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Abstract—Deep Convolutional Neural Networks (CNN) are ex-
panding their territory to many applications, including vision
processing algorithms. This is because CNNs achieve higher
accuracy compared to traditional signal processing algorithms.
For real-time vision processing, however, their high demand for
computational power and data movement limits their applicabil-
ity to battery-powered devices. For such applications that require
both real-time processing and power efficiency, hardware accel-
erators are inevitable in meeting the requirements. Recent CNN
frameworks, such as SqueezeNet and GoogLeNet, necessitate a re-
design of hardware accelerators, because their irregular architec-
tures cannot be supported efficiently by traditional hardware ac-
celerators. In this paper, we propose a novel hardware accelerator
for advanced CNNs aimed at realizing real-time vision processing
with high accuracy. The proposed design employs data-driven
scheduling that enables support for irregular CNN architectures
without run-time reconfiguration, and it offers high scalability
through its modular design concept. Specifically, the design’s on-
chip memory management and on-chip communication fabric are
tailored to CNNs. As a result, the new accelerator completes all
layers of SqueezeNet and GoogLeNet in 14.30 ms and 27.12 ms at
2.47 W and 2.51 W, respectively, with 64 processing elements. The
performance offered by the proposed accelerator is comparable
to high-performance FPGA-based approaches (that achieve 1.06
to 262.9 ms at 25 to 58 W), albeit with significantly lower power
consumption. If the hardware budget allows, these latencies can
be further reduced to 6.71 ms and 11.70 ms, respectively, with
256 processing elements. In comparison, the latency reported by
existing architectures executing large-scale deep CNNs ranges
from 115.3 ms to 4309.5 ms.

Keywords—Convolutional neural network; Hardware accelera-
tor; On-chip memory optimization; On-chip communication

I. INTRODUCTION

As unmanned vehicles and robotics keep evolving, there is
a growing demand for power-efficient real-time vision process-
ing. While deep Convolutional Neural Networks (CNN) offer
high accuracy and are applicable to various vision processing
algorithms, they are very challenging to employ for real-time
vision processing, because of their high demand on compu-
tation and data movement [1]. It is well known that general-
purpose processors cannot support CNN efficiently, because
of their specific computational patterns [2]. Thus, various
types of accelerators have been proposed based on Graphics
Processing Units (GPU) [3], [4], Multiprocessor Systems-on-
Chip (MPSoC) [5], [6], reconfigurable architectures [7]—[9],
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Field-Programmable Gate Arrays (FPGA) [2], [10], [11], ana-
log circuits [12], in-memory computation [13], and dedicated
hardware acceleration through Application Specific Integrated
Circuits (ASIC) [14]-[17].

A typical CNN architecture consists of a stack of con-
volutional and pooling layers, followed by classifier layers, as
shown in Figure 1(a). To realize real-time vision processing, all
layers of the CNN should run on an accelerator. Otherwise, the
data transfer time between the host and the accelerator cancels
out the acceleration in the computation itself. The challenge is
in the processing of the classifier layer, where all neurons are
fully connected. Award-winning high-accuracy CNNs (such as
AlexNet [18], which won the 2012 ImageNet contest) usually
require a huge number of weights (up to 100s of MB [13])
and weights are not reused. The weights should be stored in
an external memory (e.g., DRAM), and the performance is
bounded by the memory access time [13].

This challenge is being addressed by recent CNN architec-
tures. Two representative examples are SqueezeNet [19] and
GoogLeNet [20]. SqueezeNet offers comparable accuracy to
AlexNet, but it uses 510 times fewer weights. GoogLeNet
took the first place in the 2014 ILSVRC Classification contest.
GoogLeNet employs narrow layers to minimize the number
of weights, while offering high accuracy by using a large
number of such narrow layers (more than 100). As shown in
Figures 1(b) and (c), the SqueezeNet [19] and GoogLeNet [20]
architectures are not as regular as the traditional CNN ar-
chitecture of Figure 1(a). AlexNet [18] and VGG-16 [21]
are often used to evaluate prior work. Nevertheless, if the
goal is to achieve high-accuracy vision processing, we believe
SqueezeNet and GoogLeNet are good substitutes, because they
offer comparable accuracy and are better suited to hardware
acceleration due to their use of fewer weights.

To realize real-time vision processing, all layers of the
CNN should run on the accelerator seamlessly. For example,
Eyeriss [14], [22] requires reconfiguration of the accelerator
for each layer. It takes 0.1 ms to configure one layer. If
there are 100 layers, it takes 10 ms only for reconfiguration.
ShiDianNao [15] addresses this by using hierarchical finite
state machines. However, it is not proven with large-scale
CNNS, such as SqueezeNet and GoogLeNet. Approaches using
GPUs and FPGAs can execute all layers of the CNN quickly,
but they consume an order of magnitude more power than
ASIC designs. DaDianNao [23] offers low latency for all
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Figure 1. Three different types of CNN architectures. The left one represents the traditional (generic) approach, while the other two represent two existing
state-of-the-art approaches.

the layers of large-scale CNNs, but it consumes as much
power as an FPGA, which may not be suitable for power-
efficient vision processing. In general, an FPGA-based design
cannot simply be implemented in an ASIC to boost power
efficiency, due to the fundamental differences in the underlying
design principles. Since the FPGA is programmable, the design
can typically be customized to suit a particular CNN. This
customization is not feasible in an ASIC. To support advanced
CNN s like SqueezeNet and GoogleNet in ASIC for real-time
vision processing, we need a flexible — yet power-efficient —
design that does not require run-time reconfiguration.

