
Computing Efficiency in Membrane Systems and
Their Variants

Claudio Zandron
DISCo - Università degli Studi di Milano-Bicocca

Viale Sarca 336/14, 20126 Milano, Italy
Email: claudio.zandron@unimib.it

Abstract—Membrane systems (or P systems) are a computa-
tional model inspired by the functioning of the cell, and based
upon the notion of cellular membrane. In this paper, we give a
survey of some main results concerning the model, to show its
potential to approach various problems in the area of the theory
of computation. Some main variants are also recalled, as well as
some main actual research directions.

Keywords-Natural Computing; Membrane systems; computa-
tional complexity.

I. INTRODUCTION

The present paper is an extended version of [1], presented
an the Thirteenth International Conference on Future Compu-
tational Technologies and Applications, April 18 - 22, 2021, in
Porto, Portugal, and contains and introduction and some main
result concerning membrane systems (as in the conference
paper), as well as the description of some main variants of
the basic model, and some main actual research directions.

Membrane systems (also known as P systems) have been
proposed by Gh. Paun in [2] as a parallel, nondeterministic,
synchronous and distributed model of computation inspired
by the structure and functioning of living cells. The model
consists of a hierarchical structure composed by several mem-
branes, embedded into a main membrane called the skin.
Membranes defines regions that contain multisets of objects
(represented by symbols of an alphabet) and evolution rules.

Using these rules, the objects evolve and are moved from
a region to a neighboring one. The rules are applied using a
maximally parallel and nondeterministic semantic: all objects
which can evolve in a computation step must evolve; if
different sets of rules can be applied in a computation step
(in a maximal parallel way), then one of them is nondeter-
ministically chosen.

A computation starts from an initial configuration of the
system and terminates when no evolution rule can be applied.
The result of a computation is the multiset of objects contained
into an output membrane, or emitted from the skin membrane.

The model was investigated both under theoretical aspects
as well as for applications to other disciplines. In particular,
the formalism is suitable to model various biological systems,
thanks to its features. For instance, it allows identification of
separated compartmentalized spaces where different reactions
can take place; it is characterized by an easy understandable
writing of reactions; it can be easily simulated in a distributed
and parallel computing architecture, by separating the com-
putation carried on by each single compartment, and simply

synchronizing the exchange of information at specific time-
steps. Other types of application were also investigates, such
as cryptography, approximate optimization, and economy.

For a systematic introduction to P systems, we refer the
reader to [3] [4]; recent information can be found in the
dedicated webpage [5].

P systems with active membranes is a variant of the basic
model introduced in [6]: in this variant, membranes can be
multiplied by dividing existing ones, and the objects are
communicated according to electrical charges associated with
the membranes. Such features allow the construction of an
exponential workspace in linear time, which can then be used
in parallel to attack computationally hard problems.

In this paper we give a survey of some main results con-
cerning theoretical aspects of the model, to show its potential
in approaching various problems in the area of the theory of
computation. In Section 2, we recall formal definitions related
to P systems with active membranes. In Section 3, we give
a very brief summary of results concerning their computing
power, while in Section 4 we recall some results related to
computing efficiency. Section 5 is devoted to recall some
results concerning space complexity for membrane systems. In
Section 6, we present some main variants of the basic model
and, finally, Section 7 draws some conclusions and suggests a
few topics for research investigation.

II. DEFINITIONS

In this section, we recall the basic definition of P systems
with active membranes.

Definition 1: A P system with active membranes of initial
degree d ≥ 1 is a tuple Π = (Γ,Λ, µ, w1, . . . , wd, R), where:
• Γ is an alphabet, a finite non-empty set of symbols,

usually called objects;
• Λ is a finite set of labels for the membranes;
• µ is a membrane structure (i.e., a rooted unordered tree)

consisting of d membranes enumerated by 1, . . . , d; each
membrane is labeled by an element of Λ, not necessarily
in a one-to-one way, and possesses an electrical charge
(or polarization), that can be neutral (0), positive (+) or
negative (−).

• w1, . . . , wd are strings over Γ, describing the initial
multisets of objects placed in the d regions of µ;

• R is a finite set of rules.
The rules are of the following kinds:

1

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

• Object evolution rules, of the form [a→ w]αh
They can be applied if the membrane h has charge α
and contains an occurrence of the object a; the object a
is rewritten into the multiset w.

• Send-in communication rules, of the form a []αh → [b]βh
They can be applied to a membrane labeled by h, having
charge α and if the external region contains an occurrence
of the object a; the object a is sent into h becoming b
and, simultaneously, the charge of h is changed to β.

• Send-out communication rules, of the form [a]αh → []βh b
They can be applied to a membrane labeled by h, having
charge α and containing an occurrence of a; the object
a is sent out from h to the outside region becoming b.
Simultaneously, the charge of h is changed to β.

• Dissolution rules, of the form [a]αh → b
They can be applied to a membrane labeled by h, having
charge α and containing an occurrence of the object a; the
membrane h is dissolved and its contents are left in the
surrounding region unaltered, except that an occurrence
of a becomes b.

• Elementary division rules, of the form [a]αh → [b]βh [c]γh
They can be applied to a membrane labeled by h,
having charge α, containing an occurrence of the object
a but having no other membrane inside (an elementary
membrane); the membrane is divided into two membranes
having label h and charge β and γ; the object a is
replaced, respectively, by b and c while the other objects
in the initial multiset are copied to both membranes.

• Nonelementary division rules, of the form[
[]+h1
· · · []+hk

[]−hk+1
· · · []−hn

]α
h
→

[
[]δh1
· · · []δhk

]β
h

[
[]εhk+1

· · · []εhn

]γ
h

They can be applied to a membrane labeled by h,
having charge α, containing the positively charged mem-
branes h1, . . . , hk, the negatively charged membranes
hk+1, . . . , hn, and possibly some neutral membranes. The
membrane h is divided into two copies having charge β
and γ, respectively; the positively charged membranes
h1, . . . , hk are placed inside the former membrane, their
charge set to δ, while the negative ones are placed
inside the latter membrane, their charges set to ε. Neutral
membranes inside h are duplicated and placed inside both
copies.

