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Abstract— Swarms of robots have been proposed for use in 

many tasks, such as space exploration, search & rescue 

operations, and mine clearance. For a robot swarm to be 

successful, it needs to be self-adaptive, making its own 

decisions and adjusting its behaviour without relying on 

human intervention. This paper investigates the potential for 

using an autonomic system for a robot swarm engaged in a 

foraging task, capable of adjusting its cooperation strategy 

based on the ongoing performance in the task, rather than 

sticking with an initial strategy. The results show that while 

support for changing the strategy completely is limited, there 

remains the potential for adjusting the parameters of the given 

strategy to suit the ongoing situation. In addition, a 

comparison of two approaches to the implementation of a 

simulation is also presented. A time-stepped approach is 

compared with the multi-threaded approach used in previous 

work, with a view to embedding simulation within the swarm 

as a means of aiding the autonomic decision-making process 

through simulation of potential options. It is found that even 

when the underlying robot behaviour is identical, the time-

stepped simulation is faster and more flexible, and is therefore 

more suitable for embedding. 

Keywords- Swarm robotics; Self-adaptation; Autonomic 

Computing; Simulation. 

I. INTRODUCTION 

This paper is an extended version of the work published 

in [1]. It extends those results with new findings from 

further research. 

The use of robotic swarms consisting of a large number 

of robots operating in concert can benefit applications, such 

as space exploration [2][3], search & rescue [4] and mine 

clearance [4][5] among others, taking advantage of a robot’s 

ability to operate in conditions where human involvement is 

too dangerous or difficult. 

The individual craft in a robotic swarm will need to be 

capable of managing themselves without requiring constant 

supervision. They may be required to make quick decisions 

to protect themselves or to act on opportunities, and will 

need to adapt to best suit the conditions of the task being 

carried out [6]. This can be achieved by making the swarms 

autonomic. 

Autonomic computing concepts will embody the swarm 

with the properties of self-configuration, self-healing, self-

optimization and self-protection, ensuring that the swarm 

[7] is implemented by including an autonomic component 

running a Monitor, Analyse, Plan, Execute, with a shared 

Knowledge (MAPE-K) control loop to monitor and analyse 

the situation, and plan and execute any changes to behaviour 

aided by a knowledge base of pre-set or previously acquired 

information [8], as seen in Figure 1. Autonomic robotics 

combines the concepts of MAPE-K from autonomic 

computing, with Intelligent Machine Design (IMD) from 

robotics [9][10]. 

Due to the cost and impracticality of using real hardware 

during the development of large-scale swarm behaviour, 

simulators are often used in the process [11], able to create 

artificial swarms of hundreds or even thousands of robots 

engaged in tasks, such as foraging, surveillance and 

exploration of unknown environments. 

The research presented in this paper has two objectives. 

The first is to investigate the potential for self-adaptation 

through selection of a cooperation strategy during a foraging 

task, through analysis of the performance of different 

strategies over the course of the task. The second objective 

is to identify which of two simulation implementation 

approaches used would be most suitable for deploying on an 

individual agent within the swarm as a means of using 

simulation-in-the-loop to help with the in-task strategy 

switching decision. 
The rest of this paper is organised as follows. Section II 

discusses related work on self-adaptation in swarm robotics, 
and the varying use of simulations in development. Section 
III describes the foraging task used in the simulation, and the 

 
 

Figure 1.   MAPE-K loop, as used by an autonomic component. The 

loop proceeds through each of the four stages in turn. 
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general robot behaviour. Section IV describes the 
cooperation strategies used in the research, while Section V 
describes the simulators used for comparison. Section VI 
describes the test scenarios that were run, Section VII 
presents the results of the cooperation strategy comparison, 
and Section VIII presents the results of the simulator 
comparison. Section IX concludes the paper with a summary 
and presents the future research directions. 

II. RELATED WORK 

The following subsections discuss current research in 

swarm self-adaptation, and the use of simulations within 

swarm development. 

A. Swarm Self-Adaptation 

Self-adaptation of a robotic swarm concerns the ability 

of the swarm to adjust its behaviour in response to external 

or internal conditions, such as a foraging swarm choosing to 

abandon a depleted deposit in order to find newer deposits, 

or a surveillance swarm organizing itself so as to provide 

maximum coverage of the target area. 

Swarm self-adaptation can be considered based on two 

factors – the approach to adaptation, and the location within 

the swarm where this is applied. Approaches to swarm 

adaptation include engineering emergent processes where 

adaptation arises naturally out of the agent behaviour [12], 

reasoning and learning approaches where the swarm 

explicitly reasons about the decision being made [13] and 

may learn from experience [14], and evolutionary 

approaches which explore alternatives through genetic 

algorithms [15]. 

Regarding location, a lot of the research focuses on 

applying adaptation to individual agent behaviour [16]–[18]. 

This low-level adaptation results in a bottom-up approach to 

swarm behaviour, with the resulting performance of the 

swarm arising from the aggregate performance of the 

individual agents. This can allow for more specific 

adaptation, such as balancing an individual’s conflicting 

objectives [19], which may be difficult to apply at the 

swarm level. Agent behaviour adaptation can have the most 

direct impact on the swarm’s performance, but it is difficult 

for an agent to make an individual decision on aspects of 

collaboration or coordination between multiple agents. 