The proposed accelerator aims to achieve this goal by
employing data-driven scheduling and modular design. These
two key features constitute the novel contributions of this work,
since they enable the handling of advanced CNNs without the
need for reconfiguration. The operation and destination of a
Processing Element (PE) is determined at run-time upon re-
ceipt of data. The data is accompanied by metadata indicating
the meaning of the data. By interpreting the metadata, a PE
determines its schedule at run-time, which makes it easier to
handle irregular CNN architectures. To achieve scalability, a
modular design concept is employed with no shared resources
and global synchronization being assumed. Each PE can only
access its own local memory, and communicates only with its
neighbors. Modular design facilitates deep pipelining, which
enables further latency improvements by increasing the clock
frequency. The accelerator has been enhanced from its orig-
inal design [1] by employing on-chip memory optimization
techniques, such as a sliding window and prefetching. As a
result, it is demonstrated by experiments that the proposed
accelerator executes all layers of SqueezeNet and Googl.eNet
in 14.30 and 27.12 million cycles with 64 processing elements.
Assuming a 1 GHz clock speed, these latencies correspond
to 14.30 ms and 27.12 ms, respectively, which is comparable
to high-performance FPGA-based approaches (range of 1.06
ms to 262.9 ms [24], [25]). It is estimated that the proposed
accelerator consumes 2.47 W and 2.51 W for SqueezeNet and
GoogleNet, respectively, which may be higher than power-
efficient ASIC-based approaches (consuming 0.278 to 0.320

W [15], [22]), but it is significantly lower than FPGA-based
approaches (that consume 25 to 58 W [10], [24], [25]) and
DaDianNao [23] (that consumes 15.97 W).

The rest of this paper is organized as follows: Section II
discusses related work. After presenting the functional re-
quirements and the architecture of the proposed accelerator in
Section III, the details of the employed data-driven scheduling
are explained in Section IV. In Section V, other salient
features of the accelerator are described. Section VI provides
experimental results, and Section VII concludes the paper.

II. BACKGROUND AND RELATED WORK

Research in neural networks has a long history. Over
the last several years, various types of approaches for the
acceleration of CNNs have been studied. The design proposed
in this paper relies on a fully digital ASIC implementation,
using existing standard CMOS technology. We chose this
approach, because it is practical (especially as compared to in-
memory computation [13] and 3-D memory [26]), and we can
potentially integrate a large number of PEs in a power-efficient
manner (compared to FPGA implementations [2], [10]), as also
acknowledged by [27]. The proposed accelerator can work
with approximation [4], [28], compression [29], [30], and it
can exploit the presence of zero weights [31]-[33].

There is a trade-off between latency and power consump-
tion among these accelerators. The GPU approach achieves
0.19 ms latency at 227 W [34], while FPGAs offer a range
of 1.06 ms to 262.9 ms at 25 W to 58 W [10], [24], [25].
These values are measured under AlexNet [18] or VGG-
16 [21]. On the contrary, dedicated hardware accelerators
implemented in ASIC target power-efficient implementations
of small-scale CNNs, or the convolutional layers of large-scale
CNNss [15], [27], [35], [36]. For example, Eyeriss [14] executes
the convolutional layers of AlexNet [18] in 115.3 ms at 0.278
W [22].

Compared to two state-of-the-art CNN accelerators, the
proposed accelerator offers lower latency and better scalability
with the number of processing elements and clock frequency.
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Compared to Eyeriss [14], the proposed accelerator offers sig-
nificantly lower latency through its modular design (that allows
for higher clock frequencies), weight prefetching (optimized
memory access patterns to DRAM), and by using larger on-
chip memory. Additionally, the data-driven scheduling enables
seamless execution of all layers without reconfiguration. ShiD-
ianNao [15] also supports seamless execution of all layers,
by storing all weights and feature maps in on-chip memory.
However, the ShiDianNao [15] architecture was evaluated only
with small-scale CNNs whose weights and feature map sizes
fit into on-chip memory. Furthermore, both Eyeriss [14] and
ShiDianNao [15] employ global shared memory, which renders
their scalability questionable. In contrast, the modular design
concept of the architecture proposed in this work enables
high clock frequencies through pipelining. Even though the
proposed accelerator requires more hardware and memory
space to accommodate its data-driven scheduling and modular
design, it is still significantly more power-efficient than FPGA-
based approaches.

III. OVERVIEW OF THE PROPOSED ACCELERATOR
A. Functional Requirements

The current implementation of the proposed accelerator
supports three types of layers, and four types of layer con-
nections. The four layers are: (1) convolutional layer, (2) max
pooling layer, and (3) average pooling layer. The classifier
layer can be implemented as a special case of the convolutional
layer. SqeezeNet and GoogleNet still use the classifier layer,
even though it is not as big as those in traditional CNNs. The
pseudo codes of the three layers are shown in Figure 2.

To support a traditional/generic CNN, only one type of
layer connection is enough, which is shown in Figure 3(a).
To support more advanced CNN architectures, the proposed
accelerator supports three other types of connections. The
feature maps of a layer can be split and sent to different layers,
as shown in Figure 3(b), and all feature maps can be sent to
multiple layers, as shown in Figure 3(c). Finally, output feature
maps of different layers can be concatenated as input feature
maps of a layer, as shown in Figure 3(d).

The data-driven scheduling and modular design make it
easy to support various types of layers and connections. Since
the abovementioned three layers and four connections are
enough to support SqueezeNet and GoogLeNet, the proposed
accelerator only implements these for now, but it can be easily
extended to cover other types of layers and connections. It
is also possible to use heterogeneous PEs. These extension
possibilities — and more — of the accelerator will be explored
in our future work.

B. Overall Architecture

For real-time vision processing, the speed of the feed-
forward process is more important than that of the backward
process, because the backward process is usually performed
off-line during training. Thus, the proposed accelerator is
focused on accelerating the feed-forward process.

