
44

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Cooperation Strategies for Swarms of Collaborating Robots: Analysis of Time-

Stepped and Multi-Threaded Simulations

Liam McGuigan, Catherine Saunders, Roy Sterritt, George Wilkie

School of Computing, Faculty of Computing, Engineering and the Built Environment

Ulster University

Jordanstown, N. Ireland

email: mcguigan-l8@ulster.ac.uk, c.saunders@ulster.ac.uk, r.sterritt@ulster.ac.uk, fg.wilkie@ulster.ac.uk

Abstract— Swarms of robots have been proposed for use in

many tasks, such as space exploration, search & rescue

operations, and mine clearance. For a robot swarm to be

successful, it needs to be self-adaptive, making its own

decisions and adjusting its behaviour without relying on

human intervention. This paper investigates the potential for

using an autonomic system for a robot swarm engaged in a

foraging task, capable of adjusting its cooperation strategy

based on the ongoing performance in the task, rather than

sticking with an initial strategy. The results show that while

support for changing the strategy completely is limited, there

remains the potential for adjusting the parameters of the given

strategy to suit the ongoing situation. In addition, a

comparison of two approaches to the implementation of a

simulation is also presented. A time-stepped approach is

compared with the multi-threaded approach used in previous

work, with a view to embedding simulation within the swarm

as a means of aiding the autonomic decision-making process

through simulation of potential options. It is found that even

when the underlying robot behaviour is identical, the time-

stepped simulation is faster and more flexible, and is therefore

more suitable for embedding.

Keywords- Swarm robotics; Self-adaptation; Autonomic

Computing; Simulation.

I. INTRODUCTION

This paper is an extended version of the work published

in [1]. It extends those results with new findings from

further research.

The use of robotic swarms consisting of a large number

of robots operating in concert can benefit applications, such

as space exploration [2][3], search & rescue [4] and mine

clearance [4][5] among others, taking advantage of a robot’s

ability to operate in conditions where human involvement is

too dangerous or difficult.

The individual craft in a robotic swarm will need to be

capable of managing themselves without requiring constant

supervision. They may be required to make quick decisions

to protect themselves or to act on opportunities, and will

need to adapt to best suit the conditions of the task being

carried out [6]. This can be achieved by making the swarms

autonomic.

Autonomic computing concepts will embody the swarm

with the properties of self-configuration, self-healing, self-

optimization and self-protection, ensuring that the swarm

[7] is implemented by including an autonomic component

running a Monitor, Analyse, Plan, Execute, with a shared

Knowledge (MAPE-K) control loop to monitor and analyse

the situation, and plan and execute any changes to behaviour

aided by a knowledge base of pre-set or previously acquired

information [8], as seen in Figure 1. Autonomic robotics

combines the concepts of MAPE-K from autonomic

computing, with Intelligent Machine Design (IMD) from

robotics [9][10].

Due to the cost and impracticality of using real hardware

during the development of large-scale swarm behaviour,

simulators are often used in the process [11], able to create

artificial swarms of hundreds or even thousands of robots

engaged in tasks, such as foraging, surveillance and

exploration of unknown environments.

The research presented in this paper has two objectives.

The first is to investigate the potential for self-adaptation

through selection of a cooperation strategy during a foraging

task, through analysis of the performance of different

strategies over the course of the task. The second objective

is to identify which of two simulation implementation

approaches used would be most suitable for deploying on an

individual agent within the swarm as a means of using

simulation-in-the-loop to help with the in-task strategy

switching decision.
The rest of this paper is organised as follows. Section II

discusses related work on self-adaptation in swarm robotics,
and the varying use of simulations in development. Section
III describes the foraging task used in the simulation, and the

Figure 1. MAPE-K loop, as used by an autonomic component. The

loop proceeds through each of the four stages in turn.

45

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

general robot behaviour. Section IV describes the
cooperation strategies used in the research, while Section V
describes the simulators used for comparison. Section VI
describes the test scenarios that were run, Section VII
presents the results of the cooperation strategy comparison,
and Section VIII presents the results of the simulator
comparison. Section IX concludes the paper with a summary
and presents the future research directions.

II. RELATED WORK

The following subsections discuss current research in

swarm self-adaptation, and the use of simulations within

swarm development.

A. Swarm Self-Adaptation

Self-adaptation of a robotic swarm concerns the ability

of the swarm to adjust its behaviour in response to external

or internal conditions, such as a foraging swarm choosing to

abandon a depleted deposit in order to find newer deposits,

or a surveillance swarm organizing itself so as to provide

maximum coverage of the target area.

Swarm self-adaptation can be considered based on two

factors – the approach to adaptation, and the location within

the swarm where this is applied. Approaches to swarm

adaptation include engineering emergent processes where

adaptation arises naturally out of the agent behaviour [12],

reasoning and learning approaches where the swarm

explicitly reasons about the decision being made [13] and

may learn from experience [14], and evolutionary

approaches which explore alternatives through genetic

algorithms [15].

Regarding location, a lot of the research focuses on

applying adaptation to individual agent behaviour [16]–[18].

This low-level adaptation results in a bottom-up approach to

swarm behaviour, with the resulting performance of the

swarm arising from the aggregate performance of the

individual agents. This can allow for more specific

adaptation, such as balancing an individual’s conflicting

objectives [19], which may be difficult to apply at the

swarm level. Agent behaviour adaptation can have the most

direct impact on the swarm’s performance, but it is difficult

for an agent to make an individual decision on aspects of

collaboration or coordination between multiple agents.

Adaptation through the selection of swarm-level

cooperation strategies can be used to address the problem of

collaboration. In this approach, agents within the swarm can

collectively determine an alternative approach which is

swapped with the existing agent behaviour either in part or

in whole. This selection may be driven by an autonomic

component that assesses the suitability of alternative

strategies [14][20], and may be employed with in a subset of

the entire swarm [21].