Adaptation through the selection of swarm-level 

cooperation strategies can be used to address the problem of 

collaboration. In this approach, agents within the swarm can 

collectively determine an alternative approach which is 

swapped with the existing agent behaviour either in part or 

in whole. This selection may be driven by an autonomic 

component that assesses the suitability of alternative 

strategies [14][20], and may be employed with in a subset of 

the entire swarm [21]. 

Where research has traditionally considered 

homogeneous swarms with simpler behaviour, a swarm of 

heterogeneous robots can be more flexible and capable of 

handling a wider variety of situations [22]. 

This research is focused on identifying the potential for 

swarm-level adaptational changes by assessing the 

performance of a selection of candidate strategies in a set of 

scenarios. Through noting any effect the scenario has on the 

performance of a particular strategy, the benefits of the 

ability to select an alternative strategy will become apparent. 

B. Use of Simulations in Swarm Development 

Simulation has long been employed as a tool for the 

development of robotic and swarm simulations, providing 

the means to test and analyse systems in an artificial 

environment. Simulators range in complexity, from detailed 

physical simulations of actual robots [11][23], to abstract 

approaches where robots move within a grid-based 

environment. The difficulty of producing an accurate 

simulation of the real world can manifest as the “reality 

gap” [24], where results obtained in simulation are not 

replicated in reality. Nonetheless, it is not necessary for the 

results of a simulation to be precisely reproducible in the 

real world for the simulation itself to prove useful. 

Simulation need not be restricted to the offline 

development phase. It may be used to assist the decision 

making process [25][26], trying out “what-if” scenarios in 

order to assess the effects of potential actions or strategies 

ahead of time. For this to be effective, a simulation must be 

detailed enough to provide useful information, while 

remaining lightweight enough to be able to run on an 

individual agent within the swarm.  

When choosing or designing a simulator for researching 

robotic swarms, the accuracy of the physical simulation 

required will depend on the impact specific hardware has on 

the research being conducted. Developing a robotic 

controller without a suitably accurate physical simulation 

can lead to the robots in the simulation carrying out 

behaviour that is impossible with the actual robots [27], but 

when researching purely software based systems, 

abstractions can be used to trade accuracy for a faster 

execution time [23].  

Further gains in execution time may be made by 

simplifying the world representation. Grid based approaches 

need not produce markedly different results to continuous 

space [28], and can be used in cases where the specific 

motion of agents can be abstracted. 

The majority of multi-robot simulators available make 

use of discrete time when updating their simulations, in 

which all agents and physical reactions are updated in 

sequence with a small time step, rather than independent 

execution in real time, such as assigning a robot its own 

execution thread. This ensures synchronous execution of 

robots [23] and simplifies physical interactions. 

The research conducted in this paper abstracts physical 

movement using cell-based movement within a grid, and the 

performance is contrasted with a real-time, multi-threaded 

approach used in previous research [20]. 
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III. FORAGING TASK DESCRIPTION 

This research focuses on simulations of a swarm of 

heterogeneous robots engaged in a foraging task. Each run 

begins with a world constructed as a rectangular grid of 

cells, in which a number of target items and robots are 

initially placed, as shown in Figure 2. Each cell may contain 

only one item, but any number of robots. It can be assumed 

that each cell is represents a larger area than the footprint of 

a single robot, and the simulation may therefore ignore 

potential collisions. 

The robots are tasked with foraging for all the items in 

the area. Each item is associated with a type, and may only 

be foraged by a robot with the corresponding type. The 

simulation proceeds until all the items have been foraged. 

Foraging of an item happens at the place it is found, 

rather than returning to a home base – the simulation can 

therefore be considered to logically represent applications, 

such as mine deactivation, analysis of mineral deposits, or 

environmental cleanup. 

Each robot begins in an exploration state, during which 

they move towards a random location in the world. Each 

step, if an item is found, the robot will forage if it is able to, 

removing the item from the world, before resuming 

exploration.  

In the extended research, the behaviour in the 

exploration state has been modified so that instead of 

selecting a random location on the map to move towards 

over time, a robot engages in a random wander, selecting an 

available direction to move each update. 

IV. COOPERATION STRATEGIES 

For the initial research, cooperation during the task is 

determined using one of three strategies, as developed in 

[20]. The extended research updated this with a set of three 

configurable strategies, two of which replicate the initial 

approaches. The following subsections describe each set of 

strategies. 

A. Initial Strategies 

When a robot encounters an item that it cannot forage, it 

broadcasts a help request with a range of 5 cells. The 

behaviour of the robots is then determined by the strategy: 

1) Multiple Responders: If not already engaged in 

foraging or responding to a previous request, a receiving 

robot of the correct type will respond to the request by 

transitioning to a Respond state, in which it moves towards 

the item. All receivers, whether they can forage the item or 

not, will rebroadcast the message. In this way, the message 

will filter throughout the swarm. The robot initiating the 

help request plays no further part in the cooperation and 

returns to exploration. 