Each instantaneous configuration of a P system with active
membranes is described by the current membrane structure,
including the electrical charges, together with the multisets
located in the corresponding regions. A computation step
changes the current configuration according to the following
set of principles:
• Each object and membrane can be subject to at most one

rule per step, except for object evolution rules (inside
each membrane any number of evolution rules can be
applied simultaneously).

• The application of rules is maximally parallel: each object
appearing on the left-hand side of evolution, communi-
cation, dissolution or elementary division rules must be

subject to exactly one of them (unless the current charge
of the membrane prohibits it). The same reasoning applies
to each membrane that can be involved to communication,
dissolution, elementary or nonelementary division rules.
In other words, all possible rules that can be applied must
be applied at each computation step; the only objects and
membranes that do not evolve are those associated with
no rule, or only to rules that are not applicable due to the
electrical charges.

• When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached after a computation step (e.g., consider two rules
a→ b and a→ c in a region h; if an object a is present
in that region, then it can nondeterministically produce
either b or c, by using respectively the first or the second
rule).

• While all the chosen rules are considered to be applied
simultaneously during each computation step, they are
logically applied in a bottom-up fashion: first, all evo-
lution rules are applied to the elementary membranes,
then all communication, dissolution and division rules;
then the application proceeds towards the root of the
membrane structure. In other words, each membrane
evolves only after its internal configuration has been
updated.

• The outermost membrane cannot be divided or dissolved,
and any object sent out from it cannot re-enter the system
again.

A halting computation of the P system Π is a finite sequence
of configurations ~C = (C0, . . . , Ck), where C0 is the initial
configuration, every Ci+1 is reachable by Ci via a single
computation step, and no rules can be applied anymore in
Ck. The result of a halting computation is the multiset of
objects emitted from the skin during the whole computation.
A non-halting computation ~C = (Ci : i ∈ N) consists
of infinitely many configurations, again starting from the
initial one and generated by successive computation steps,
where the applicable rules are never exhausted. A non–halting
computation produces no output.

P systems can also be used as recognizers (see, e.g., [7]) by
employing two distinguished objects yes and no; exactly one
of these must be sent out from the outermost membrane during
each computation, in order to signal acceptance or rejection
respectively; we also assume that all computations are halting.
If all computations starting from the same initial configuration
are accepting, or all are rejecting, the P system is said to be
confluent. If this is not necessarily the case, then we have a
non–confluent P system, and the overall result is established
as for nondeterministic Turing machines: it is acceptance iff
an accepting computation exists. All P systems considered in
this paper are confluent.

In order to solve decision problems (i.e., decide languages),
we use families of recognizer P systems Π = {Πx : x ∈ Σ?}.
Each input x is associated with a P system Πx that decides
the membership of x in the language L ⊆ Σ? by accepting
or rejecting. The mapping x 7→ Πx must be efficiently
computable for each input length [8].

2

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Definition 2: A family of P systems Π = {Πx : x ∈ Σ?} is
said to be (polynomial-time) uniform if the mapping x 7→ Πx

can be computed by two deterministic polynomial-time Turing
machines F (for “family”) and E (for “encoding”) as follows:
• The machine F , taking as input the length n of x in unary

notation, constructs a P system Πn, which is common
for all inputs of length n, with a distinguished input
membrane.

• The machine E, on input x, outputs a multiset wx (an
encoding of x).

• Finally, Πx is simply Πn with wx added to the multiset
placed inside its input membrane.

Definition 3: If the mapping x 7→ Πx is computed by a
single polynomial-time Turing machine, the family Π is said
to be semi-uniform. In this case, inputs of the same size may be
associated with P systems having possibly different membrane
structures and rules.

Any explicit encoding of Πx is allowed as output of the
construction, as long as the number of membranes and objects
represented by it does not exceed the length of the whole
description, and the rules are listed one by one. This restriction
is enforced to mimic a (hypothetical) realistic process of
construction of the P system, where membranes and objects
are placed in a constant amount during each construction
step, and require actual physical space proportional to their
number. Moreover, notice that uniformity condition can also
be restricted to be computed in classes below P, such as log–
space Turing machines. We refer the reader to [8] for further
details on the encoding of P systems.

Finally, we describe how time and space complexity for
families of recognizer P systems are measured.

Definition 4: A uniform or semi–uniform family of P sys-
tems Π = {Πx : x ∈ Σ?} is said to decide the language
L ⊆ Σ? (in symbols L(Π) = L) in time f : N → N iff, for
each x ∈ Σ?,
• the system Πx accepts if x ∈ L, and rejects if x /∈ L;
• each computation of Πx halts within f(|x|) computation

steps.
Definition 5: Let C be a configuration of a P system Π.

The size |C| of C is defined as the sum of the number of
membranes in the current membrane structure and the total
number of objects they contain. If ~C = (C0, . . . , Ck) is a halting
computation of Π, then the space required by ~C is defined as

|~C| = max{|C0|, . . . , |Ck|}

or, in the case of a non-halting computation ~C = (Ci : i ∈ N),

|~C| = sup{|Ci| : i ∈ N}.

Non-halting computations might require an infinite amount of
space (in symbols |~C| = ∞). The space required by Π itself
is then

|Π| = sup{|~C| : ~C is a computation of Π}.

Notice that |Π| = ∞ occurs if either Π has a non-halting
computation requiring infinite space, or Π has an infinite set
of halting computations, such that for each bound b ∈ N there
exists a computation requiring space larger than b.

III. COMPUTING POWER OF MEMBRANE SYSTEMS

The first studies of the model concerned its computing
power: various types of Membrane systems have been com-
pared with computing models like automata, Turing machines
and register machines, or among themselves, also considering
normal forms [9] for systems.

It is known that using a single membrane we can only
generate the length sets of context–free languages, and the
power cannot be extended by using an unlimited number of
membranes. However, if we allow to dissolve membranes after
the application of rewriting rules then the computing power is
increased, when at least two membranes are used.