Where research has traditionally considered

homogeneous swarms with simpler behaviour, a swarm of

heterogeneous robots can be more flexible and capable of

handling a wider variety of situations [22].

This research is focused on identifying the potential for

swarm-level adaptational changes by assessing the

performance of a selection of candidate strategies in a set of

scenarios. Through noting any effect the scenario has on the

performance of a particular strategy, the benefits of the

ability to select an alternative strategy will become apparent.

B. Use of Simulations in Swarm Development

Simulation has long been employed as a tool for the

development of robotic and swarm simulations, providing

the means to test and analyse systems in an artificial

environment. Simulators range in complexity, from detailed

physical simulations of actual robots [11][23], to abstract

approaches where robots move within a grid-based

environment. The difficulty of producing an accurate

simulation of the real world can manifest as the “reality

gap” [24], where results obtained in simulation are not

replicated in reality. Nonetheless, it is not necessary for the

results of a simulation to be precisely reproducible in the

real world for the simulation itself to prove useful.

Simulation need not be restricted to the offline

development phase. It may be used to assist the decision

making process [25][26], trying out “what-if” scenarios in

order to assess the effects of potential actions or strategies

ahead of time. For this to be effective, a simulation must be

detailed enough to provide useful information, while

remaining lightweight enough to be able to run on an

individual agent within the swarm.

When choosing or designing a simulator for researching

robotic swarms, the accuracy of the physical simulation

required will depend on the impact specific hardware has on

the research being conducted. Developing a robotic

controller without a suitably accurate physical simulation

can lead to the robots in the simulation carrying out

behaviour that is impossible with the actual robots [27], but

when researching purely software based systems,

abstractions can be used to trade accuracy for a faster

execution time [23].

Further gains in execution time may be made by

simplifying the world representation. Grid based approaches

need not produce markedly different results to continuous

space [28], and can be used in cases where the specific

motion of agents can be abstracted.

The majority of multi-robot simulators available make

use of discrete time when updating their simulations, in

which all agents and physical reactions are updated in

sequence with a small time step, rather than independent

execution in real time, such as assigning a robot its own

execution thread. This ensures synchronous execution of

robots [23] and simplifies physical interactions.

The research conducted in this paper abstracts physical

movement using cell-based movement within a grid, and the

performance is contrasted with a real-time, multi-threaded

approach used in previous research [20].

46

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

III. FORAGING TASK DESCRIPTION

This research focuses on simulations of a swarm of

heterogeneous robots engaged in a foraging task. Each run

begins with a world constructed as a rectangular grid of

cells, in which a number of target items and robots are

initially placed, as shown in Figure 2. Each cell may contain

only one item, but any number of robots. It can be assumed

that each cell is represents a larger area than the footprint of

a single robot, and the simulation may therefore ignore

potential collisions.

The robots are tasked with foraging for all the items in

the area. Each item is associated with a type, and may only

be foraged by a robot with the corresponding type. The

simulation proceeds until all the items have been foraged.

Foraging of an item happens at the place it is found,

rather than returning to a home base – the simulation can

therefore be considered to logically represent applications,

such as mine deactivation, analysis of mineral deposits, or

environmental cleanup.

Each robot begins in an exploration state, during which

they move towards a random location in the world. Each

step, if an item is found, the robot will forage if it is able to,

removing the item from the world, before resuming

exploration.

In the extended research, the behaviour in the

exploration state has been modified so that instead of

selecting a random location on the map to move towards

over time, a robot engages in a random wander, selecting an

available direction to move each update.

IV. COOPERATION STRATEGIES

For the initial research, cooperation during the task is

determined using one of three strategies, as developed in

[20]. The extended research updated this with a set of three

configurable strategies, two of which replicate the initial

approaches. The following subsections describe each set of

strategies.

A. Initial Strategies

When a robot encounters an item that it cannot forage, it

broadcasts a help request with a range of 5 cells. The

behaviour of the robots is then determined by the strategy:

1) Multiple Responders: If not already engaged in

foraging or responding to a previous request, a receiving

robot of the correct type will respond to the request by

transitioning to a Respond state, in which it moves towards

the item. All receivers, whether they can forage the item or

not, will rebroadcast the message. In this way, the message

will filter throughout the swarm. The robot initiating the

help request plays no further part in the cooperation and

returns to exploration.

2) Selective Responders: The behaviour here is similar

to the Multiple Responders approach, but the message is

only rebroadcast if the receiving robot cannot help. This

works to reduce the number of robots responding to the

request.

3) One Responder: The robot initiating the request

transitions to a WaitForOffers state. Offers to help are sent

by receiving robots that meet the criteria, who themselves

transition to a WaitForAssignment state. No rebroadcasting

of the message occurs. If no offers are received after a short

delay, the requesting robot returns to its previous behaviour,

otherwise it assigns the task to the nearest responding robot

and resumes exploration. Robots that do not receive

assignment after a period of time return to exploration,

while the assigned robot transitions to the Respond state.

Both Multiple and Selective Responder strategies are

likely to result in multiple robots moving towards the item.

This would provide contingency in the event of robot failure

before reaching the target item. Robot failure is not

implemented in the current simulation, but will be in a

future study.

B. Extended Configurable Strategies

These strategies were used in the extended research.

Each strategy offers one or more parameters to fine tune the

behaviour.

1) Simple Broadcast: This strategy replicates the

behaviour of the Multiple and Selective Responders

strategies described above, but parameters allow for the

modification of the broadcast range, the number of

rebroadcasts, and the likelihood of a robot responding to the

request. The parameters are listed in Table I.

2) Help Recruitment: This strategy replicates the One

Responder strategy, with parameters to allow adjustment of

the broadcast range and maximum number of recruits, as

listed in Table II.