2) Selective Responders: The behaviour here is similar 

to the Multiple Responders approach, but the message is 

only rebroadcast if the receiving robot cannot help. This 

works to reduce the number of robots responding to the 

request. 

3) One Responder: The robot initiating the request 

transitions to a WaitForOffers state. Offers to help are sent 

by receiving robots that meet the criteria, who themselves 

transition to a WaitForAssignment state. No rebroadcasting 

of the message occurs. If no offers are received after a short 

delay, the requesting robot returns to its previous behaviour, 

otherwise it assigns the task to the nearest responding robot 

and resumes exploration. Robots that do not receive 

assignment after a period of time return to exploration, 

while the assigned robot transitions to the Respond state. 

Both Multiple and Selective Responder strategies are 

likely to result in multiple robots moving towards the item. 

This would provide contingency in the event of robot failure 

before reaching the target item. Robot failure is not 

implemented in the current simulation, but will be in a 

future study. 

B. Extended Configurable Strategies 

These strategies were used in the extended research. 

Each strategy offers one or more parameters to fine tune the 

behaviour. 

1) Simple Broadcast: This strategy replicates the 

behaviour of the Multiple and Selective Responders 

strategies described above, but parameters allow for the 

modification of the broadcast range, the number of 

rebroadcasts, and the likelihood of a robot responding to the 

request. The parameters are listed in Table I. 

2) Help Recruitment: This strategy replicates the One 

Responder strategy, with parameters to allow adjustment of 

the broadcast range and maximum number of recruits, as 

listed in Table II. 

3) Blackboard: In this new strategy, each robot 

maintains a record of items found and items foraged, and 

periodically synchronises this information with 

neighbouring robots via broadcasts. During the update loop, 

a robot will move to the nearest unforaged item of a 

 
 

Figure 2.   A view of the simulation at the start of a task. The colour 
of a robot (face) or item (cross) indicates its type. 
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matching type that it is aware of, provided it is within the 

configured range. If a robot subsequently receives 

information to say that an item has been foraged, it will 

abandon its efforts to retrieve the item, and resume 

exploration. The configuration parameters are described in 

Table III. 

This is a fully decentralised implementation in which 

robots gather and share information. When a robot finds an 

item, it records this in its memory as unforaged. If it 

subsequently forages the item, it updates the record. During 

synchronisation, a robot updates its current memory, adding 

new items it was not aware of, or updating the forage state 

of items it previously believed to be unforaged. 

Due to the decentralised nature of the blackboard 

implementation, each robot will have a different 

interpretation of the current state of the field. However, as 

the synchronisation process will only move an item from 

unknown, to found, and then to foraged, it is not possible for 

the swarm to “forget” an item’s state, only to be unaware of 

any change. As the simulation proceeds, the data will filter 

throughout the swarm as robots rebroadcast the new details. 

V. SIMULATORS 

The following sections describe the simulators that were 

used in this research. 

A. Time-Stepped Simulator 

In the time-stepped simulator, each robot in the 

simulation is updated in sequence, with a single tick of the 

simulation ending once all robots have been updated. Each 

tick of the simulation can therefore represent a discrete 

period of time, and the performance of the swarm at 

completing the task can be measured by the simulation ticks 

taken to complete the task. Figure 3 shows an example of 

how the time-stepped simulator updates. 

Robots are implemented as a finite state machine (FSM). 

In each tick of the simulation, the robot will update its 

current state, and check for state transition conditions. Thus, 

in a single tick a robot may choose to move one cell, to 

forage an item underfoot, or to participate in the cooperation 

strategies described in Section IV. 

In this simulation, broadcast messages are first buffered, 

and only processed after all robots have been updated, in 

order to maintain synchronisation between independent 

robot movements, and avoid the possibility of a later-

updated robot being able to process a message that was sent 

in the same tick by an earlier-updated robot. Once the 

messages are processed and received by reach robot within 

range, they are further shuffled on the receiving robot in 

order to remove the effects of update order. If Robot A and 

Robot B both send a message to Robot C in the same tick, 

Robot C would always respond to Robot A first. Shuffling 

the message list before processing removes this problem. 

B. Multi-Threaded Simulator 

The multi-threaded simulator implementation used here 

is the same as that presented in [20]. In this implementation, 

each robot is assigned its own independent CPU thread, 

complete with pauses to allow for real-time viewing of the 

simulation. 

Each robot executes an infinite loop and carries out a set 

of steps in sequence: process messages, move one cell 

towards a target destination, look for an item in the current 

cell, and forage/request help as required. Figure 4 shows an 

example of how the multi-threaded simulator operates. 

Broadcast messages are sent and buffered by each robot, 

and processed at the start of their loop. If the robot is using 

the One Responder strategy, after a help request is sent the 

robot pauses to wait for an offer, and similarly after an offer 

is sent, a robot pauses to wait for assignment. 

Unlike the time-stepped simulator, this simulator is 

restricted to a 30x30 map, so all comparisons between the 

two must be made on that map size. 