More formally, let us denote by NOPk(δ) (resp.
NOPk(nδ)) the family of natural numbers generated by P
systems having k membranes and using (resp. not using) the
dissolving membrane action. The following results can be
stated [3]:

Theorem 1: NOP1(nδ) = NOP∗(nδ) = NCF
NCF = NOP∗(nδ) ⊂ (NE0L ⊆)NOP2(δ)
NOP∗(δ)(⊆ ET0L) ⊂ NCS

Even when dissolving membrane action is allowed, uni-
versality cannot be reached. Some more ingredients can be
considered to obtain such a result like, e.g., cooperative rules,
catalysts, or priorities defining the order of rules application.

A rewriting rule a → w is said to be cooperative if a
contains more than one symbol. This turned out to be a feature
very powerful in the framework of membrane systems. In fact,
when using such rules one membrane turns out to be sufficient
to obtain the same power as Turing machines:

Theorem 2: NOP1(coop) = NOP∗(coop) = NRE

where coop indicates the possibility to use cooperative rules.
In order to show the functioning of the model, we sum-

marize in the following the main ideas behind this result. Let
us consider a register machine, a well-known computationally
complete device [10], consisting of n registers r1, . . . , rn, each
one containing a non-negative integer. The input is placed in
register r1, while all the other registers are initially set to
zero. The machine has a set of instructions (labelled by natural
numbers) of two kinds: increment instruction i : inc(r), j and
conditional decrement instruction i : dec(r), j, k. A program
counter (initially set to 1) define the instruction to execute.

An increment instruction increase by one the contents of
register r, and set the program counter to j, while the result
of a decrement instruction depends on the value of register r.
If r is greater than zero, then it is decremented by one and
the program counter is set to j; if r contains zero, then no
decrement is applied and the program counter is set to k.
The computation halts when the program counter reaches a
value associated with a specific halting instruction (setting the
program counter to zero), and the contents of r1 is the output
of the computation.

To simulate a register machine, we can use some symbols
pi, to store the actual value of the program counter (only one
symbol of this type can be present at each time step, and a
symbol r for each register r, used to store the value of the
corresponding register (by considering the multiplicity of the
symbol).

3

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Using rewriting rules, an increment instruction of the regis-
ter machine can be simulated by a membrane system by means
of a single rewriting rule of the form pi → pjr. In by applying
such a rule, the actual program counter pi is replaced by pj ,
and the contents of register r is incremented by one by adding
a symbol r.

A conditional decrement instruction can be simulated by
the following rules. First, we apply pi → p′idr; the symbol
dr will be used to check whether it is possible to delete an
occurrence of r (if r is greater than zero) by means of the
rule drr → d′r, while p′i is replaced by p′′i . If the decrement
is possible (i.e., there is at least one symbol r), then we have
now the symbol d′r, otherwise the symbol dr is still present.
The correct program counter can thus be set, by considering
the only applicable rule between p′′i d

′
r → pj and p′′i dr → pk.

A simpler form of cooperative rules can be defined by means
of catalysts. A rewriting rule with catalyst is a rule of the form
CX → Cw, where C and X are symbols and w is a string.
C is said to be a catalyst: it is needed to activate the rule, but
it is not changed by it. Such a feature also allows to obtain
universal systems, but only when priorities defining a partial
order concerning the application of the rules is also used:

Theorem 3: NOP2(cat, pri) = NOP∗(cat, pri) = NRE
One can also consider structured objects instead of atomic

ones, by consider strings of symbols: in this case, the systems
are called Rewriting P systems. Let us denote by RPk the
family of languages generated by Rewriting P systems using
k membranes and context–free rewriting rules. The following
theorem from [3] shows that using a single membrane only
context–free languages can be obtained, but a structure with
four membranes allow to obtain a strictly more powerful class.

Theorem 4: RP1(CF) = CF ⊂ RP4(CF)
Thus, it is evident from these results that the power of

such systems can be improved (as expected) by exploiting
membranes to define regions to keep separated specific subsets
of rules and objects. Once again, universality cannot be
obtained using only this basic set of ingredients, and more
features must be considered.

Further details can be found in [3] and [4].

IV. COMPUTING EFFICIENCY OF MEMBRANE SYSTEMS

Another interesting feature that can be considered, and
already described in Section 2, is the possibility to give an
active role to membranes. P systems with active membranes
allow to create new membranes during the computation by
division of existing membranes. In this way, we can obtain
a trade off between time and space resources that allows to
solve NP–complete (or even harder) problems in polynomial
time and exponential space (see, e.g., [6] [11] [12] [13] [14]
[15] [16]).

Theorem 5: The SAT problem can be solved in linear time
(with respect to the number of variables and the number of
clauses) by a confluent P-system with active membranes using
elementary membrane division only.

In fact, consider a boolean expression Φ in conjunctive
normal form, with m clauses and n variables. We can build
a P-system Π = (Γ,Λ, µ, w1, w2, R) having initial objects

a1, a2, . . . , an in region 2 and such that R is defined to contain
a polynomial number of rules (with respect to the size of the
input formula) that operate as it follow.

By using the variables ai and elementary membrane division
rules, in O(n) steps we generate 2n copies of membrane 2,
containing all possible truth assignments of the n variables of
Φ.

Then, in O(m) steps we verify if there is at least one
membrane containing a truth assignment that satisfies all the
m clauses of Φ. In this case, an object yes is sent out from
the skin membrane; otherwise, an object no is sent out.

Let us denote by PMCNAM, PMCEAM, and PMCAM
the class of problems solved in a polynomial number of
steps (with respect to the input length) by P systems with
active membranes without membrane division, with division
for elementary membranes only, and for both elementary and
non–elementary membranes, respectively.

The following results can be obtained directly from defini-
tions:

Theorem 6: PMCNAM ⊆ PMCEAM ⊆ PMCAM
Moreover, it is easy to show that
Theorem 7: P ⊆ PMCNAM
In fact, the "trick" is that the deterministic Turing machine

deciding L ∈ P is used to solve directly the problem in
polynomial time. Then, we build a P system with a single
membrane containing either an object Y ES, whenever an
input x ∈ L is given, or NO, otherwise. This requires
polynomial time, and then the P system simply send out the
object in a single computation step.

The opposite inclusion is also true:
Theorem 8: PMCNAM ⊆ P
In fact, a generic P system Π without membrane division

can be simulated by a deterministic Turing machine M , with
a polynomial slowdown, as proved in [14].