3) Blackboard: In this new strategy, each robot

maintains a record of items found and items foraged, and

periodically synchronises this information with

neighbouring robots via broadcasts. During the update loop,

a robot will move to the nearest unforaged item of a

Figure 2. A view of the simulation at the start of a task. The colour
of a robot (face) or item (cross) indicates its type.

47

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

matching type that it is aware of, provided it is within the

configured range. If a robot subsequently receives

information to say that an item has been foraged, it will

abandon its efforts to retrieve the item, and resume

exploration. The configuration parameters are described in

Table III.

This is a fully decentralised implementation in which

robots gather and share information. When a robot finds an

item, it records this in its memory as unforaged. If it

subsequently forages the item, it updates the record. During

synchronisation, a robot updates its current memory, adding

new items it was not aware of, or updating the forage state

of items it previously believed to be unforaged.

Due to the decentralised nature of the blackboard

implementation, each robot will have a different

interpretation of the current state of the field. However, as

the synchronisation process will only move an item from

unknown, to found, and then to foraged, it is not possible for

the swarm to “forget” an item’s state, only to be unaware of

any change. As the simulation proceeds, the data will filter

throughout the swarm as robots rebroadcast the new details.

V. SIMULATORS

The following sections describe the simulators that were

used in this research.

A. Time-Stepped Simulator

In the time-stepped simulator, each robot in the

simulation is updated in sequence, with a single tick of the

simulation ending once all robots have been updated. Each

tick of the simulation can therefore represent a discrete

period of time, and the performance of the swarm at

completing the task can be measured by the simulation ticks

taken to complete the task. Figure 3 shows an example of

how the time-stepped simulator updates.

Robots are implemented as a finite state machine (FSM).

In each tick of the simulation, the robot will update its

current state, and check for state transition conditions. Thus,

in a single tick a robot may choose to move one cell, to

forage an item underfoot, or to participate in the cooperation

strategies described in Section IV.

In this simulation, broadcast messages are first buffered,

and only processed after all robots have been updated, in

order to maintain synchronisation between independent

robot movements, and avoid the possibility of a later-

updated robot being able to process a message that was sent

in the same tick by an earlier-updated robot. Once the

messages are processed and received by reach robot within

range, they are further shuffled on the receiving robot in

order to remove the effects of update order. If Robot A and

Robot B both send a message to Robot C in the same tick,

Robot C would always respond to Robot A first. Shuffling

the message list before processing removes this problem.

B. Multi-Threaded Simulator

The multi-threaded simulator implementation used here

is the same as that presented in [20]. In this implementation,

each robot is assigned its own independent CPU thread,

complete with pauses to allow for real-time viewing of the

simulation.

Each robot executes an infinite loop and carries out a set

of steps in sequence: process messages, move one cell

towards a target destination, look for an item in the current

cell, and forage/request help as required. Figure 4 shows an

example of how the multi-threaded simulator operates.

Broadcast messages are sent and buffered by each robot,

and processed at the start of their loop. If the robot is using

the One Responder strategy, after a help request is sent the

robot pauses to wait for an offer, and similarly after an offer

is sent, a robot pauses to wait for assignment.

Unlike the time-stepped simulator, this simulator is

restricted to a 30x30 map, so all comparisons between the

two must be made on that map size.

C. Redesigned Multi-Threaded Simulator

In order to address the fixed map size and differences in

robot implementation in the previous multi-threaded

simulator, this was rewritten from the ground up in order to

TABLE I. SIMPLE BROADCAST PARAMETERS

Parameter Description Values

Broadcast Range Maximum cell distance

each broadcast for help

can reach

[1 .. ∞]

Max Chain Number of
rebroadcasts for any

given message

[0 .. 4]

Rebroadcast Mode Determines whether or
not a robot

rebroadcasts

Never
Type Mismatch

Always

Response Type How a robot responds

to a request

Always

Response Curve

Response Distance The maximum distance

at which a robot may

respond (Response
Curve only)

[0 .. ∞]

TABLE II. HELP RECRUITMENT PARAMETERS

Parameter Description Values

Broadcast Range Maximum cell distance

each broadcast for help
can reach

[1 .. ∞]

Max Recruits Maximum number of

robots to assign an

item to

[1 .. ∞]

TABLE III. BLACKBOARD PARAMETERS

Parameter Description Values

Broadcast Range Maximum cell distance

each synchronisation

broadcast can reach

[1 .. ∞]

Response Range Maximum distance of
an unforaged item that

prompts a response

[1 .. ∞]

Sync Period Simulation ticks
between

synchronisations

[1 .. ∞]

48

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

allow a greater variety of tests, and to ensure robot

behaviour is identical.

Again, each robot is assigned its own CPU thread and

started in a random order, however thread execution is no

longer tied to display considerations, and sleeps are limited

to 1 millisecond per loop in order to prevent the operating

system from locking up during execution. Robots

implement the same state machine as in the time-stepped

simulator, and messages are also handled in the same way,

however no shuffling occurs as the order robots are updated

is no longer fixed. If a robot must wait in a particular state,

it does so over a number of updates rather than halting

execution.

In this implementation, only the Help Recruitment

strategy has been implemented, as the intention is to

compare performance of the simulators rather than evaluate

strategies.

VI. TEST SCENARIOS

The following subsections describe the test scenarios

used to evaluate the strategies and simulator approaches.

Figure 3. An example of how the time-stepped simulator updates the robots. All robots are updated in sequence on the same thread, represented by the

dotted line, before the simulator checks for task completion. If the task is still active, the process repeats.

Figure 4. An example of how the multi-threaded simulator updates the robots. Once created, each robot updates on a separate thread to the main
simulator and to each other. The frequency and order in which the robots update cannot be controlled. The execution of an update may also be halted at

any time – this has not been shown for clarity.

49

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. Initial Research

For the initial research, three scenarios were used as

described in Table IV.