C. Redesigned Multi-Threaded Simulator 

In order to address the fixed map size and differences in 

robot implementation in the previous multi-threaded 

simulator, this was rewritten from the ground up in order to 

TABLE I.  SIMPLE BROADCAST PARAMETERS 

Parameter Description Values 

Broadcast Range Maximum cell distance 

each broadcast for help 

can reach 

[1 .. ∞] 

Max Chain Number of 
rebroadcasts for any 

given message 

[0 .. 4] 

Rebroadcast Mode Determines whether or 
not a robot 

rebroadcasts 

Never 
Type Mismatch 

Always 

Response Type How a robot responds 

to a request 

Always 

Response Curve 

Response Distance The maximum distance 

at which a robot may 

respond (Response 
Curve only) 

[0 .. ∞] 

TABLE II.  HELP RECRUITMENT PARAMETERS 

Parameter Description Values 

Broadcast Range Maximum cell distance 

each broadcast for help 
can reach 

[1 .. ∞] 

Max Recruits Maximum number of 

robots to assign an 

item to 

[1 .. ∞] 

TABLE III.  BLACKBOARD PARAMETERS 

Parameter Description Values 

Broadcast Range Maximum cell distance 

each synchronisation 

broadcast can reach 

[1 .. ∞] 

Response Range Maximum distance of 
an unforaged item that 

prompts a response 

[1 .. ∞] 

Sync Period Simulation ticks 
between 

synchronisations 

[1 .. ∞] 
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allow a greater variety of tests, and to ensure robot 

behaviour is identical. 

Again, each robot is assigned its own CPU thread and 

started in a random order, however thread execution is no 

longer tied to display considerations, and sleeps are limited 

to 1 millisecond per loop in order to prevent the operating 

system from locking up during execution. Robots 

implement the same state machine as in the time-stepped 

simulator, and messages are also handled in the same way, 

however no shuffling occurs as the order robots are updated 

is no longer fixed. If a robot must wait in a particular state, 

it does so over a number of updates rather than halting 

execution. 

In this implementation, only the Help Recruitment 

strategy has been implemented, as the intention is to 

compare performance of the simulators rather than evaluate 

strategies. 

VI. TEST SCENARIOS 

The following subsections describe the test scenarios 

used to evaluate the strategies and simulator approaches. 

 
 

Figure 3.   An example of how the time-stepped simulator updates the robots. All robots are updated in sequence on the same thread, represented by the 

dotted line, before the simulator checks for task completion. If the task is still active, the process repeats. 

 

 
 

Figure 4.   An example of how the multi-threaded simulator updates the robots. Once created, each robot updates on a separate thread to the main 
simulator and to each other. The frequency and order in which the robots update cannot be controlled. The execution of an update may also be halted at 

any time – this has not been shown for clarity. 
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A. Initial Research 

For the initial research, three scenarios were used as 

described in Table IV. 

The Robot Type Imbalance scenario represents a 

scenario where the swarm configuration deployed is not best 

suited to the task, and must adapt. The Item Type Imbalance 

scenario represents one where the reality of the mission 

differs from that expected, and again the swarm must adapt. 

To compare the performance of the cooperation 

strategies, each scenario is tested on both 30x30 and 90x90 

maps. Each simulation is run 30 times, with the initial 

placement of items and robots randomised at the start of 

each run. 

For simulator comparison, due to limitations of the 

multi-threaded simulator used, only the Equal Split and 

Robot Type Imbalance scenarios were able to be run on a 

30x30 map. Each scenario was run 30 times on the time-

stepped simulator, and 10 times on the multi-threaded 

simulator. 

In assessing the performance of each strategy, the 

number of simulation ticks until completion of the task is 

the main metric, as it is a measure of the time taken to 

forage all items. If the energy cost of actions taken by robots 

is of interest, then the total number of steps and the number 

of messages broadcast will also become factors. The 

simulation does not currently assign an energy cost to 

individual actions, but the counts may be used as a guide, 

and for each metric a lower value is considered more 

efficient. 

B. Extended Research 

Following on from the above work, two further sets of 

tests were conducted to compare strategies and simulator 

approaches. To confirm that no dominant strategy exists and 

thus support the use of an autonomic system for strategy 

selection, variants of each of the new set of strategies were 

created, as described in Table V. 

These strategies were each tested in a variety of 

scenarios created by adjusting the map size, robot counts, 

item counts, and the ratios of each type, as described in 

Table VI. A total of 600 scenarios were used to compare the 

strategies. 

To establish any differences in performance between the 

two simulation implementations, tests were run on four map 

sizes, each featuring 256 robots and items evenly distributed 

between the two types, in order to examine the performance 

of the two simulations in larger environments.  

Each scenario was run using the Help Recruitment 

strategy, and also with no cooperation strategy enabled. To 

account for the increased distance between robots that 

would arise in a larger map, the broadcast range for the Help 

Recruitment strategy was increased in as the map size 

increased, with 32x32, 64x64, 96x96 and 128x128 maps 

having ranges of 4, 8, 16 and 24 respectively. Each scenario 

was run 100 times on each simulator. 

For each set of simulations, the average real time to 

complete the task was recorded, along with the simulation 

ticks (for the time-stepped simulation) or mean number of 

robot updates (for the multi-threaded simulation), the total 

steps taken by all robots in the task, and the number of 

messages sent, also broken down by message type. 

VII. RESULTS – COOPERATION STRATEGY COMPARISONS 

The following subsections present the results of the 

initial research, followed by the extended work which 

followed. 