Since we have shown that the NP-complete problem SAT
can be solved when elementary membrane division is allowed,
then we can also state the following:

Theorem 9: NP ⊆ PMCEAM
From this result and from the closure properties for

PMCEAM it also follows:
Theorem 10: coNP ⊆ PMCEAM
P systems with elementary membrane division can be

simulated by Deterministic Turing machines using polynomial
space: PMCEAM ⊆ PSPACE. Hence:

Theorem 11: NP ∪ coNP ⊆ PMCEAM ⊆ PSPACE
A stronger result was later proved [17]: a solution to the

PP–complete problem SQRT–3SAT was obtained using P
systems with active membranes and elementary membrane
division. This proved that the class PP (Probabilistic Poly-
nomial time: the class of decision problems solvable by a
probabilistic Turing machine in polynomial time, with an error
probability of less than 1/2 for all instances) is also included in
PMCEAM. A characterization of the class P#P was obtained
in [18].

When division for non-elementary membranes is allowed,
even harder problems can be solved, as expected. In a series
of papers [19] [20] and [21] the following results were proved:

Theorem 12: PSPACE ⊆ PMCAM ⊆ EXPTIME

4

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

By limiting the nesting levels of membranes (and, as a
consequence, the membrane division) to a constant depth, the
problems in the class CH (Counting Hierarchy) can be solved,
as proved in [22].

V. SPACE COMPLEXITY OF P–SYSTEMS AND
POLARIZATION OF MEMBRANES

In order to clarify relations between the amount of time
and space needed to solve various classes of problems, in
[23] a definition of space complexity for P systems has been
introduced.

On the same line of what has been done for time complex-
ity, we can define space complexity classes for Membrane
systems. By MCSPACET (f) we denote the class of lan-
guages decided by confluent recognizer P systems (of type
T) within space f(n). In particular, by PMCSPACET (=

MCSPACE
[∗]
T (p(n))) we denote the class of languages

decided by confluent recogniser P systems using at most a
polynomial number of elements.

From the definitions and from the results we recalled in the
previous section, it is easy to see that:
• P ⊆MCSPACENAM (O(1))
• NP ∪ co−NP ⊆ EXPMCSPACEEAM
• PSPACE ⊆ EXPMCSPACEAM

In [24] and [25] it has been shown, respectively, that the
PSPACE–complete problem Quantified–3SAT can be solved
by P–systems with active membranes using a polynomial
amount of space, and that such P systems can be simulated
by Turing machines with only a polynomial increase in space
requirements, thus giving a precise characterization of the class
PSPACE in terms of space complexity classes for membrane
systems. A similar result to characterize the complexity class
EXPSPACE can be obtained by considering exponential
space P systems, as showed in [26]. Thus, all types of
Membrane systems with active membranes and both divisions
for elementary and non-elementary membranes, and working
in a polynomial space, exactly characterize PSPACE.

Investigation of classes of problems solved by P systems
using sublinear space was also considered. In order to consider
sublinear space, two distinct alphabets were considered in the
definition of P systems: an INPUT alphabet and a WORK al-
phabet. Objects from the INPUT alphabet cannot be rewritten
and do not contribute to the size of the configuration of a
P system. The size of a configuration was defined as the sum
of the number of membranes in the current membrane structure
and the total number of working objects they contain; the
space required by a computation is the maximum size among
all configurations. Moreover, we need to define a uniformity
condition for the families of P systems that is weaker than the
usual P uniformity, to avoid the possibility to solve a problem
directly by using the Turing machine that build the P systems
we use to compute. We consider DLOGTIME-uniformity,
defined on the basis of DLOGTIME Turing machines [27].
We refer the reader to [28] for formal definitions.

The efficient simulation of logarithmic space Turing ma-
chines (or other equivalent models) by employing standard
techniques used in the papers previously cited seems not to

work because of two main problems: we either need to use
a polynomial number of working objects (thus violating the
logarithmic space condition) or to use a polynomial number
of rewriting rules (thus violating the uniformity condition).
Nonetheless, it has been showed in [28] that such a simulation
can be efficiently done by using membrane polarization both
to communicate objects through membranes as well as to store
some information:

Theorem 13: Each log–space deterministic Turing machine
M can be simulated by a DLOGTIME-uniform family Π
of confluent recognizer P systems with active membranes in
logarithmic space.

An immediate corollary of Theorem 13 is that the class L
(the class of problems solved by log–space Turing machines)
is contained in the class of problems solved by DLOGTIME-
uniform, log–space P systems with active membranes.

The first definition of space, described above, was based
on a hypothetical implementation of P systems by means of
chemicals and molecules. Nonetheless, a different approach
can also be considered to define space complexity for P
systems, by focusing the definition of space on the simulative
point of view. In fact, various implementation of P systems
in silico have been proposed (see, e.g., [29], [30]) where the
multiplicity of each object in each membrane are stored by
means of binary numbers. This, of course, reduces the amount
of requested space, thus possibly leading to different results
related to complexity classes defined on the basis of this
definition of space.

Such problems have been recently investigated in [31].
The first results show that, for different considered systems,
the computational classes defined on the basis of this new
definition of space do not differ from the corresponding classes
defined on the basis of the original space definition. In particu-
lar, classes for systems using at least a linear amount of space
have been considered so far. It is conjectured that differences
between classes defined considering the two definitions of
space can be highlighted when sublinear space is considered,
like in the case of logarithmic space: an important open prob-
lem is to find specific classes where this difference exists, thus
proving that efficient storing of information concerning objects
can be exploited in some cases. It would also be interesting to
understand which features can be used/are necessary to obtain
the same result.

VI. VARIANTS OF MEMBRANE SYSTEMS

Apart from the basic model, strictly based on the internal
organization of the cell, many variants have been proposed in
the literature, by considering different features of the cell, or
different organizations and connection of the whole system.
We recall in the following some of the main variants and their
features; in particular, we will recall Tissue-like P systems and
Spiking Neural P systems.