The Robot Type Imbalance scenario represents a

scenario where the swarm configuration deployed is not best

suited to the task, and must adapt. The Item Type Imbalance

scenario represents one where the reality of the mission

differs from that expected, and again the swarm must adapt.

To compare the performance of the cooperation

strategies, each scenario is tested on both 30x30 and 90x90

maps. Each simulation is run 30 times, with the initial

placement of items and robots randomised at the start of

each run.

For simulator comparison, due to limitations of the

multi-threaded simulator used, only the Equal Split and

Robot Type Imbalance scenarios were able to be run on a

30x30 map. Each scenario was run 30 times on the time-

stepped simulator, and 10 times on the multi-threaded

simulator.

In assessing the performance of each strategy, the

number of simulation ticks until completion of the task is

the main metric, as it is a measure of the time taken to

forage all items. If the energy cost of actions taken by robots

is of interest, then the total number of steps and the number

of messages broadcast will also become factors. The

simulation does not currently assign an energy cost to

individual actions, but the counts may be used as a guide,

and for each metric a lower value is considered more

efficient.

B. Extended Research

Following on from the above work, two further sets of

tests were conducted to compare strategies and simulator

approaches. To confirm that no dominant strategy exists and

thus support the use of an autonomic system for strategy

selection, variants of each of the new set of strategies were

created, as described in Table V.

These strategies were each tested in a variety of

scenarios created by adjusting the map size, robot counts,

item counts, and the ratios of each type, as described in

Table VI. A total of 600 scenarios were used to compare the

strategies.

To establish any differences in performance between the

two simulation implementations, tests were run on four map

sizes, each featuring 256 robots and items evenly distributed

between the two types, in order to examine the performance

of the two simulations in larger environments.

Each scenario was run using the Help Recruitment

strategy, and also with no cooperation strategy enabled. To

account for the increased distance between robots that

would arise in a larger map, the broadcast range for the Help

Recruitment strategy was increased in as the map size

increased, with 32x32, 64x64, 96x96 and 128x128 maps

having ranges of 4, 8, 16 and 24 respectively. Each scenario

was run 100 times on each simulator.

For each set of simulations, the average real time to

complete the task was recorded, along with the simulation

ticks (for the time-stepped simulation) or mean number of

robot updates (for the multi-threaded simulation), the total

steps taken by all robots in the task, and the number of

messages sent, also broken down by message type.

VII. RESULTS – COOPERATION STRATEGY COMPARISONS

The following subsections present the results of the

initial research, followed by the extended work which

followed.

A. Initial Research

Figure 5 shows the ticks to completion, steps taken, and

messages sent for each of the test scenarios in a 30x30 grid.

Comparing the results in both the Equal and Item

Imbalance strategies, the One Responder strategy is the best

performing approach, having the lowest count in each

metric. Multiple and Selective Responder strategies can

actually perform worse than no cooperation strategy at all,

which can be explained by robots that respond to messages

halting any exploration while they respond.

TABLE IV. INITIAL TEST SCENARIOS

Scenario
Items Robots

White Red White Red

Equal Split 100 100 100 100

Robot Type Imbalance 100 100 180 20

Item Type Imbalance 180 20 100 100

TABLE V. STRATEGY VARIANT PARAMETERS

Strategy Parameter Values Variants

Simple

Broadcast

Broadcast Range 8, 16

40

Max Chain 0, 1, 2

Rebroadcast
Mode

Never, Type

Mismatch,

Always

Response Type
Always, Response

Curve

Response

Distance
32, 64, 128

Help
Recruitment

Broadcast Range 8, 16, 24, 32
12

Max Recruits 1, 2, 3

Blackboard

Broadcast Range 8, 16

32 Response Range 8, 16, 32, 64

Sync Period 8, 16, 32, 64

No
Cooperation

N/A 1

Total 85

TABLE VI. SCENARIO GENERATION PARAMETERS

Parameter Values

Map Size 32x32, 64x64, 96x96, 128x128

Items 64, 128, 256, 384, 512

Item Ratio (White:Red) 1:1, 7:1

Robots 64, 128, 256, 384, 512

Robot Ratio (White:Red) 1:1, 7:1, 1:7

50

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

In the Robot Imbalance scenario (Figure 5 (b)),

however, One Responder does not reliably perform, and is

subject to a great deal of variance caused by the initial

placement of items and robots, and the subsequent

movement of robots within the arena.

When considering energy costs, Multiple Responders

has an extremely high message count setting it apart from

Selective Responders, which it otherwise performs very

similarly to. A full assessment of the respective efficiency

of each would require an assignment of cost to each of the

metrics, with the total cost calculated accordingly.

Figure 6 shows the progress of each strategy over time

for the three scenarios. In Equal (a) and Item Imbalance (c)

scenarios, performance is again similar, however it is

notable that using no cooperation strategy at all is the

quickest approach until the item count decreases

substantially, after which One Responder performs best.

This would suggest some system of changing the

cooperation strategy used during the test based on the

changing situation could lead to stronger overall

performance, at least in terms of time taken.

In Figure 6 (b), the Robot Imbalance scenario shows

only a slight favouring of Random and One Responder

strategies until most items are gathered, but the imbalance

of robots then leads to both strategies taking much longer to

complete the task than the other approaches. Again, strategy
(a) Simulation ticks

(b) Steps taken

(c) Messages sent

Figure 5. Metrics for each cooperation strategy in a 30x30 map.
Circles represent data outliers: (a) simulation ticks, (b) total steps

taken, (c) messages sent

(a) Equal

(b) Robot Imbalance

(c) Item Imbalance

Figure 6. Items foraged over simulation ticks for each of the
strategies in a 30x30 map: (a) Equal scenario, (b) Robot imbalance

scenario, (c) Item imbalance scenario.