A. Initial Research 

Figure 5 shows the ticks to completion, steps taken, and 

messages sent for each of the test scenarios in a 30x30 grid. 

Comparing the results in both the Equal and Item 

Imbalance strategies, the One Responder strategy is the best 

performing approach, having the lowest count in each 

metric. Multiple and Selective Responder strategies can 

actually perform worse than no cooperation strategy at all, 

which can be explained by robots that respond to messages 

halting any exploration while they respond. 

TABLE IV.  INITIAL TEST SCENARIOS 

Scenario 
Items Robots 

White Red White Red 

Equal Split 100 100 100 100 

Robot Type Imbalance 100 100 180 20 

Item Type Imbalance 180 20 100 100 

 

 

TABLE V.  STRATEGY VARIANT PARAMETERS 

Strategy Parameter Values Variants 

Simple 

Broadcast 

Broadcast Range 8, 16 

40 

Max Chain 0, 1, 2 

Rebroadcast 
Mode 

Never, Type 

Mismatch, 

Always 

Response Type 
Always, Response 

Curve 

Response 

Distance 
32, 64, 128 

Help 
Recruitment 

Broadcast Range 8, 16, 24, 32 
12 

Max Recruits 1, 2, 3 

Blackboard 

Broadcast Range 8, 16 

32 Response Range 8, 16, 32, 64 

Sync Period 8, 16, 32, 64 

No 
Cooperation 

N/A 1 

Total 85 

 

TABLE VI.  SCENARIO GENERATION PARAMETERS 

Parameter Values 

Map Size 32x32, 64x64, 96x96, 128x128 

Items 64, 128, 256, 384, 512 

Item Ratio (White:Red) 1:1, 7:1 

Robots 64, 128, 256, 384, 512 

Robot Ratio (White:Red) 1:1, 7:1, 1:7 
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In the Robot Imbalance scenario (Figure 5 (b)), 

however, One Responder does not reliably perform, and is 

subject to a great deal of variance caused by the initial 

placement of items and robots, and the subsequent 

movement of robots within the arena. 

When considering energy costs, Multiple Responders 

has an extremely high message count setting it apart from 

Selective Responders, which it otherwise performs very 

similarly to. A full assessment of the respective efficiency 

of each would require an assignment of cost to each of the 

metrics, with the total cost calculated accordingly. 

Figure 6 shows the progress of each strategy over time 

for the three scenarios. In Equal (a) and Item Imbalance (c) 

scenarios, performance is again similar, however it is 

notable that using no cooperation strategy at all is the 

quickest approach until the item count decreases 

substantially, after which One Responder performs best. 

This would suggest some system of changing the 

cooperation strategy used during the test based on the 

changing situation could lead to stronger overall 

performance, at least in terms of time taken. 

In Figure 6 (b), the Robot Imbalance scenario shows 

only a slight favouring of Random and One Responder 

strategies until most items are gathered, but the imbalance 

of robots then leads to both strategies taking much longer to 

complete the task than the other approaches. Again, strategy  
(a) Simulation ticks 

 
(b) Steps taken 

 
(c) Messages sent 

 

Figure 5.   Metrics for each cooperation strategy in a 30x30 map. 
Circles represent data outliers: (a) simulation ticks, (b) total steps 

taken, (c) messages sent 

 

 
(a) Equal 

 
(b) Robot Imbalance 

 
(c) Item Imbalance 

 

Figure 6.   Items foraged over simulation ticks for each of the 
strategies in a 30x30 map: (a) Equal scenario, (b) Robot imbalance 

scenario, (c) Item imbalance scenario. 
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selection during the task could recognise this situation and 

adopt the strategy most suited. 

If individual robot failure is considered, a robot 

imbalance can occur during the task. A system that can 

monitor the current swarm composition as well as estimate 

the progress in the task would therefore be able to adopt a 

suitable strategy in response to such unpredictable change. 

Figure 7 shows the ticks to complete, steps taken, and 

messages sent for the cooperation strategies in the larger 

90x90 grid. Here, it can be seen that the performance of 

each strategy tends towards that of no cooperation, with 

large variances in the data and, other than the number of 

messages sent, similar average values for each metric in 

each scenario. 

It may be expected that the larger map explains the 

results as messages are not being broadcast far enough in 

order be received, but a comparison of data in Figure 8 

shows that this is not necessarily the case. The proportion of 

requests receiving a response does not change much 

between the map sizes for the Multiple and Selective 

Responders cases, other than when there is a robot 

imbalance where it can be understood the chances of a robot 

of the correct type being nearby is significantly lower in a 

larger area. 

The One Responder strategy can be seen to have a much 

higher percentage of requests receiving a response than the 

other approaches in a 30x30 map. This is due to the other 

approaches causing robots who would be able to help to be 

otherwise engaged in moving to forage an item, and thus 

unable to respond until they complete that help task. As the 

One Responder strategy causes only one robot at most to 

take on a task, other robots remain to be selected. In the 

90x90 map, this then drops because of the distance between 

robots, and more closely matches the other approaches. 