Other variants have been proposed and investigated, like
population P systems, P automata, P colonies, metabolic P
systems, numerical P systems or P systems incorporating prob-
abilistic or quantum notions, or their application in various
fields has been discussed. As an example, in [32] an overview

5

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of research related to the design of robot controllers by means
of some variants of membrane systems is presented - namely,
numerical P systems, enzymatic numerical P systems, P
colonies, and XP colonies - and their performances compared
to traditional controllers for robot systems. In [33] the notion
of energy associated to membranes has been considered, to
define quantum-like systems.

We refer the interested reader to the webpage [5] and to the
Handbook [4] as a starting point for the various variants.

A. Tissue P Systems

A variant appeared quite early was that of Tissue P systems,
proposed in [34] to highlight role of inter-cellular communica-
tion, exchanging substances between adjacent cells. A specific
introduction to this variant can be found in chapter 9 of [4].

Definition 6: A tissue P system is a structure Π =
(Γ, E, w1, . . . , wd, R), where:
• Γ is an alphabet, i.e., a finite non-empty set of symbols,

usually called objects;
• E ⊆ Γ is the alphabet of objects initially located in

the external environment, in arbitrarily many copies (i.e.,
they are never exhausted during the computation);

• d ≥ 1 is the degree of the system, i.e., the initial number
of cells;

• w1, . . . , wd are finite multisets over Γ, describing the
initial contents of the d cells; here 1, . . . , d are labels
identifying the cells of the P systems, and 0 is the label
of the external environment;

• R is a finite set of rules.
The rules of R are of the following types:

(a) Communication rules, denoted by (h, u/v, k), where h
and k are distinct labels (including the environment),
and u and v are multisets over Γ (at least one of them
nonempty): these rules are applicable if there exists a
region with label h containing u as a submultiset and a
region k containing v as a submultiset; the effect of the
application of the rule is to exchange u and v between
the two regions. If h = 0 (resp., k = 0) then the rule
is denoted by (λ, u/v, k) (resp., (h, u/v, λ)), and in that
case we require multiset u (resp., v) to contain at least an
object from Γ−E, i.e., an object with finite multiplicity,
if v (resp., u) is empty

(b) Division rules, of the form [a]h → [b]h[c]h, where h 6= 0
is a cell label and a, b, c ∈ Γ: these rules can be applied
to a cell with label h containing at least one copy of a;
the effect of the application of the rule is to divide
the cell into two cells, both with label h; the object a
is replaced in the two cells by b and c, respectively,
while the rest of the original multiset contained in h is
replicated in both cells.

(c) Separation rules, of the form [a]h → [Γ1]h[Γ2]h,
where h 6= 0 is a cell label, a ∈ Γ, and {Γ1,Γ2} is
a partition of Γ: these rules can be applied to a cell with
label h containing at least one copy of a; the effect of
the application of the rule is to separate the cell into two
cells, both with label h; the object a is consumed, while
the objects from Γ1 in the original multiset contained

in h are placed inside one of the cells, and those from Γ2

in the other. All separation rules in R must share the
same partition {Γ1,Γ2} of Γ.

A tissue P system with cell division only uses communication
and division rules, while a tissue P system with cell separation
only uses communication and separation rules.

A configuration C of a tissue P system consists of a
multiset over Γ−E describing the objects appearing with finite
multiplicity in the environment, and a multiset of pairs (h,w),
where h is a cell label and w a finite multiset over Γ,
describing the cells. A computation step changes the current
configuration according to the following set of principles:
• Each object can be subject to at most one rule, and each

cell can be subject to any number of communication rules
or, alternatively, a single division or separation rule.

• The application of rules is maximally parallel: each
region is subject to a maximal multiset of rules (i.e., no
further rule can be applied).

• When several conflicting rules can be applied at the same
time, a nondeterministic choice is performed; this implies
that, in general, multiple possible configurations can be
reached after a computation step.

A halting computation ~C = (C0, . . . , Ck) of the tissue P sys-
tem Π is a finite sequence of configurations, where C0 is the
initial configuration, every Ci+1 is reachable from Ci via a
single computation step, and no rules are applicable in Ck.

Tissue P systems can be used as language recognisers
by employing two distinguished objects yes and no: we
assume that all computations are halting, and that one of
the objects yes or no (but not both) is released into the
environment, and only in the last computation step, in order to
signal acceptance or rejection, respectively. If all computations
starting from the same initial configuration are accepting, or
all are rejecting, the tissue P system is said to be confluent.
A confluent P system is said to accept if its computations are
accepting, and to reject otherwise. Confluent tissue P systems
may be locally nondeterministic, as long as all computations
agree on the final result. As a special case, tissue P systems
whose initial configuration generates a single computation are
called deterministic.

Different results concerning computational aspects related
to this variant have been presented in the literature (e.g. [35],
[36], [37], [38] [39]). Cell division rules and cell separation
rules have been considered in order to attack computationally
hard problems (e.g. [40],[41], [42], [43]), exploiting the same
ideas presented above for P systems with active membranes.
It was shown that NP–complete problems can be solved in
polynomial time, also in this case. Nonetheless, for this kind
of systems it is not possible to reach enough power to solve
PSPACE-complete problems, due to the missing structured
organization of membranes. In fact, in turned out that such
a model solves exactly all problems in the complexity class
P#P, that is the class of problems that are solved by Turing
machines using an oracle for counting problems [44].

B. Spiking Neural P Systems
Another variant that has been widely investigated are spiking

neural (SN) P systems [45], inspired by the structure and

6

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

functioning of spiking neural systems. In this kind of a variant,
there is a single objects, called the spike, communicated
through connections called synapses among neurons.

Formally, a Spiking Neural P system of degree m ≥ 1 is a
construct

Π = (O, σ1, σ2, . . . , σm, syn, in, out)

where:
1) O = {a} is the singleton alphabet (a is called spike);
2) σ1, σ2, . . . , σm are neurons, of the form σi = (ni, Ri),

with 1 ≤ i ≤ m, where:
a) ni ≥ 0 is the initial number of spikes contained in

σi;
b) Ri is a finite set of rules of the following two

forms:
(1) E/ac → a; d, where E is a regular expression

over a, and c ≥ 1, d ≥ 0 are integer numbers;
if E = ac, then it is usually written in the
following simplified form: ac → a; d;

(2) as → λ, for s ≥ 1, with the restriction that for
each rule E/ac → a; d of type (1) from Ri,
we have as 6∈ L(E) (where L(E) denotes the
regular language defined by E);

3) syn ⊆ {1, 2, . . . ,m} × {1, 2, . . . ,m}, with (i, i) 6∈ syn
for 1 ≤ i ≤ m, is the directed graph of synapses between
neurons;

4) in, out ∈ {1, 2, . . . ,m} indicate the input and the output
neurons of Π.