Figure 4 illustrates the architecture of the proposed acceler-
ator and presents the high-level details of one PE module. We
assume that the accelerator is implemented as a separate chip.
It receives inputs from and sends outputs to the host through
a standard bus interface. It has its own main memory (e.g.,
DRAM), which is used to store weights.
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for (row=0; row<R; row++)
for (col=0; col<C; col++)
for (ofm=0; ofm<M; ofm++)
for (ifm=0; ifm<N; ifm++)
for (i=0; i<K; i++)
for (3=0; Jj<K; j++) {
y = Sxrow+i;
x = S*col+j;
feature_map[layer] [ofm] [row] [col] +=
weights[ofm] [ifm] [1][J] =
feature_map[prev_layer] [ifm] [y] [x];

}

(a) Convolutional layer

for (row=0; row<R; row++)
for (col=0; col<C; col++)
for (ofm=0; ofm<M; ofm++)
for (i=0; i<K; i++)
for (3=0; 3<K; j++) {
y = S*rowti;
x = S*col+j;
if (feature_map[layer] [ofm] [row] [col] <
feature_map[prev_layer] [ofm] [y] [x])
feature_map[layer] [ofm] [row] [col] =
feature_map[prev_layer] [ofm] [y] [x];

(b) Max pooling layer

for (row=0; row<R; row++)
for (col=0; col<C; col++)
for (ofm=0; ofm<M; ofm++) {
for (1i=0; 1i<K; i++)
for (3=0; 3<K; j++) {
y = S*rowti;
X = S*col+j;
feature_map[layer] [ofm] [row] [col] +=
feature_map[prev_layer] [ofm] [y] [x];
}
feature_map[layer] [ofm] [row] [col] /= (K*K);

}

(c) Average pooling layer

Figure 2. Pseudo codes of the 3 layers supported by the proposed
accelerator. [R: Number of rows of the output feature map; C: Number of
columns of the output feature map; M: Number of output feature maps; N:
Number of input feature maps; K: Filter size; S: Stride. All of the R, C, M,

N, K, and S are of the current layer.]
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Figure 3. The 4 different types of layer connections supported by the
proposed CNN accelerator that can be used to implement various CNN

architectures.

The proposed accelerator consists of a number of PEs. All
PEs are the same, but one of them is designated as an interface
PE, which interacts with the host and memory. The PEs are
connected by 1D rings. Two rings are used for data (activation)
transfer, and the third ring is used for weight prefetching. The
details of the communication architecture will be explained in
Section V-B.

A PE consists of a communication interface, matching
logic, functional units (multiplier and adder), an output Finite
State Machine (FSM), and local memories for weights and
feature maps. The matching logic determines whether the
incoming activation is assigned to the PE or not. The matching
logic makes a decision based on the mapping information,
which is presented in the next section (Section IV-A). If the

2020, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



International Journal on Advances in Systems and Measurements, vol 13 no 1 & 2, year 2020, http.//www.iariajournals.org/systems_and_measurements/

134
.’ Mer‘nory ,."" ———1 Matching B
Memor Memor: . ” Logic I : =
‘ y ‘ ‘ Y ‘ L,  Host| ':t AE A Config
‘ ‘ o’ Memory
CNN .
Host Accelerator i 3 AE P '\\//|Ve|ght
. emory
\\ Pe FE Pe Feature Map
Memory

CNN Accelerator

PE (Processing Element)

Figure 4. The architecture of the proposed accelerator and a high-level overview of one processing element. The pseudo codes of the ‘Matching Logic’ and the
‘Scheduler’ modules are presented, respectively, in Figure 6 and Figure 8.
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Figure 5. Examples of message formats, including the pertinent metadata.
[ec: Escape channel; ifm: Input feature map number; ofm: Output feature
map number.]

incoming activation is accepted, it is pushed to a queue and
processed by the functional unit. If the queue is full, the
incoming activation cannot be accepted, even though it is
destined to this PE. By interpreting the metadata accompanied
by the activation, the corresponding functional unit is triggered.
The result is stored in the local feature map memory, and
transferred to other PEs when the computation is done.

IV. DATA-DRIVEN SCHEDULING

The heart of the proposed accelerator and its key nov-
elty is data-driven scheduling. It enables the execution of
advanced CNN architectures without reconfiguration. Each PE
determines whether to accept an activation and the subsequent
schedule of operations, based on metadata and the CNN’s
configuration. The metadata is accompanied by the activation
coming from the interconnection network. The CNN config-
uration is transferred from the host through the interface PE,
and stored in the local configuration memory.

Figure 5 shows examples of the metadata. The format of
the metadata depends on the type of data. For example, for
activations, the metadata includes the layer, feature map, and
the position (row and column) of the activation. To make
the notation consistent with the pseudo code in Figure 2, the
position of an activation in the input feature map is denoted as
y and x, that of a neuron in the output feature map is denoted
as row and col, and that of a weight in a filter is denoted as
i and j throughout this proposal.

The configuration of layers is broadcasted to all PEs at
initialization time, and it is stored in the local configuration
memory of each PE. The configuration of one layer is shown
in Table I.

The parameters R, C, M, N, K, and S are basic parameters
of the CNN. Specifically, O and F are used to specify the
connection, while F*t*"* and F*? are used to support splits,
and F*"ft is used to support concatenation. For example, if
a layer has 64 output feature maps, and 32 of them are sent

TABLE I. Configuration of a layer to be stored in configuration memory.

Parameter Description
R Number of rows of an output feature map
c Number of columns of an output feature map
M Number of output feature maps
N Number of input feature maps
K Filter size
S Stride
o Number of next layers connected with this layer
Thn The layer number of n — th connected layer
Fstart Start feature map number of the n — th connected layer
FT‘;’"d End feature map number of the n — th connected layer
Fj’”f ¢ Feature map number shift of the n — th connected layer

to layer 1, and the remaining 32 are sent to layer 2, then
0=2, Ty=1, F§'*r'=0, Fg"i=31, F3""/'=0, Ty=2, Fyter'=32,
Ffnd=63, and thlft=-32. In this case, Ff}”ft is used to
convert the feature map numbers 32—63 of the current layer to
the feature map numbers 0-31 of the next layer. In a similar
way, when feature maps of multiple layers are concatenated,
the feature map numbers can be adjusted to become linear, by
using the F'*"*/* parameter.

The rest of this section focuses on how data-driven schedul-
ing is implemented.