The dominant effect in the 90x90 map is the random 

exploration of the environment, and can be seen in the time 

taken to complete the task and understood by considering 

that the number of items remains the same between the two 

maps. As such, only 2.5% of the cells in a 90x90 map have 

 
(a) Simulation ticks 

 
(b) Steps taken 

 
(c) Messages sent 

 

Figure 7.   Metrics for each cooperation strategy in a 90x90 map. 
Circles represent data outliers: (a) simulation ticks, (b) total steps 

taken, (c) messages sent 

 

 
(a) 30x30 map 

 

 
(b) 90x90 map 

 

Figure 8.   Percentage of help requests receiving at least one response, 
for each cooperation strategy and scenario. Circles represent data 

outliers: (a) 30x30 map, (b) 90x90 map. 
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an item, compared to 22.2% of the cells in the 30x30 map. It 

is this decreased chance of stumbling upon an item that has 

the strongest effect on swarm performance. 

The results suggest that allowing a swarm to adjust its 

cooperation strategy during a task, rather than relying on an 

initial strategy, could prove beneficial to performance by 

allowing the swarm to adjust its approach in response to the 

situation. 

B. Extended Research 

With 600 scenarios and 85 strategy variants, a direct 

comparison similar to the above is not possible with the 

extended data. However, as the aim is to show that there is 

no dominant strategy, a broader overview is sufficient. 

Figure 9 is a summary of the performance of each 

strategy across all 600 scenarios, as determined by the best 

performing strategy variant in each scenario, relative to the 

best performance from all four strategies. 

The Help Recruitment and Blackboard strategies 

perform strongest, in that they each have a high proportion 

of scenarios for which they are the best performing strategy. 

At the other end of the scale, the No Cooperation strategy 

performs poorest, in line with expectations, usually taking 

more than twice as long to complete as the best performer in 

a given scenario. 

This suggests that the initial hypothesis is confirmed and 

that no dominant strategy exists, as a scenario best suited to 

each of the three cooperative strategies may be found. 

Further, there is no set of parameters for any one strategy 

that performs well in all scenarios. 

Examining the Blackboard strategy further, we see that 

in all but three of the cases, it performs within 25% of the 

best performing strategy, and in fact its worst relative 

performance sees it take just 28% longer than the best 

strategy, whereas both Simple and Help Recruitment may 

perform worse in certain scenarios, each having at least one 

scenario where they take more than twice as long as the best 

strategy. 

Figure 10 compares each strategy according to the 

 

  
(a) Simple Broadcast (b) Help Recruitment 

  
(c) Blackboard (d) No Cooperation 

 

Figure 9.   Performance of each strategy across all scenarios. Percentages indicate additional time to complete task relative to best performing strategy. 
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performance advantage of each strategy for the scenarios 

where it is the best performer. The Simple Broadcast 

strategy offers only a small performance benefit, averaging 

6.9 ticks better than the nearest challenger, and with a 

maximum recorded advantage of 22.5 ticks. Help 

Recruitment fares little better, averaging 26.8 ticks with a 

maximum of 208. The Blackboard strategy, on the other 

hand, shows a clear advantage in many scenarios with an 

average boost of 264.0 ticks, and a maximum recorded lead 

of 3515. 

This would suggest that the Blackboard strategy, while 

not dominant in terms of being the best strategy in any 

given scenario, performs strongly enough in each case that it 

could be considered de facto dominant, with minimal 

benefit offered in choosing another strategy and the 

associated complexity of implementing an autonomous 

system to make that choice. 

However, a closer look at the scenarios in which the 

Blackboard strategy is dominant reveals a different story. 

There are a total of 19 scenarios in which the Blackboard 

outperforms its nearest rival by over 1000 ticks, and each 

involves the largest map, with the smallest amount of robots 

with a ratio of 1 white to 7 red robots. As a result, the 

density of the robot swarm, and in particular the density of 

the smallest group of robots that would expect to be the 

target of most requests for help, is at its lowest. 

The maximum broadcast range used for the Help 

Recruitment strategy in this work was 32 cells. Such a range 

covers less than 20% of the map, targeting one of just eight 

robots that may be found elsewhere, so it is not surprising 

that the strategy struggles when the swarm density is 

reduced. Simulating the 128x128 scenarios for Help 

Recruitment using increased ranges of 48, 64, 80 and 96 

cells produced comparable results to the Blackboard 

strategy, as seen in Figure 11. 

Rather than implementing a complex system to select a 

strategy based on identifying the scenario a swarm finds 

itself in, the results indicate that either a Help Recruitment 

or a Blackboard strategy would provide suitable 

performance given the right parameters. An autonomous 

system may still be used in order to adjust those parameters 

accordingly. 

In addition, it may be better to use the simpler of the 

strategies with the least overhead – a Help Recruitment 

strategy requires no memory of items found and foraged, 

and does not require any periodic communication with the 

other members of the swarm. On the other hand, energy 

considerations may make large broadcast ranges unsuitable, 

and the short range communications between robots in the 

Blackboard strategy may be more efficient. Further research 

on this will be needed to investigate the relative impact of 

each strategy. 

 

   
(a) Simple Broadcast (b) Help Recruitment (c) Blackboard 

 

Figure 10.   Performance advantage of each strategy, for scenarios where it is the best performer. Values indicate the difference in simulation ticks to 

complete the task between the strategy, and the second best option. 