51

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

selection during the task could recognise this situation and

adopt the strategy most suited.

If individual robot failure is considered, a robot

imbalance can occur during the task. A system that can

monitor the current swarm composition as well as estimate

the progress in the task would therefore be able to adopt a

suitable strategy in response to such unpredictable change.

Figure 7 shows the ticks to complete, steps taken, and

messages sent for the cooperation strategies in the larger

90x90 grid. Here, it can be seen that the performance of

each strategy tends towards that of no cooperation, with

large variances in the data and, other than the number of

messages sent, similar average values for each metric in

each scenario.

It may be expected that the larger map explains the

results as messages are not being broadcast far enough in

order be received, but a comparison of data in Figure 8

shows that this is not necessarily the case. The proportion of

requests receiving a response does not change much

between the map sizes for the Multiple and Selective

Responders cases, other than when there is a robot

imbalance where it can be understood the chances of a robot

of the correct type being nearby is significantly lower in a

larger area.

The One Responder strategy can be seen to have a much

higher percentage of requests receiving a response than the

other approaches in a 30x30 map. This is due to the other

approaches causing robots who would be able to help to be

otherwise engaged in moving to forage an item, and thus

unable to respond until they complete that help task. As the

One Responder strategy causes only one robot at most to

take on a task, other robots remain to be selected. In the

90x90 map, this then drops because of the distance between

robots, and more closely matches the other approaches.

The dominant effect in the 90x90 map is the random

exploration of the environment, and can be seen in the time

taken to complete the task and understood by considering

that the number of items remains the same between the two

maps. As such, only 2.5% of the cells in a 90x90 map have

(a) Simulation ticks

(b) Steps taken

(c) Messages sent

Figure 7. Metrics for each cooperation strategy in a 90x90 map.
Circles represent data outliers: (a) simulation ticks, (b) total steps

taken, (c) messages sent

(a) 30x30 map

(b) 90x90 map

Figure 8. Percentage of help requests receiving at least one response,
for each cooperation strategy and scenario. Circles represent data

outliers: (a) 30x30 map, (b) 90x90 map.

52

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

an item, compared to 22.2% of the cells in the 30x30 map. It

is this decreased chance of stumbling upon an item that has

the strongest effect on swarm performance.

The results suggest that allowing a swarm to adjust its

cooperation strategy during a task, rather than relying on an

initial strategy, could prove beneficial to performance by

allowing the swarm to adjust its approach in response to the

situation.

B. Extended Research

With 600 scenarios and 85 strategy variants, a direct

comparison similar to the above is not possible with the

extended data. However, as the aim is to show that there is

no dominant strategy, a broader overview is sufficient.

Figure 9 is a summary of the performance of each

strategy across all 600 scenarios, as determined by the best

performing strategy variant in each scenario, relative to the

best performance from all four strategies.

The Help Recruitment and Blackboard strategies

perform strongest, in that they each have a high proportion

of scenarios for which they are the best performing strategy.

At the other end of the scale, the No Cooperation strategy

performs poorest, in line with expectations, usually taking

more than twice as long to complete as the best performer in

a given scenario.

This suggests that the initial hypothesis is confirmed and

that no dominant strategy exists, as a scenario best suited to

each of the three cooperative strategies may be found.

Further, there is no set of parameters for any one strategy

that performs well in all scenarios.

Examining the Blackboard strategy further, we see that

in all but three of the cases, it performs within 25% of the

best performing strategy, and in fact its worst relative

performance sees it take just 28% longer than the best

strategy, whereas both Simple and Help Recruitment may

perform worse in certain scenarios, each having at least one

scenario where they take more than twice as long as the best

strategy.

Figure 10 compares each strategy according to the

(a) Simple Broadcast (b) Help Recruitment

(c) Blackboard (d) No Cooperation

Figure 9. Performance of each strategy across all scenarios. Percentages indicate additional time to complete task relative to best performing strategy.

53

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

performance advantage of each strategy for the scenarios

where it is the best performer. The Simple Broadcast

strategy offers only a small performance benefit, averaging

6.9 ticks better than the nearest challenger, and with a

maximum recorded advantage of 22.5 ticks. Help

Recruitment fares little better, averaging 26.8 ticks with a

maximum of 208. The Blackboard strategy, on the other

hand, shows a clear advantage in many scenarios with an

average boost of 264.0 ticks, and a maximum recorded lead

of 3515.

This would suggest that the Blackboard strategy, while

not dominant in terms of being the best strategy in any

given scenario, performs strongly enough in each case that it

could be considered de facto dominant, with minimal

benefit offered in choosing another strategy and the

associated complexity of implementing an autonomous

system to make that choice.

However, a closer look at the scenarios in which the

Blackboard strategy is dominant reveals a different story.

There are a total of 19 scenarios in which the Blackboard

outperforms its nearest rival by over 1000 ticks, and each

involves the largest map, with the smallest amount of robots

with a ratio of 1 white to 7 red robots. As a result, the

density of the robot swarm, and in particular the density of

the smallest group of robots that would expect to be the

target of most requests for help, is at its lowest.

The maximum broadcast range used for the Help

Recruitment strategy in this work was 32 cells. Such a range

covers less than 20% of the map, targeting one of just eight

robots that may be found elsewhere, so it is not surprising

that the strategy struggles when the swarm density is

reduced. Simulating the 128x128 scenarios for Help

Recruitment using increased ranges of 48, 64, 80 and 96

cells produced comparable results to the Blackboard

strategy, as seen in Figure 11.

Rather than implementing a complex system to select a

strategy based on identifying the scenario a swarm finds

itself in, the results indicate that either a Help Recruitment

or a Blackboard strategy would provide suitable

performance given the right parameters. An autonomous

system may still be used in order to adjust those parameters

accordingly.