A. Mapping

In the proposed accelerator architecture, the granularity of
mapping is a feature map. A PE processes all neurons in its
assigned feature maps. In this way, we can avoid the sharing
of weights among PEs, which facilitates modular design. In
other words, if a PE processes all the neurons of its assigned
feature maps, it can store their weights in its local memory and
other PEs do not need to access them. However, this mapping
strategy may incur load imbalance, because it is inherently
coarse-grained. The issue of load imbalance will be discussed
in Section VI.

Feature maps are assigned as a combination of input and
output feature maps. As a toy example, let us suppose a layer
has 2 input feature maps (ifm0 and ifml), and 2 output
feature maps (ofm0 and ofml). If there are 2 PEs, one
PE is assigned to ifmO-ofm0 and ifml-ofm0, and the
other PE is assigned to ifm0O-ofml and ifml-ofml. In
other words, each PE processes all input feature maps of its
assigned output feature map. If there are 4 PEs, feature maps
are spread out as PEO to ifm0-o0fm0, PEl to ifml-ofm0,
PE2 to ifm0—-ofml, and PE3 to i fml1-ofml. PEO and PE1
produce partial sums of neurons for ofm0, and one of them
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ofm_start =

index_start $ M <= ifm ?

index_start / M : index_start / M + 1;
ofm_end =

ifm <= index_end $ M ?

index_end / M : index_end / M - 1;
if (ofm_end >= ofm_start)

activation accepted;

Figure 6. The pseudo code of the matching logic. The code determines if an
activation should be accepted or not.

must accumulate them. In the proposed accelerator, the PE
processing the last input feature map of an output feature map
is responsible to collect the partial sums from other PEs that are
assigned to the same output feature map. In our toy example,
PEO should send its partial sums to PEI, so that PEl can
collect them and generate the final ofm0O, while PE2 should
send its partial sums to PE3, so that PE3 can generate the final
ofml.

To generalize this concept, we compute a feature map
index for each combination of input and output feature maps,
and a range of indices is assigned to PEs. The feature map
index is computed as index = ifm + ofm X M, where
ifm denotes the input feature map number, ofm is the output
feature map number, and M is the total number of input feature
maps. In the above toy example, the index of 1 fm0-ofm0 is
0, ifml-ofm0 is 1, ifm0-ofml is 2, and ifml-ofml is
3. If there are 2 PEs, PEO is assigned to the range of indices
from O to 1, and PE1 to indices from 2 to 3. If there are 3
PEs, PEO is assigned to 0 and 1, PEI to 2, and PE2 to 3.
Thus, feature maps are not evenly distributed. If there are 4
PEs, each PE is assigned to each index.

The matching logic accepts an incoming activation, if its
feature map falls within the range of the assigned indices.
Recall that an activation is accompanied by metadata that
includes the input feature map number, as shown in Figure 5.
The pseudo code in Figure 6 shows how to determine if an acti-
vation, whose index is i fm, should be accepted or not, given a
range of indices from index_start to index_end. Again,
M indicates the total number of input feature maps.

Even if the activation is accepted, it should be forwarded
to the next PE, because it may be used by the next PE.
In fact, if there is a high enough number of output feature
maps, as compared to the number of PEs, all PEs would
need all input feature maps. Coming back to the toy example,
let us suppose there are 2 PEs. PEO processes ifm0-ofm0
and ifml-ofm0O, while PEl processes ifmO-ofml and
ifml-ofml. Thus, both PEO and PE1 need all input feature
maps (1fm0O and ifml). Therefore, we designed the accel-
erator in such a way that activations are broadcast, and PEs
determine if they are to be accepted. This is in contrast to
sending activations to specific target destinations.

Due to resource constraints, an activation may not be
accepted, even if it is destined to the particular PE. Because of
this, we need to maintain two types of counters. One counter
is to determine when the activation should be removed from
the network. When the activation is injected into the network,
the total number of output feature maps is attached to the
metadata. Whenever a PE accepts the activation, it decrements
this counter by the number of assigned output feature maps and
forwards it to the next PE. When this counter reaches zero, it
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Figure 7. Illustration of how an activation is used for multiple filters.

is no longer forwarded (i.e., it is removed from the network).

The other type of counter is for determining if the activation
has already been accepted, or not. Because a ring is used as
a communication fabric in the proposed accelerator, the same
activation may arrive at the PE more than once, if it is not
removed from the network. To check for this, a PE maintains
a counter for each input feature map of a layer. The activations
of an input feature map are accepted in a pre-determined order.
In our implementation, all columns of a row are accepted in an
increasing order of their column index, and those of the next
rows are accepted in the same way. The counter counts how
many activations of the input feature map have been accepted.
Since activations are accepted in a specific order, if a PE
knows how many have been accepted, the PE can determine
what should come next. The activation is accepted only if the
incoming activation is what the PE is expecting. In this way,
the PE avoids accepting the same activation more than once.

In case of the max and average pooling layers, the number
of input and output feature maps is always the same. An output
feature map only needs one corresponding input feature map.
Thus, those PEs that generate the final output feature map
of the previous layer (which is the input feature map of the
pooling layer) are assigned to process the corresponding output
feature map of the pooling layer. In this way, we can eliminate
unnecessary activation transfers.

B. Scheduling

Once an activation is accepted, all operations that need
the activation are scheduled. To compute a neuron, its neigh-
boring activations are required. The exact number of required
activations depends on the size of a filter. In other words, an
activation should be used by multiple filters.

Figure 7 shows an example. Let us suppose the filter size
is 2 by 2 and the stride is 1. To compute a neuron at [1][1] of
an output feature map, we need activations (neurons of input
feature map) at [1][1], [1][2], [2][1], and [2][2]. Similarly,
neurons at [1][2], [2][1], and [2][2] of the output feature map
need the same activation at [2][2] of the input feature map. If
multiple output feature maps are assigned to the PE, neurons
in other feature maps also need the incoming activation.