The rules of type (1) are called firing rules, while rules of
type (2) are called forgetting rules.

If a neuron σi contains k ≥ c spikes, such that ak ∈ L(E),
then the application of a spiking rule E/ac → a; d ∈ Ri
removes c spikes from σi (leaving k−c spikes in the neuron),
and prepares one spike to be sent to all neurons connected to
σi by means of a synapse defined in syn. If the delay d is set
to zero, then the spike is immediately emitted. On the contrary,
the neuron waits d computation steps before sending out the
spike. During the waiting time, the neuron is closed: it cannot
receive new spikes (spikes sent to σi by other neurons are
lost), and it cannot fire new rules. After d computation steps,
the neuron sends the spike out and becomes open again, ready
to receive spikes and to apply new rules.

To apply a forgetting rule as → λ from Ri, the neuron σi
must contain exactly s spikes. In that case, all s spikes are
removed from σi.

In each time unit, if a neuron σi can use one of its rules,
then a rule from Ri must be used. If two or more rules can
be applied in a neuron at the same time step, then only one of
them is nondeterministically chosen to be applied. This means
that in each neuron the rules are applied following a sequential
semantics, while all neurons work in parallel.

A configuration of a Spiking Neural system is described by
both the number of spikes present in each neuron and by the
number of steps to wait until it becomes open (initially all
neurons are open).

A computation starts in the initial configuration, with a
positive integer number given in input to a specific input

neuron as the number of time steps between the insertion of
two spikes into that neuron, and proceeds by applying the rules
in the neurons as described above. The output of the system is
the number considered to be the number of time steps between
the arrival of two spikes in a specific output neuron.

Spiking neural P systems have been widely investigated
from a computational point of view ([46], [47], [48], [49],
[50]), and many efforts are now concentrated on their appli-
cation implementing artificial intelligence and deep learning
strategies.

For instance, in [51] a Spiking Neural Network learning
model is built, based on an evolutionary membrane algorithm,
to solve the classical problem of supervised classification.
The designed algorithm is able to automatically adjust the
various learning parameters, by operating on the synaptic
weight during the learning stage of the spiking neural model.
The authors show that the proposed algorithm has competitive
advantages, with respect to other experimental algorithms
presented in the literature, in solving twelve supervised clas-
sification benchmark problems.

In [52] spiking neural P systems were used to solve the
skeletonization problem: skeletonization consists in an image
transformation, that simplifies the original image but preserv-
ing its topological properties. A parallel software simulating
SN P systems was implemented on a Graphics Processors
Units (GPU) architecture.

Fault diagnosis of power systems has been the subject of
[53], where the problem is approached by means of an interval-
valued fuzzy spiking neural P system: interval-valued fuzzy
logic is used within a spiking neural P system, in order to
deal with uncertainty. The paper shows that such a system
can be used to accurately diagnose faulty sections in a power
transmission networks.

VII. CONCLUSIONS

We survey some results concerning P systems with active
membranes, concerning both the computational aspects, as
well as computational efficiency. Some results concerning
space complexity of the model have also been recalled, as well
as some references to the main variants of the basic model.
For further reading on the subject, we refer the reader to the
main volumes on the subject [3] [4].

A recent survey on different strategies to approach compu-
tationally hard problems (containing links to various research
paper on the subject) by P systems with active membranes
can be found in [54], also containing some open problems
worthing investigations.

Links to various paper concerning space complexity for
membrane systems are available in [24] [25]; readers interested
in results concerning sublinear space or even constant amount
of space can refer to [55] and [56], respectively. A recent
survey concerning results obtained by considering different
bounds on space can be found in [57].

There are various research topics which deserve to be
studied with respect to computing power and efficiency. In
particular, precise characterizations of complexity classes ob-
tained by considering systems using specific or minimal subset

7

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

of features, restriction on their functioning (like, e.g., commu-
nication in only one direction), and relations of such classes
with standard complexity classes are currently active research
topics [58] [59] [60] [61] are currently under investigations.

Other research directions concern the application of vari-
ants of P systems to real-life problems, as described in
the previous section. Some actual research topics concern
neovascularization lesion [62], Covid-19 pandemic [63], and
the development of software tools to efficiently simulates P
systems by exploiting the high level of parallelism offered by
the use of modern GPUs [64].

Another interesting topic can be found in [65], where
self-organization and self-repairing processes for membrane
systems is presented and discussed (together with other types
of bio-inspired systems), including self-organizing method
based on optimization of cells placement and population P
systems.

ACKNOWLEDGEMENTS

This work was partially supported by Università degli Studi
di Milano-Bicocca, Fondo di Ateneo Quota Dipartimentale
(FAQD-2019).

REFERENCES

[1] C. Zandron, Computing Efficiency in Membrane Systems, Proc. of
Future Computing Conference 2021 (H. Sato, The Univ. of Tokyo,
ed.), The Thirteenth International Conference on Future Computational
Technologies and Applications, April 18 - 22, 2021, Porto, Portugal, 8–
13.

[2] Gh. Păun, Computing with membranes, J. of Computer and System
Sciences, 61(1), 2000, 108–143

[3] Gh. Păun, Membrane Computing. An Introduction, Springer, Berlin, 2002
[4] Gh. Păun, G. Rozenberg, A. Salomaa (Eds.), Handbook of Membrane

Computing, Oxford University Press, 2010
[5] The P systems Web page: http://ppage.psystems.eu/ (Retrieved 2022-05-

30)
[6] Gh. Păun, P systems with active membranes: Attacking NP-complete

problems, J. of Automata, Languages and Combinatorics 6(1), 2001, 75–
90

[7] E. Csuhaj-Varju, M. Oswald, Gy. Vaszil, P automata, Handbook of
Membrane Computing, Gh. Paun et al. (Eds.), Oxford University Press,
2010, 144–167

[8] N. Murphy, D. Woods, The computational power of membrane systems
under tight uniformity conditions, Natural Computing 10(1), 2011, 613–
632

[9] C. Zandron, C. Ferretti, G. Mauri, Two Normal Forms for Rewriting P
systems, in Machines, Computations and Universality, Proc. of 3rd Int.
Conf. MCU 2001, LNCS 2055, Springer-Verlag, 2001, 153–164

[10] M. Minsky, Computation: Finite and Infinite Machines, Prentice-Hall,
1967.

