for Multiple Autonomous Vehicles in Dynamic Uncertain
Environments,” AIAA Journal of Aerospace Computing,
Information, and Communication, pp. 580–604.

H. Plantinga and R. Dyer, (1990) "Visibility, Occlusion, and
Aspect Graph," The International Journal of Computer
Vision, vol. 5, pp. 137-160.

J. Sasiadek and I. Duleba, (2000) "3d local trajectory planner for
uav," Journal of Intelligent and Robotic Systems, vol. 29, pp.
191–210.

V. Shaferman and T. Shima, (2008) “Co-evolution genetic
algorithm for UAV distributed tracking in urban
environments,” in ASME Conference on Engineering
Systems Design and Analysis.

T. Schelhorn, D. Sullivan, and M. Haklay, (1999) "STREETS: An
agent-based pedestrian model,".

C. Stachniss and W. Burgard, (2002) "An integrated approach to
goal directed obstacles avoidance under dynamic constrains
for dynamic environment," In International Conference on
Intelligence Robots and Systems.

R. Tibshirani, G. Walther, and T. Hastie, (2001) “Estimating the
Number of Clusters in a Dataset via the Gap Statistic,”
Journal of the Royal Statistical Society, Ser. B, vol. 32, pp.
411–423.

L. Ulrich and J. Borenstien, "Vfh+: Reliable obstacle avoidance for
fast mobile robots," In Proc. of the IEEE International
Conference on Robotics and Automation, 1998.

Abbeel, P., Ng, A.Y., (2004) "Apprenticeship learning via inverse
reinforcement learning" In: Proceedings of the twenty-first
international conference on Machine learning, ICML ’04,
ACM, New York, NY, USA.

Kuderer, M., Gulati, S., Burgard, W, (2015) "Learning driving
styles for autonomous vehicles from demonstration", In:
Proceedings of the IEEE International Conference on
Robotics & Automation (ICRA), Seattle, USA. vol. 134.

Ziebart, B., Maas, A., Bagnell, J., Dey, A., (2008) "Maximum
entropy inverse reinforcement learning", In: Proc. of the
National Conference on Artificial Intelligence (AAAI).