The pseudo code in Figure 8 shows how Multiply-And-
Accumulate (MAC) operations are scheduled for an incoming
activation. The ofm_start and ofm_end parameters are
computed as shown in Figure 6. As shown in Figure 5, the
position of the activation is given by y and x. The same mech-
anism is used for pooling layers. Instead of MAC operations,
comparison (max pooling) or accumulation (average pooling)
operations are scheduled.

The pseudo code is implemented as an FSM in the func-
tional units. The FSM pops an activation from the queue lo-
cated in-between the functional units and the matching logic in
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for (ofm=ofm_start; ofm<=ofm_end; ofm++)
for (row=MIN(y/S, R-1); row>(y-K)/S && row>=0; row--)

for (col=MIN (x/S, C-1); col>(x-K)/S && col>=0; col--) {
i = y-rowx*S;
j = x-colxS;

feature_map[layer] [ofm] [row] [col] +=
weights[ofm] [1fm] [1] []j] =
activation

}

Figure 8. The schedule of operations when an activation is accepted. [R:
Number of rows of the output feature map; C: Number of columns of the
output feature map; K: Filter size; S: Stride. All of the R, C, K, and S are of
the current layer.]

Figure 4. Once the FSM finishes all the scheduled operations,
it pops the next activation from the queue. A functional unit
accesses the weight memory and the feature map memory to
perform its operation, and the result is stored in the feature
map memory. To determine if accumulation is finished for one
neuron, a counter is maintained for every neuron in the output
feature map. The counter is stored in the feature map memory.
The overhead of the memory will be discussed in Section VI.

V. ACCELERATOR DESIGN

This section presents the salient features of the proposed
CNN accelerator that support data-driven scheduling.

A. Memory Optimization

Since on-chip memory is usually much smaller compared
to the size of the weights and feature maps, a sliding window
technique is adopted to manage on-chip memories. This tech-
nique is used for both the weight and feature map memories.
Once all computations in a layer are complete, the window
of memory slides so that the completed layer is freed from
the memory, and the next layer is allocated. The PEs are not
synchronized for the sliding process. Each PE decides to slide
the memory independently from others.

In the case of the weight memory, a prefetching technique
is used. All weights are stored in the external memory and
they are prefetched while computation is progressing. Weights
are stored in the order of layers and are always accessed
sequentially. Thus, weights can be prefetched by taking full
advantage of the throughput. Initially, the weight memory
is allocated to the first couple of layers (the exact number
depends on the weight size and memory size). As an example,
let us suppose 2 layers are initially allocated. Before starting
the computation, the weight memory is filled with weights of
the allocated layers. Once the first layer completes, it is freed,
and the third layer is allocated. While the PE is working on
the second layer (using the weights of the second layer in the
memory), the weights of the third layer are prefetched.

A memory needs to be large enough to store at least
two layers: one for the source layer, and the other for the
destination layer of the activation transfer. The destination
layer of the activation transfer may not be the right next layer.
As illustrated in Figure 9, there may be parallel layers in
the CNN architecture. The proposed accelerator processes one
layer at a time. In the example of Figure 9, the activations
from layer 2 should be sent to layer 4. Thus, the weight and
feature map memories need to retain memory space for layers
2 through 4. The algorithm to determine the minimum size of
memory is shown in Figure 10.
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Figure 9. The minimum memory size requirement if parallel layers exist.

~

Minimum Memory Size

max = 0;
for (1=0; 1<L; 1++) {
total_size=0;
for all destination layers of layer 1
last = find the last destination layer;
for (n=1; n<=last; n++)
total_size += layer size of layer n;
if (max < total_size)
max = total_size;

return max;

Figure 10. Pseudo code for determining the minimum memory size for each
PE. The same pseudo code is used to determine the minimum size of the
weight memory and the feature map memory. [L: Total number of layers.]

The layer size depends on the type of memory. In case of
the weight memory, the size of a layer is equal to the filter
size X number of assigned feature map indices X size of one
weight. Recall that the feature map index is a combination of
input and output feature map numbers. The size of one weight
depends on the number representation. We may use a 16-bit
fixed-point number, or a 6-bit log value [28]. The proposed
accelerator is not tied to any particular number representation.
The feature map memory has two parts. One part is for output
feature maps and the other is for counters. The layer size of
output feature maps is equal to the number of neurons of one
output feature map x number of assigned output feature maps
X size of one neuron. The size of one neuron also depends
on the number representation. Similarly, the layer size of the
counters is equal to the number of neurons of one output
feature map x number of assigned output feature maps x
size of one counter. The size of one counter is log of the filter
size X the number of input feature maps.

B. Communication Architecture

The proposed accelerator supports three types of commu-
nication patterns.

e Broadcasting: Since activations to convolutional layers are
used by many PEs (often all PEs), they are broadcast.
However, activations to pooling layers are not injected into
the network, because they are processed by the same PE.

e Single-source unicasting: Weights are always sent from
the interface PE. Since weights are not shared by PEs, one
weight is sent to one PE (unicasting). Other initialization
messages are also always sent from the interface PE.

o Peer-to-peer unicasting: The majority of traffic falls under
the previous two types. If there are not enough output feature
maps compared to the number of PEs, multiple PEs are
assigned to the same output feature map, and partial sums
need to be sent to a designated PE.

The traffic patterns are not required to preserve the message
delivery order, i.e., the order of message arrival can be different
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Figure 11. A logical view of the communication architecture of the proposed
CNN accelerator. An example is given to illustrate how to minimize the hop
distance under peer-to-peer unicasting.

from the order of departure for the same source-destination
pair. Considering these patterns, we chose a uni-directional 1-D
ring as a communication fabric, because it costs less than other
packet-based Networks-on-Chip (NoC) [37]. The logical view
of the communication architecture is shown in Figure 11. The
topology is similar to that of Chain-NN [38], but we employ
a ring instead of a systolic chain.