[11] S. N. Krishna, R. Rama, A variant of P-systems with active membranes:
Solving NP-complete problems, Rom. J. of Inf. Sci. and Tech., 2, 4 (1999)

[12] Z. Gazdag, G. Kolonits, A new method to simulate restricted variants of
polarizationless P systems with active membranes, Journal of Membrane
Computing, 1, 4, 2019, 251–261

[13] A. Leporati, C. Zandron, M. A. Gutierrez-Naranjo, P systems with input
in binary form, Int. J. of Found. of Comp. Sci., 17(1), 2006, 127–146

[14] C. Zandron, C. Ferretti, G. Mauri, Solving NP-complete problems
using P systems with active membranes, In I. Antoniou, C.S. Calude,
M.J. Dinneen, eds., Unconventional Models of Computation, Springer–
Verlag, London, 2000, 289–301

[15] C. Zandron, A. Leporati, C. Ferretti, G. Mauri, M. J. Pérez-Jiménez, On
the Computational Efficiency of Polarizationless Recognizer P Systems
with Strong Division and Dissolution, Fundamenta Informaticae, 87(1),
2008, 79-91

[16] A.E. Porreca, G. Mauri, C. Zandron, Non-confluence in divisionless P
systems with active membranes, Theoretical Computer Science, 411, 6,
2010, 878–887

[17] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with
Elementary Active Membranes: Beyond NP and coNP, in Gheorghe M.
et al. (eds.), CMC 2010, Jena, Germany, August 2010, LNCS 6501,
Springer, 2011, 338–347

[18] A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Simulat-
ing elementary active membranes with an application to the P conjecture,
LNCS 8961, Springer, 2014, 284–299

[19] A. Alhazov, C. Martin-Vide, L. Pan, Solving a PSPACE–complete
problem by P–systems with restricted active membranes, Fund. Inf. 58,
2, 2003, 67–77

[20] P. Sosik, The computational power of cell division in P systems: Beating
down parallel computers?, Natural Computing, 2(3), 2003, 287–298

[21] A.E. Porreca, G. Mauri, C. Zandron, Complexity classes for membrane
systems, RAIRO-Theor. Inform. and Applic. 40(2), 2006, 141–162

[22] A.E. Porreca, L. Manzoni, A. Leporati, G. Mauri, C. Zandron, Mem-
brane division, oracles, and the counting hierarchy, Fundamenta Infor-
maticae, 138, 1-2, 2015, 97–111

[23] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, Introducing a space
complexity measure for P systems, Int. J. of Comp. Comm. and Control,
4(3), 2009, 301–310

[24] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, P Systems with Active
Membranes: Trading Time for Space, Natural Computing 10(1), 2011,
167–182

[25] A. E. Porreca, A. Leporati, G. Mauri, C. Zandron, P systems with active
membranes working in polynomial space, Int. J. Found. Comp. Sc., 22(1),
2011, 65–73

[26] A. Alhazov, A. Leporati, G. Mauri, A. E. Porreca, C. Zandron, Space
complexity equivalence of P systems with active membranes and Turing
machines, Theoretical Computer Science 529, 2014, 69—81

[27] D.A. Mix Barrington, N. Immerman, H. Straubing, On uniformity within
NC1. Journal of Computer and System Sciences 41(3), 1990, 274–306

[28] A. E. Porreca, C. Zandron, A. Leporati, G. Mauri, Sublinear Space P
systems with Active Membranes, Membrane Computing: 13th Interna-
tional Conference, LNCS, CMC 2012, Springer, Berlin, 2013, 342–357

[29] J. Cecilia, J. Garcia, G. Guerrero, M. Martinez-del Amor, I. Perez-
Hurtado, M.J. Perez-Jimenez, Simulating a P system based efficient solu-
tion to SAT by using GPUs, Journal of Logic and Algebraic Programming,
79, 6, 2010, 317–325

[30] M. Garcia-Quismondo, R. Gutierrez-Escudero, M. Martinez-del Amor,
E. Orejuela-Pinedo, I. Perez-Hurtado, P-Lingua 2.0: A software frame-
work for cell-like P systems, International Journal of Computers, Com-
munications and Control, 4, 3, 2009, 234–243

[31] A. Alhazov, A. Leporati, L. Manzoni, G. Mauri, C. Zandron, Alternative
space definitions for P systems with active membranes. Journal of
Membrane Computing, 3, 2021, 87–96

[32] C. Buiu, A.G. Florea, Membrane computing models and robot controller
design, current results and challenges, Journal of Membrane Computing,
1, 4, 2019, 262–269

[33] A. Leporati, G. Mauri, C. Zandron, Quantum Sequential P Systems
with Unit Rules and Energy Assigned to Membranes, in R. Freund et
al (eds.), Membrane Computing, 6th Int. Work., WMC 2005, Vienna,
Austria, LNCS 3850, Springer, 2006, 310–325

[34] C. Martín-Vide, Gh. Păun, J. Pazos, A. Rodríguez-Patón, Tissue P sys-
tems, Theoretical Computer Science, 296, 2, 2003, 295–326

[35] R. Freund, A. Leporati, G. Mauri, A.E. Porreca, S. Verlan, C. Zandron,
Flattening in (tissue) P systems, LNCS 8340, 2014, 173–188

[36] B. Song, X. Zeng, A. Rodriguez-Paton, Monodirectional tissue P sys-
tems with channel states, Information Sciences, 546, 2021, 206–219

[37] Y. Luo, Y. Zhao, C. Chen, Homeostasis tissue-like P systems, IEEE
Transactions on NanoBioscience, 20(1), 2020, 126–136