 
Figure 11.   Simulation ticks to complete the five scenarios with the 

largest performance difference between the Blackboard and Help 
Recruitment strategies, before and after extending the maximum 

broadcast range. 
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VIII. RESULTS – SIMULATOR COMPARISONS 

The following subsections present the results of the 

initial research, followed by the extended work which 

followed. 

A. Initial Research 

Table VII compares the time taken to complete the task 

for each of the simulators in the Equal scenario. The time-

stepped simulation presented here is significantly faster than 

the original multi-threaded simulation. This can largely be 

accounted for by the deliberate delays introduced previously 

to allow for visualization, with some impact of the reliance 

on real-time delays for communication, which makes a true 

comparison difficult. The table also shows the execution 

time for the One Responder protocol as implemented in the 

updated multi-threaded simulator, showing it is still slower 

than the time-stepped approach. 

Figure 12 shows that the time-stepped simulation takes a 

much larger number of steps in the Multiple and Selective 

Responder strategies, and also shows an increase under One 

Responder. This unexpected result may be explained by the 

specific behaviour of the robots in each simulation. In the 

multi-threaded approach, robots pause frequently, the effect 

of which is that fewer robots will move in each step. For 

example, on deciding to respond to a help request a robot 

pauses for three seconds. Further, if another help request is 

received during that pause, that too may be processed and 

the robot may choose to act on that, with a further pause. 

The effect of these pauses is to reduce the number of 

robots moving at any given time. In the time-stepped 

simulation, a robot will only pause when waiting for help 

responses or assignments in the One Responder strategy. 

It is notable that despite these pauses, robots in the 

multi-threaded approach take fewer steps overall, rather 

than taking the same number of steps over a longer period. 

This suggests there may be a benefit to reducing the number 

of robots engaged in random exploration, but this will need 

to be investigated further. 

The impact of the two simulations on the host platform 

was compared and Table VIII displays the approximate 

processor and memory usage of the two platforms when 

running simulations. 

Overall, the time-stepped approach will put less strain on 

the CPU, as despite its higher usage during execution 

without a display, it will run for a fraction of the time. With 

a display, the execution is halted between ticks to update the 

display at a framerate of the user’s choosing, and so CPU 

usage drops. The multi-threaded simulation has no option to 

disable display updating, but the use of a separate thread for 

each robot results in a moderate level of CPU usage for a 

longer period of time. 

The lower memory footprint of the time-stepped 

simulation is most likely due to specific implementation 

differences. Each robot in the multi-threaded simulation 

contains a copy of the world map and lists of robots and 

items, whereas the time-stepped simulation uses a shared 

resource. While requiring local copies is a factor in any real 

scenario, it is not required to simulate that unless it is 

expected that robots will have different local data. If this is a 

requirement, the memory usage would increase accordingly. 

B. Extended Research 

The implementation differences between the time-

stepped and multi-threaded simulator used in the initial 

research have made a performance comparison difficult to 

achieve, prompting the rewrite of the multi-threaded 

simulator to use identical robot behaviour. The following 

results are based on comparisons run between the time-

stepped simulator and the re-written multi-threaded 

simulator. 

Figure 13 shows the mean time taken for each simulator 

to complete the task on each map size, for the Help 

Recruitment and No Cooperation strategies respectively. It 

is clear from the results that the multi-threaded simulator is 

slower at completing each simulation, and it can also be 

seen that the duration increases more quickly with an 

increase in map size for the multi-threaded implementation. 

Figures 14 and 15 show the simulation ticks and total 

steps taken within the simulator for each implementation 

and map size. As discussed in Section V, the multi-threaded 

simulator uses the mean number of updates executed by the 

robots as an estimate of the ticks taken by the simulation to 

complete. The results here show that in both simulators, the 

 
Figure 12.   Total steps for each simulator using the three strategies in 

the Equal scenario. Circles represent data outliers. 

TABLE VII.  SIMULATION DURATION (EQUAL SCENARIO) 

Simulator 

Time (s) 

Multiple 

Responders 

Selective 

Responders 

One 

Responder 

Time-Stepped 2.11 0.89 0.17 

Multi-Threaded v1 155.14 142.01 130.86 

Multi-Threaded v2   1.35 

TABLE VIII.  SIMULATOR CPU AND MEMORY USAGE 

Simulator CPU Usage (%) Memory 
Usage (MB) 

Time-Stepped (Display) 5-6 30-35 

Time-Stepped (No Display) 55-60 30-35 

Multi-Threaded 35-40 700-750 
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use of the Help Recruitment strategy is able to reduce the 

number of ticks, and by extension the number of steps taken 

by the swarm. 

It can also be seen that the results are broadly similar 

between the two simulations, except for the 32x32 map, 

where the multi-threaded implementation takes more ticks 

on average, and more steps, during the Help Recruitment 

strategy. A further investigation into the behaviour of the 

multi-threaded simulator shows that the robots each receive 

a different number of updates, as might be expected, but 

also that some robots do not receive any updates at all 

throughout the course of the simulation. 