In the ring architecture, each PE interfaces with a ring stop.
A message in the ring is ejected if it is destined for the local
PE. Otherwise, it is forwarded to the next hop. A new message
can be injected from the PE only if there is no message in the
ring stop.

The ranges of feature map indices are assigned in such a
way as to minimize the hop distance of peer-to-peer unicasting.
As mentioned in Section I'V-A, the PE processing the last input
feature map of an output feature map is responsible to collect
the partial sums from other PEs that are assigned to the same
output feature map. If feature map indices are assigned in
the same order as the topological order in the ring, the hop
distance can be minimized. An example is given in Figure 11.
In this example, ofm0 is assigned to PEO and PE1. Since PE1
processes the last input feature map, ifml, it is designated
to accumulate the partial sums and generate the final output.
Since PE1 is located after PEO in the ring topology, the partial
sum sent from PEO to PE1 takes only one hop.

To avoid protocol-level deadlocks, the concept of an escape
channel is adopted. The ring itself does not cause network-
level deadlocks, but because of the cyclic dependency caused
by the upper-level protocol, deadlocks may occur. If the weight
and feature map memories were infinite, there would be no
chance of deadlocks, because the cyclic dependency would be
broken by the memory. However, because the memory employs
sliding, a later layer can only start when a previous layer
completes, which forms a dependency from a later layer to
a previous layer.

For example, let us suppose a CNN with 3 sequential layers
and a PE have a feature map memory that is only enough to
store two layers. At a certain moment, in PEQ, layer 1 has
completed, and activations are being transferred from layer 1 to
layer 2. Layer 1 can be freed only after the transfer is complete,
and layer 3 can then be allocated. In the proposed accelerator,
PEs are not globally synchronized. Thus, another PE, say
PE1, may have completed layer 2 and proceeded to layer 3.
PE1 starts sending activations from layer 2 to layer 3. PEO is
also supposed to accept these activations for layer 3, but PEO
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Figure 12. Employing escape channels (‘ec’) to avoid protocol-level
deadlocks. Escape channels are implemented as slots.

cannot, because the memory is not available. These activations
can be removed from the ring only if all the assigned PEs
accept them. Thus, until PEO accepts these activations, they
remain in the ring. The ring architecture employed by the
proposed accelerator allows injection only if there is room in
the ring. If the ring becomes full with these activations (from
layer 2 to layer 3), PEO may indefinitely not be able to receive
activations from layer 1 to layer 2. This degenerate situation
forms a cyclic dependency and causes deadlock.

To address this issue, an escape channel is introduced, and
the escape channel is implemented as slots. As illustrated in
Figure 12, slots are assigned and they are rotated in the ring.
Each escape channel has one dedicated slot, and other slots can
be used by all escape channels. Escape channels are assigned to
layers. A different layer has a different escape channel. When
an activation is generated, its escape channel is identified by
the layer and put into the metadata, as shown in Figure 5.
When an activation is to be injected, it can be injected only if
its layer’s escape channel matches with the slot. In this way,
we can avoid the protocol-level deadlocks at a minimal cost.

The number of escape channels cannot be more than the
number of ring stops (i.e., the number of PEs). In case of a
deep CNN (e.g., GooglLeNet), the number of layers may be
more than 100. A convolutional layer may need two escape
channels, because it may need to send partial sums. Therefore,
the number of escape channels should be optimized.

Since not all layers are active at a given time, we can reuse
escape channels for the layers whose lifetime does not overlap.
In fact, because of the data dependency between layers, no
more than 3 layers can be processed at the same time. For
example, let us suppose layer 1 is connected to layer 3 and
layer 3 is connected to layer 5. Because there might be parallel
layers, a layer may not be connected to the right next layer. The
PEs are finished with layer 3 only if all activations are received
from layer 1. Since the PEs are not globally synchronized, one
of them may finish earlier than others and start layer 5. At
this moment layers 1, 3, and 5 are active. However, because
of data dependencies, no PE can process the layer after layer 5
until layer 3 completes. Since there are parallel layers between
layers 1 and 5, the minimum number of escape channels is 10
in this case (2 of each layer times 5 layers), if all of the 5
layers are convolutional layers. Pooling layers do not need
escape channels, because their activations are not injected into
the network.
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TABLE II. The default simulation parameters used in all experiments.

Parameter SqueezeNet [ GoogLeNet
Number of PEs 64

Average memory access cycle 1

Pipeline stages of communication channel 1

Pipeline stages of functional units 1

Queue depth 16

Number of rings 3
Configuration memory size 0.021 MB 0.092 MB
Weight memory size 1.289 MB 4.119 MB
Feature map memory size 9.132 MB 3.333 MB
Bit width of one activation ring 68 71
Bit width of the weight ring 58 61
Number of escape channels 10 46

TABLE III. Number of cycles required to execute all layers of the CNN.

CNN Number of cycles Execution time™
SqeezeNet [19] 14,303,612 14.30 ms
GoogLeNet [20] 27,122,439 27.12 ms

* 1 GHz clock frequency is assumed.

VI. EVALUATION
A. Experimental Setup

We developed a cycle-level in-house simulator using Sys-
temC [39]. Since it is an architecture-level simulator, detailed
analysis of the hardware cost is not available. However, we will
discuss pipelining, which is related to clock speed, and the on-
chip memory size, which has the most significant contribution
to the hardware cost of the proposed accelerator. The default
simulation parameters are shown in Table II.

The proposed accelerator can take full advantage of the
DRAM bandwidth, because the access pattern is always se-
quential. All feature maps are stored in the on-chip memory by
adopting a sliding window technique, and the external DRAM
is used only for weights. Since weights are prefetched in the
order of layers, there is no need for random accesses to DRAM.
Assuming the proposed accelerator runs at 1 GHz, then a
2 GB/s throughput is required to fetch one weight (16 bits)
per cycle. According to the DDR4 standard, the maximum
throughput can be up to 25.6 GB/s. Therefore, the DRAM
throughput is high enough to easily supply one weight every
cycle.