[38] M. Gutierrez-Naranjo, M. J. Perez-Jimenez, A. Riscos-Nunez, F. J.
Romero-Campero, Characterizing tractability by cell-like membrane sys-
tems, in K.G. Subramanian et al. (Eds.), Formal Models, Languages and
Applications, Ser. Mach. Percept. Artif. Intell., vol. 66, World Scientific,
2006, 137-–154

[39] L. Valencia Cabrera, B. Song, Simulating Tissue P systems with promot-
ers through MeCoSim and P-Lingua, Journal of membrane computing, 2
(2), 2019, 95–107

[40] R. Ceterchi, D. Orellana-Martin, G. Zhang, Division rules for tissue P
systems inspired by space filling curves, Journal of Membrane Comput-
ing, 3(2), 2021, 105–115

[41] D. Diaz-Pernil, H.A. Christinal, M.A. Gutierrez-Naranjo, Solving the 3-
COL problem by using tissue P systems without environment and proteins
on cells, Information Sciences, 430, 2018, 240–246

[42] A. Leporati, C. Zandron, C. Ferretti, G. Mauri, Tissue P systems with
small cell volume, Fundamenta Informaticae, 154, 1-4, 2017, 261–275

8

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[43] Gh. Păun, M.J. Pérez-Jiménez, A. Riscos-Núñez, Tissue P systems with
cell division, International Journal of Computers, Communications &
Control, 3, 3, 2008, 295–303

[44] A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Charac-
terising the complexity of tissue P systems with fission rules, Journal of
Computer and System Sciences, 90, 2017, 115–128

[45] M. Ionescu, Gh. Paun, T. Yokomori, Spiking neural P systems, Funda-
menta Informaticae, 71, 2-3, 2006, 279–308

[46] Y. Jiang, Y. Su, F. Luo, An improved universal spiking neural P system
with generalized use of rules, Journal of Membrane Computing, 1, 2019,
270–278. https://doi.org/10.1007

[47] L. Pan, Gh. Păun, B. Song, Flat maximal parallelism in P systems with
promoters, Theoretical Computer Science, 623, 2016, 83–91

[48] T. Wu, S. Jiang, Spiking neural P systems with a flat maximally parallel
use of rules, Journal of Membrane Computing, 3, 2021, 221-231

[49] X. Zhang, B. Wang, L. Pan, Spiking Neural P Systems with a General-
ized Use of Rules, Neural Computation, 26, 2014, 2925-2943

[50] N. Zhou, H. Peng, J. Wang, Q. Yang, X. Luo Computational complete-
ness of spiking neural P systems with inhibitory rules for generating string
languages, Theoretical Computer Science, to appear

[51] C. Liu, W. Shen, L. Zhang, Y. Du, Z. Yuan, Spike Neural Network
Learning Algorithm Based on an Evolutionary Membrane Algorithm,
IEEE Access, 9, 2021, 17071–17082

[52] D. Diaz-Pernil, H.A. Peña-Cantillana, M.A. Gutierrez-Naranjo, A paral-
lel algorithm for skeletonizing images by using spiking neural P systems,
Neurocomputing, 115, 4, 2013, 81–91

[53] J. Wang, H. Peng, W. Yu, J. Ming, M.J., Perez-Jimenez, C. Tao, X.
Huang, Interval-valued fuzzy spiking neural P systems for fault diagnosis
of power transmission networks, Engineering Applications of Artificial
Intelligence, 82, 2019, 102–109

[54] P. Sosik, P systems attacking hard problems beyond NP: a survey.
Journal of Membrane Computing 1(3), 2019, 198—208

[55] A.E. Porreca, A. Leporati, G. Mauri, C. Zandron, Sublinear-space P
systems with active membranes. In E. Csuhaj-Varjú, M. Gheorghe, G.
Rozenberg, A. Salomaa, G. Vaszil, G. (eds.) Membrane Computing, 13th
International Conference, CMC 2012, LNCS 7762, 2013, 342–357

[56] A. Leporati, L. Manzoni, G. Mauri, A. E. Porreca, C. Zandron, Constant-
space P systems with active membranes, Fundamenta Informaticae
134(1–2), 2014, 111–128

[57] C. Zandron, Bounding the space in P systems with active membranes,
Journal of Membrane Computing 2(2), 2020, 137–145

[58] K.C. Buño, F.G. Cabarle, M.D. Calabia, H.N. Adorna, Solving the N-
Queens problem using dP systems with active membranes, Theoretical
Computer Science, 736, 2018, 1–14

[59] A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Monodi-
rectional P systems, Natural Computing, 15, 4, 2016, 551–564

[60] A. Leporati, L. Manzoni, G. Mauri, A.E. Porreca, C. Zandron, Char-
acterizing PSPACE with shallow non-confluent P systems, Journal of
Membrane Computing, 1, 2, 2019, 75–84

[61] Y. Luo, H. Tan, Y. Zhang, Y. Jiang, The computational power of timed P
systems with active membranes using promoters, Mathematical Structures
in Computer Science, 29, 5, 2019, 663-680

[62] J. Xue, A. Camino, S.T. Bailey, X. Liu, D. Li, Y. Jia, Automatic quantifi-
cation of choroidal neovascularization lesion area on OCT angiography
based on density cell-like P systems with active membranes, Biomedical
optics express, 9,7, 2018, 3208-3219

[63] F. Baquero, M. Campos, C. Llorens, J.M. Sempere, P Systems in the
Time of COVID-19, Journal of Membrane Computing, 3, 4, 2021, 246–
257

[64] I. Perez-Hurtado, L. Valencia-Cabrera, A. Riscos-Nunez, M.J. Perez-
Jimenez, Design of Specific P Systems Simulators on GPUs, In Mem-
brane Computing: 19th International Conference, CMC 2018, Dresden,
Germany, September 4–7, 2018, Revised Selected Papers, 11399, 2019,
202-207

[65] L. Duo, L. Xiubin, Z. Qingqi, Q. Yanling, L. Yue, Achievements,
challenges, and developing directions of bio-inspired self-repairing tech-
nology, Microelectronics Journal, 111, 2021, 105044

9

International Journal on Advances in Systems and Measurements, vol 15 no 1 & 2, year 2022, http://www.iariajournals.org/systems_and_measurements/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