Figure 16 shows the average number of help offers sent 

in response to each help request when using the Help 

Recruitment strategy on each map size. It can be seen that 

the multi-threaded approach results in fewer offers 

generated per request. This may be due to the fact that 

robots are not always given processing time, however as the 

messages are buffered, a response will be sent provided the 

robot is updated at least once since receiving the request. 

The average number of help requests sent on each map 

size is seen in Figure 17, where it can be seen that the multi-

threaded simulator sends more requests than in the time-

stepped approach. Again, this may be because of the 

processing time imbalance. If fewer robots are able to 

respond to a request, there remain more items for the robots 

to encounter, and thus more occasions where help requests 

will be sent. 

Investigations into the memory and CPU usage of the 

two simulators showed no appreciable difference, 

suggesting that the differences shown for the previous 

multi-threaded approach were down to implementation 

differences rather than inherent in the time-stepped or multi-

threaded approach chosen. 

Overall, these results show that despite the underlying 

implementation of the robot behaviour being the same in 

each simulator, the scheduling approach taken by each can 

result in different behaviour. As the simulation duration 

increases, these effects have less of an outcome on the final 

result. 

Delegating the execution of the robots to the CPU 

scheduler can result in unpredictable behaviour by the 

robots, and results in a reduced degree of control in the 

simulation. A time-stepped approach ensures that each robot 

receives an identical amount of execution time in a 

predictable way. Furthermore, the time-stepped approach is 

significantly faster than the multi-threaded simulator, 

allowing more simulations to be run in a shorter period of 

time.  

 
(a) Help Recruitment 

 
(b) No Cooperation 

 

Figure 13.   Average simulation execution time across all four maps. 
Circles represent data outliers: (a) Help Recruitment strategy, (b) No 

cooperation strategy. 

 
(a) Help Recruitment 

 
(b) No Cooperation 

 

Figure 14.   Average simulation ticks (time-stepped) or robot updates 
(multi-threaded) across all four maps. Circles represent data outliers: 

(a) Help Recruitment strategy, (b) No cooperation strategy. 
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IX. CONCLUSION AND FUTURE WORK 

The presented research used a time-stepped simulation 

to investigate the effects of different cooperation strategies 

for a swarm carrying out a foraging task. It was shown that 

the performance of a strategy is sensitive to the scenario in 

which the swarm operates, and so sticking with a single 

strategy may lead to suboptimal performance. However, 

while the initial findings leaned towards some potential for 

changing the underlying strategy mid-mission, the extended 

research presented here suggests similar performance gains 

can be obtained simply by adjusting the parameters of an 

existing strategy.  

Further, different stages of the task appear to favour 

different approaches. During the initial phase where large 

numbers of items remain to be discovered, random 

exploration with no cooperation strategy produces the best 

results. Only when a small proportion of the items remain 

does the adoption of a cooperation strategy start to benefit 

the performance of a swarm. 

There is therefore a potential benefit to be gained by 

implementing a self-adaptive system that can modify these 

parameters based on the swarm’s understanding of the 

current scenario, allowing for faster completion of the task. 

If the factors that affect selection of suitable parameters are 

simple, such as using swarm density alone to determine a 

broadcast range, then this may be achieved using a simple 

calculation. However, if the factors are sufficiently 

numerous and complex, there may still be a benefit to using 

simulation within the swarm to explore the possibility space 

without the risks associated with executing inefficient 

behaviours in reality. 

These results are based on a simplified simulation of the 

foraging task. As noted in Section II, simulation can be a 

useful means of testing complex scenarios in situations 

where making use of large numbers of robots may be 

considered infeasible. Nonetheless, corroboration of the data 

with results from other simulations, and possibly physical 

robotic tests, would be useful. 

The time-stepped simulation was compared against a 

real-time, multi-threaded approach and found to execute 

faster and with more reliable results, thanks to each robot 

being guaranteed an equal amount of processing time 

throughout the task. This would make the time-stepped 

simulation more suitable for use as part of the MAPE-K 

loop for a foraging swarm, forming MAPSE-K (Figure 18) 

[2]. This could be achieved by embedding the simulator on 

one or multiple robots within the swarm, to analyse and 

adjust the strategy without risking reduced performance. 

 
Figure 17.   Help requests sent, across all four map sizes. Circles 

represent data outliers. 

 
(a) Help Recruitment 

 
(b) No Cooperation 

 

Figure 15.   Average steps taken by all robots, across all four maps. 
Circles represent data outliers: (a) Help Recruitment strategy, (b) No 

cooperation strategy. 

 
Figure 16.   Help offers per request sent, across all four map sizes. 

Circles represent data outliers. 
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The expected limited processing capabilities of the host 

robot mean managing the overhead that simulation entails 

will become a major factor. A time-stepped approach allows 

execution to be stopped and restarted with predictable 

results, as well as executing quicker overall, so can be less 

demanding on the host platform. 

Future work will explore the methods of giving the 

swarm an autonomic ability to adjust the Help Recruitment 

broadcast range in response to the scenario faced. Other 

factors that can affect the performance will also be 

investigated, such as the impact of energy costs, as well as 

changes to the scenarios that may prompt the swarm to 

adjust their strategy accordingly. 
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