In addition, it may be better to use the simpler of the

strategies with the least overhead – a Help Recruitment

strategy requires no memory of items found and foraged,

and does not require any periodic communication with the

other members of the swarm. On the other hand, energy

considerations may make large broadcast ranges unsuitable,

and the short range communications between robots in the

Blackboard strategy may be more efficient. Further research

on this will be needed to investigate the relative impact of

each strategy.

(a) Simple Broadcast (b) Help Recruitment (c) Blackboard

Figure 10. Performance advantage of each strategy, for scenarios where it is the best performer. Values indicate the difference in simulation ticks to

complete the task between the strategy, and the second best option.

Figure 11. Simulation ticks to complete the five scenarios with the

largest performance difference between the Blackboard and Help
Recruitment strategies, before and after extending the maximum

broadcast range.

54

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

VIII. RESULTS – SIMULATOR COMPARISONS

The following subsections present the results of the

initial research, followed by the extended work which

followed.

A. Initial Research

Table VII compares the time taken to complete the task

for each of the simulators in the Equal scenario. The time-

stepped simulation presented here is significantly faster than

the original multi-threaded simulation. This can largely be

accounted for by the deliberate delays introduced previously

to allow for visualization, with some impact of the reliance

on real-time delays for communication, which makes a true

comparison difficult. The table also shows the execution

time for the One Responder protocol as implemented in the

updated multi-threaded simulator, showing it is still slower

than the time-stepped approach.

Figure 12 shows that the time-stepped simulation takes a

much larger number of steps in the Multiple and Selective

Responder strategies, and also shows an increase under One

Responder. This unexpected result may be explained by the

specific behaviour of the robots in each simulation. In the

multi-threaded approach, robots pause frequently, the effect

of which is that fewer robots will move in each step. For

example, on deciding to respond to a help request a robot

pauses for three seconds. Further, if another help request is

received during that pause, that too may be processed and

the robot may choose to act on that, with a further pause.

The effect of these pauses is to reduce the number of

robots moving at any given time. In the time-stepped

simulation, a robot will only pause when waiting for help

responses or assignments in the One Responder strategy.

It is notable that despite these pauses, robots in the

multi-threaded approach take fewer steps overall, rather

than taking the same number of steps over a longer period.

This suggests there may be a benefit to reducing the number

of robots engaged in random exploration, but this will need

to be investigated further.

The impact of the two simulations on the host platform

was compared and Table VIII displays the approximate

processor and memory usage of the two platforms when

running simulations.

Overall, the time-stepped approach will put less strain on

the CPU, as despite its higher usage during execution

without a display, it will run for a fraction of the time. With

a display, the execution is halted between ticks to update the

display at a framerate of the user’s choosing, and so CPU

usage drops. The multi-threaded simulation has no option to

disable display updating, but the use of a separate thread for

each robot results in a moderate level of CPU usage for a

longer period of time.

The lower memory footprint of the time-stepped

simulation is most likely due to specific implementation

differences. Each robot in the multi-threaded simulation

contains a copy of the world map and lists of robots and

items, whereas the time-stepped simulation uses a shared

resource. While requiring local copies is a factor in any real

scenario, it is not required to simulate that unless it is

expected that robots will have different local data. If this is a

requirement, the memory usage would increase accordingly.

B. Extended Research

The implementation differences between the time-

stepped and multi-threaded simulator used in the initial

research have made a performance comparison difficult to

achieve, prompting the rewrite of the multi-threaded

simulator to use identical robot behaviour. The following

results are based on comparisons run between the time-

stepped simulator and the re-written multi-threaded

simulator.

Figure 13 shows the mean time taken for each simulator

to complete the task on each map size, for the Help

Recruitment and No Cooperation strategies respectively. It

is clear from the results that the multi-threaded simulator is

slower at completing each simulation, and it can also be

seen that the duration increases more quickly with an

increase in map size for the multi-threaded implementation.

Figures 14 and 15 show the simulation ticks and total

steps taken within the simulator for each implementation

and map size. As discussed in Section V, the multi-threaded

simulator uses the mean number of updates executed by the

robots as an estimate of the ticks taken by the simulation to

complete. The results here show that in both simulators, the

Figure 12. Total steps for each simulator using the three strategies in

the Equal scenario. Circles represent data outliers.

TABLE VII. SIMULATION DURATION (EQUAL SCENARIO)

Simulator

Time (s)

Multiple

Responders

Selective

Responders

One

Responder

Time-Stepped 2.11 0.89 0.17

Multi-Threaded v1 155.14 142.01 130.86

Multi-Threaded v2 1.35

TABLE VIII. SIMULATOR CPU AND MEMORY USAGE

Simulator CPU Usage (%) Memory
Usage (MB)

Time-Stepped (Display) 5-6 30-35

Time-Stepped (No Display) 55-60 30-35

Multi-Threaded 35-40 700-750

55

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

use of the Help Recruitment strategy is able to reduce the

number of ticks, and by extension the number of steps taken

by the swarm.

It can also be seen that the results are broadly similar

between the two simulations, except for the 32x32 map,

where the multi-threaded implementation takes more ticks

on average, and more steps, during the Help Recruitment

strategy. A further investigation into the behaviour of the

multi-threaded simulator shows that the robots each receive

a different number of updates, as might be expected, but

also that some robots do not receive any updates at all

throughout the course of the simulation.

Figure 16 shows the average number of help offers sent

in response to each help request when using the Help

Recruitment strategy on each map size. It can be seen that

the multi-threaded approach results in fewer offers

generated per request. This may be due to the fact that

robots are not always given processing time, however as the

messages are buffered, a response will be sent provided the

robot is updated at least once since receiving the request.

The average number of help requests sent on each map

size is seen in Figure 17, where it can be seen that the multi-

threaded simulator sends more requests than in the time-

stepped approach. Again, this may be because of the

processing time imbalance. If fewer robots are able to

respond to a request, there remain more items for the robots

to encounter, and thus more occasions where help requests

will be sent.