B. Performance Analysis

Table III shows the number of cycles required to execute all
layers of SqueezeNet and GoogleNet. Under the assumption
that the proposed accelerator runs at 1 GHz (since ShiDian-
Nao [15] also runs at 1 GHz), these results correspond to 14.30
ms and 27.12 ms for SqueezeNet and GoogLeNet, respectively.

Even though a direct comparison may not be meaningful
due to fundamental differences in the design goals (low power
vs. low latency) and benchmark (different CNNs), Eyeriss [22]
is reported to execute the convolutional layers of AlexNet in
115.3 ms, and the convolutional layers of VGG-16 in 4309.5
ms. While a GPU executes all layers of these CNNs in 0.19
ms, FPGAs require 1.06 ms to 262.9 ms [10], [24], [25], [34].
The performance of the proposed accelerator is comparable to
FPGA-based techniques. DaDianNao [23] offers even lower
latency, but its power consumption is comparable to FPGA-
based techniques. This is because it targets high-performance
implementations supporting all the layers of large-scale CNNs
and both the forward and backward processing steps.
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Figure 13. The number of pipeline stages does not have significant impact
on the number of cycles required to complete the execution of the CNN.
Thus, the performance of the proposed accelerator can potentially be
enhanced by employing even higher clock frequencies.

It should also be noted that the proposed accelerator offers
flexibility in that it can support SqueezeNet and Googl.eNet
without run-time reconfiguration. Since SqueezeNet and
GoogLeNet offer comparable accuracy with AlexNet and
VGG-16, we believe they are good alternatives for power-
efficient real-time vision processing.

On the other hand, ShiDianNao [15] reports 0.047 ms to
execute all layers of ConvNN [40]. However, ConvNN is much
smaller. For example, GooglLeNet requires 1502 million MAC
operations, whereas ConvNN only needs 0.6 million. While it
demonstrates an efficient implementation of small-scale CNNss,
it is not proven with large-scale CNNs for high-accuracy vision
processing algorithms. Another previous work [35] is reported
to execute a particular CNN in 20.55 ms, but said CNN is also
small (20.81 million operations).

C. Scalability Analysis

If the budget allows, it is possible to further enhance
the performance of the proposed accelerator by increasing
the number of pipeline stages and the number of PEs. Fig-
ure 13 shows normalized number of cycles for SqueezeNet
and GooglLeNet when the number of pipeline stages of the
communication channel and the functional unit changes. In
case of SqgeezeNet, when the number of stages in the com-
munication channel increases, there is a slight increase in the
number of cycles. However, the increase is only 2.41% when
the number of pipeline stages increases from 1 to 8.

In the case of pipelining the functional units, the pipeline
may stall because of data hazards. However, all operations
scheduled by an accepted activation are independent, because
the operations are for different neurons. Data hazards happen
only if there are overlapped neurons in the scheduled opera-
tions triggered by different activations. This probability is very
low for convolutional layers. Even though the probability is
relatively high for pooling layers, most of the cycles in the
CNN are spent on convolutional layers. Therefore, the data
hazards do not have significant impact on the number of cycles.

Figure 14 shows the normalized execution time and uti-
lization rate when the number of PEs increases, up to 256.
The execution time keeps decreasing and reaches 6.71 ms and
11.70 ms for SqueezeNet and GoogleNet, respectively, when
the number of PEs is 256. However, the utilization rate also
decreases from 88.35% to 47.47% (SqueezeNet), and from
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Figure 15. A utilization drop is observed in-between layers. This is
attributed to load imbalance among the PEs.

81.03% to 47.10% (GooglLeNet). We found that this is not
due to lack of scalability, but due to load imbalance.

Figure 15 shows the utilization rate over time for 64 and
256 PEs. As shown in this Figure, the utilization rate often hits
maximum (100%) even when 256 PEs are used, which means
the proposed accelerator is scalable in terms of the number
of PEs. Comparing (a) versus (b), and (c) versus (d), we can
observe a utilization drop, which is more frequent with 256
PEs than 64 PEs. The utilization drop is observed in-between
layers. Though no global synchronization is assumed, the PEs
cannot proceed to the next layer until other PEs finish their
computation, because of data dependencies. Since our mapping
strategy is coarse-grained, the workload may not be evenly
distributed. If the number of PEs increases, the size of the
assigned workload decreases, which makes the load imbalance
relatively more significant. We will address this issue by fine-
grained load-balancing in our future work.

D. Sensitivity Analysis

We determined the queue depth and the number of rings
based on the sensitivity analysis shown in Figure 16. Specifi-
cally, our experiments indicate that a queue depth of 16 strikes
a good balance between performance and cost. Similarly, 3
communication rings are seen as a cost-effective tradeoff.
Recall that one of the rings is dedicated to prefetching weights.

E. Cost Analysis

To compute the minimum required memory size and the
minimum required bit-width for the rings, it is essential to
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Figure 16. Sensitivity analysis pertaining to the depth of the various queues

and the number of employed interconnection rings. The chosen queue depth

is 16 and the number of employed rings is 3, which are parameters shown to
provide a good balance between performance and cost.

TABLE IV. The maximum supported values of the various CNN
configuration parameters.

Parameter Meaning SqueezeNet | GoogLeNet

R Rows 224 224
C Columns 224 224
M Input feature maps 1000 1000
N Output feature maps 1000 1000

K Filter size 7 7

S Stride 2 2

] Connections of a layer 2 4
Ty Next layer 33 106
Fstart Start feature map 1000 1000
Fend End feature map 1000 1000
Fhift Feature map shift 1000 1000
Total number of layers 33 106
Total number of connections 40 204

assess the maximum supported values of the parameters of the
CNN configurations under investigation. These parameters are
summarized in Table IV. The total number of layers used for
the proposed accelerator is different from the number assumed
in the original implementations of the CNN architectures.
We slightly changed the architecture — in a mathematically
equivalent manner — to better fit the underlying architecture of
the accelerator. Specifically, instead of introducing an explicit
concatenation layer, the output feature maps are directly con-
nected to the next layer to reduce the memory requirement.
Thus, if a pooling layer is followed by a concatenation layer,
the pooling layer has to be split into the previous layers,
because pooling layers are processed by the same PE where
the output feature map is generated.