Investigations into the memory and CPU usage of the

two simulators showed no appreciable difference,

suggesting that the differences shown for the previous

multi-threaded approach were down to implementation

differences rather than inherent in the time-stepped or multi-

threaded approach chosen.

Overall, these results show that despite the underlying

implementation of the robot behaviour being the same in

each simulator, the scheduling approach taken by each can

result in different behaviour. As the simulation duration

increases, these effects have less of an outcome on the final

result.

Delegating the execution of the robots to the CPU

scheduler can result in unpredictable behaviour by the

robots, and results in a reduced degree of control in the

simulation. A time-stepped approach ensures that each robot

receives an identical amount of execution time in a

predictable way. Furthermore, the time-stepped approach is

significantly faster than the multi-threaded simulator,

allowing more simulations to be run in a shorter period of

time.

(a) Help Recruitment

(b) No Cooperation

Figure 13. Average simulation execution time across all four maps.
Circles represent data outliers: (a) Help Recruitment strategy, (b) No

cooperation strategy.

(a) Help Recruitment

(b) No Cooperation

Figure 14. Average simulation ticks (time-stepped) or robot updates
(multi-threaded) across all four maps. Circles represent data outliers:

(a) Help Recruitment strategy, (b) No cooperation strategy.

56

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

IX. CONCLUSION AND FUTURE WORK

The presented research used a time-stepped simulation

to investigate the effects of different cooperation strategies

for a swarm carrying out a foraging task. It was shown that

the performance of a strategy is sensitive to the scenario in

which the swarm operates, and so sticking with a single

strategy may lead to suboptimal performance. However,

while the initial findings leaned towards some potential for

changing the underlying strategy mid-mission, the extended

research presented here suggests similar performance gains

can be obtained simply by adjusting the parameters of an

existing strategy.

Further, different stages of the task appear to favour

different approaches. During the initial phase where large

numbers of items remain to be discovered, random

exploration with no cooperation strategy produces the best

results. Only when a small proportion of the items remain

does the adoption of a cooperation strategy start to benefit

the performance of a swarm.

There is therefore a potential benefit to be gained by

implementing a self-adaptive system that can modify these

parameters based on the swarm’s understanding of the

current scenario, allowing for faster completion of the task.

If the factors that affect selection of suitable parameters are

simple, such as using swarm density alone to determine a

broadcast range, then this may be achieved using a simple

calculation. However, if the factors are sufficiently

numerous and complex, there may still be a benefit to using

simulation within the swarm to explore the possibility space

without the risks associated with executing inefficient

behaviours in reality.

These results are based on a simplified simulation of the

foraging task. As noted in Section II, simulation can be a

useful means of testing complex scenarios in situations

where making use of large numbers of robots may be

considered infeasible. Nonetheless, corroboration of the data

with results from other simulations, and possibly physical

robotic tests, would be useful.

The time-stepped simulation was compared against a

real-time, multi-threaded approach and found to execute

faster and with more reliable results, thanks to each robot

being guaranteed an equal amount of processing time

throughout the task. This would make the time-stepped

simulation more suitable for use as part of the MAPE-K

loop for a foraging swarm, forming MAPSE-K (Figure 18)

[2]. This could be achieved by embedding the simulator on

one or multiple robots within the swarm, to analyse and

adjust the strategy without risking reduced performance.

Figure 17. Help requests sent, across all four map sizes. Circles

represent data outliers.

(a) Help Recruitment

(b) No Cooperation

Figure 15. Average steps taken by all robots, across all four maps.
Circles represent data outliers: (a) Help Recruitment strategy, (b) No

cooperation strategy.

Figure 16. Help offers per request sent, across all four map sizes.

Circles represent data outliers.

57

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

The expected limited processing capabilities of the host

robot mean managing the overhead that simulation entails

will become a major factor. A time-stepped approach allows

execution to be stopped and restarted with predictable

results, as well as executing quicker overall, so can be less

demanding on the host platform.

Future work will explore the methods of giving the

swarm an autonomic ability to adjust the Help Recruitment

broadcast range in response to the scenario faced. Other

factors that can affect the performance will also be

investigated, such as the impact of energy costs, as well as

changes to the scenarios that may prompt the swarm to

adjust their strategy accordingly.

REFERENCES

[1] L. McGuigan, C. Saunders, R. Sterritt, and G. Wilkie,

‘Cooperation Strategies in a Time-Stepped Simulation of

Foraging Robots’, in The Twelfth International Conference

on Adaptive and Self-Adaptive Systems and Applications

(ADAPTIVE 2020) IARIA, Oct. 2020, pp. 135-142.

[2] R. Sterritt et al., ‘Inspiration for Space 2.0 from Autonomic-

ANTS (Autonomous NanoTechnology Swarms) Concept

missions’, presented at the Reinventing Space Conference,

2019.

[3] A. Farahani, G. Cabri, and E. Nazemi, ‘Self-* properties in

collective adaptive systems’, in Proceedings of the 2016

ACM International Joint Conference on Pervasive and

Ubiquitous Computing: Adjunct, Heidelberg, Germany,

Sep. 2016, pp. 1309–1314.

[4] L. Bayindir, ‘A review of swarm robotics tasks’,

Neurocomputing, vol. 172, pp. 292–321, Jan. 2016.

[5] I. Navarro and F. Matía, ‘An Introduction to Swarm

Robotics’, ISRN Robot., vol. 2013, pp. 1–10, 2013.

[6] G. Beni, ‘From Swarm Intelligence to Swarm Robotics’, in

Swarm Robotics, Berlin, Heidelberg, 2005, pp. 1–9.

[7] IBM, ‘An architectural blueprint for autonomic computing,

4th ed.’ IBM White Paper, 2006.