In the configuration memory, the basic parameters
(R,C,M,N,K,S, and O) are stored for each layer and the
connection parameters (7, Fstert, pend and Fshifty are
stored for each connection. The total number of bits to required
to store all of these is 2,793 and 12,106 for SqueezeNet and
GoogLeNet, respectively. Since all PEs need to store them, the
sum of the configuration memory size of all PEs is 0.021 MB
and 0.092 MB for SqueezeNet and GoogLeNet, respectively,
as shown in Table II.

The minimum size of the weight and feature-map memories
varies for different PEs, depending on the feature map assign-
ment. For regularity, we used the same memory size across all
PEs. The minimum memory size is computed as explained in
Section V. The proposed accelerator does not depend on the
type of number representation. All analysis results shown so far
is based on 16-bit fixed-point representation, which is the most
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TABLE V. The minimum required memory sizes under two different
number representations.

Memory SqueezeNet GoogLeNet
16 bits 6 bits 16 bits 6 bits
Weight memory 1.280 MB | 0.483 MB 4.119 MB 1.544 MB
Feature-map memory 9.132 MB 5.619 MB 3.333 MB 2.051 MB

popular setup in previous efforts. If, instead, we adopt 6-bit
representation [28], the memory size can be further reduced.
Table V shows both cases. Furthermore, since compression
and pruning techniques [29]-[32] are also applicable to our
accelerator, those techniques will be adopted in our future
work.

Obviously, the memory size required for the proposed
accelerator is significantly larger than that of existing ac-
celerators. This is because the design goal of the proposed
accelerator is to minimize latency as much as possible at a
reasonable hardware cost. Considering the fact that recent Intel
processors employ 8 MB of L3 cache and multiple 256 KB
L2 and 32 KB L1 caches and DaDianNao [23] has a 36 MB
embedded on-chip DRAM, we believe that 10 MB of on-chip
memory is affordable for a stand-alone hardware-based CNN
accelerator.

The longest message that the ring should carry is the
activation, which is accompanied by the type of the message,
the escape channel number, the layer number, the input feature
map number, the position (y and x), and the counter, as
shown in Figure 5. For future extensions, we assume 6 bits
are used for the message type (i.e., 64 types of messages can
be supported). The number of escape channels is computed as
described in Section V, and is shown in Table II. The number
of bits required to specify the layer, input feature map, and
position can be calculated from Table IV. Since the maximum
value of the counter is the number of output feature maps, 10
bits are assigned to this field. In total, 68 bits and 71 bits
are required for one ring for SqueezeNet and GoogleNet,
respectively. For the ring employed for weight prefetching,
the metadata includes the type of the message, escape channel
number, layer number, input feature map number, output
feature map number, and position (i and j), as shown in
Figure 5. The total number of bits required for the weight ring
is 58 and 61 for SqueezeNet and GoogLeNet, respectively.

F. Power Estimation

It is estimated that the power consumption of the proposed
accelerator is similar to ShiDianNao [15], which consumes
320.10 mW (except for the memory power, which will be
discussed shortly), assuming an operating frequency of 1 GHz.
Both designs run at the same clock frequency, employ the same
number of PEs (64), and use the same types of functional units
(multipliers and adders). The overhead of the control logic
would obviously be different, but according to the analysis in
Eyeriss [22], the power consumption of the control logic cor-
responds to only 9.5% to 10.0% of the total power budget. In
general, the biggest consumer of power is the on-chip memory.
Since the proposed accelerator employs a significantly larger
memory, it consumes more power than ShiDianNao, which has
a 288 KB on-chip memory. By using the per-access energy
model of CACTI [41] and the number of memory accesses
obtained through simulation, the power consumption of both
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the on-chip memory and DRAM can be estimated. Including
the power consumption of the other components reported by
ShiDianNao, the total power consumption (including DRAM
accesses) of the proposed accelerator is estimated as 2.47 W
and 2.51 W for SqueezeNet and GoogleNet, respectively.
Despite the fact that these numbers are based solely on esti-
mation, it is clear that the power consumption of the proposed
accelerator is significantly lower than FPGA-based approaches
(that consume 25 to 58 W) and DaDianNao’s 15.97 W [23].

VII. CONCLUSIONS AND FUTURE WORK

This paper proposes a novel hardware-based accelerator
for deep CNNs used to realize power-efficient real-time vi-
sion processing. The new design achieves significantly lower
execution latencies than existing power-efficient ASIC-based
accelerators, primarily due to its inherent ability to operate at
higher clock frequencies. This attribute is enabled by modu-
lar design, optimized memory access patterns due to weight
prefetching, and larger on-chip memory. More importantly, the
new accelerator can execute all layers of SqueezeNet and
GoogLeNet in 14.30 ms and 27.12 ms, respectively, which
are comparable to high-performance FPGA-based approaches,
but with significantly lower power consumption at 2.47 W
and 2.51 W, respectively. The use of data-driven scheduling
can seamlessly support advanced CNN architectures without
any reconfiguration. We expect that the proposed accelerator
will expedite the widespread adoption of CNNs for power-
efficient real-time vision processing, which is especially useful
in the domains of unmanned vehicles, autonomous robotics,
and surveillance cameras.

The data-driven scheduling scheme introduced in this work
was applied only to CNNs. Nevertheless, we believe that it
could also be used in other types of neural networks, and,
specifically, in more recent networks, such as Recurrent Neural
Networks (RNN) [42], Faster R-CNN [43], You Only Look
Once (YOLO) [44], and Single Shot Detector (SSD) [45].
Moreover, if the load imbalance when the number of PEs
grows beyond 256 is adequately addressed, we expect that the
latency can be reduced even further.
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