[8] J. O. Kephart and D. M. Chess, ‘The vision of autonomic

computing’, Computer, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[9] R. Sterritt, G. Wilkie, G. Brady, C. Saunders, and M.

Doran, ‘Autonomic robotics for future space missions', 13th

Symposium on Advanced Space Technologies in Robotics

and Automation (ASTRA 2015) - ESA/ESTEC, Noordwijk,

Netherlands, Sept. 2015.

[10] M. Doran, R. Sterritt, and G. Wilkie, ‘Autonomic

architecture for fault handling in mobile robots’, Innov.

Syst. Softw. Eng., Apr. 2020, doi:10.1007/s11334-020-

00361-8

[11] M. Torres-Torriti, T. Arredondo, and P. Castillo-Pizarro,

‘Survey and comparative study of free simulation software

for mobile robots’, Robotica, vol. 34, no. 4, pp. 791–822,

Apr. 2016.

[12] J. Prasetyo, G. De Masi, and E. Ferrante, ‘Collective

decision making in dynamic environments’, Swarm Intell.,

vol. 13, no. 3, pp. 217–243, Dec. 2019.

[13] J. Zelenka, T. Kasanický, and I. Budinská, ‘A Self-adapting

Method for 3D Environment Exploration Inspired by

Swarm Behaviour’, in Advances in Service and Industrial

Robotics, Cham, 2018, pp. 493–502.

[14] N. Capodieci, E. Hart, and G. Cabri, ‘An Artificial

Immunology Inspired Approach to Achieving Self-

Expression in Collective Adaptive Systems’, ACM Trans.

Auton. Adapt. Syst. TAAS, vol. 11, no. 2, p. 6:1-6:25, Jun.

2016.

[15] N. Bredeche, E. Haasdijk, and A. Prieto, ‘Embodied

evolution in collective robotics: A review’, Front. Robot.

AI, vol. 5, p. 12, 2018.

[16] K. S. Kappel, T. M. Cabreira, J. L. Marins, L. B. de

Brisolara, and P. R. Ferreira, ‘Strategies for Patrolling

Missions with Multiple UAVs’, J. Intell. Robot. Syst., vol.

99, pp. 499–515, Sep. 2019.

[17] G. Leu and J. Tang, ‘Survivable Networks via UAV

Swarms Guided by Decentralized Real-Time Evolutionary

Computation’, in 2019 IEEE Congress on Evolutionary

Computation (CEC), Jun. 2019, pp. 1945–1952.

[18] M. Frasheri, B. Cürüklü, M. Esktröm, and A. V.

Papadopoulos, ‘Adaptive Autonomy in a Search and Rescue

Scenario’, in 2018 IEEE 12th International Conference on

Self-Adaptive and Self-Organizing Systems (SASO), Sep.

2018, pp. 150–155.

[19] F. Yan, K. Di, J. Jiang, Y. Jiang, and H. Fan, ‘Efficient

decision-making for multiagent target searching and

occupancy in an unknown environment’, Robot. Auton.

Syst., vol. 114, pp. 41–56, Apr. 2019.

[20] C. Saunders, R. Sterritt, and G. Wilkie, ‘Collective

Communication Strategies for Space Exploration’, J. Br.

Interplanet. Soc., vol. 72, no. 12, pp. 416–430, 2019.

[21] M. Puviani, G. Cabri, and L. Leonardi, ‘Enabling Self-

Expression: The Use of Roles to Dynamically Change

Adaptation Patterns’, in 2014 IEEE Eighth International

Conference on Self-Adaptive and Self-Organizing Systems

Workshops, Imperial College, London, United Kingdom,

Sep. 2014, pp. 14–19.

[22] M. Dorigo, G. Theraulaz, and V. Trianni, ‘Reflections on

the future of swarm robotics’, Sci. Robot., vol. 5, no. 49,

eabe4385, Dec. 2020.

[23] C. Pinciroli et al., ‘ARGoS: a modular, parallel, multi-

engine simulator for multi-robot systems’, Swarm Intell.,

vol. 6, no. 4, pp. 271–295, Dec. 2012.

[24] N. Jakobi, P. Husbands, and I. Harvey, ‘Noise and the

reality gap: The use of simulation in evolutionary robotics’,

in Advances in Artificial Life, vol. 929, F. Morán, A.

Figure 18. MAPSE-K loop. Simulation is used to test the plans

before executing the best performing option, or returning to the

planning stage.

58

International Journal on Advances in Systems and Measurements, vol 14 no 1 & 2, year 2021, http://www.iariajournals.org/systems_and_measurements/

2021, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Moreno, J. J. Merelo, and P. Chacón, Eds. Berlin,

Heidelberg: Springer Berlin Heidelberg, 1995, pp. 704–720.

[25] F. Kamrani and R. Ayani, ‘Using On-line Simulation for

Adaptive Path Planning of UAVs’, in 11th IEEE

International Symposium on Distributed Simulation and

Real-Time Applications (DS-RT’07), Oct. 2007, pp. 167–

174.

[26] N. Keivan and G. Sibley, ‘Realtime simulation-in-the-loop

control for agile ground vehicles’, Lect. Notes Comput. Sci.

Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinforma.,

vol. 8069 LNAI, pp. 276–287, 2014.

[27] C. Pepper, S. Balakirsky, and C. Scrapper, ‘Robot

simulation physics validation’, in Proceedings of the 2007

Workshop on Performance Metrics for Intelligent Systems,

Washington, D.C., Aug. 2007, pp. 97–104.

[28] C. J. E. Castle, N. P. Waterson, E. Pellissier, and S. Le Bail,

‘A Comparison of Grid-based and Continuous Space

Pedestrian Modelling Software: Analysis of Two UK Train

Stations’, in Pedestrian and Evacuation Dynamics, Boston,

MA, 2011, pp. 433–446.

