
29

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

Consistency Checking of Web Service Contracts
M. Emilia Cambronero

Department of Computer Science
University of Castilla-La Mancha

SPAIN
Email: emicp@info-ab.uclm.es

Joseph C. Okika
Department of Computer Science

Aalborg University, Aalborg
DENMARK

Email: ojc@cs.aau.dk

Anders P. Ravn
Department of Computer Science

Aalborg University, Aalborg
DENMARK

Email: apr@cs.aau.dk

Abstract—Behavioural properties are analyzed for web service
contracts formulated in Business Process Execution Language
(BPEL) and Choreography Description Language (CDL). The
key result reported is an automated technique to check consis-
tency between protocol aspects of the contracts. The contracts
are abstracted to (timed) automata and from there a simulation
is set up, which is checked using automated tools for analyzing
networks of finite state processes. Here we use the Concurrency
Work Bench. The proposed techniques are illustrated with a case
study that include otherwise difficult to analyze fault handlers.

Keywords:
Web Services contract, consistency, WS Choreography, WS

Orchestration.

I. I NTRODUCTION

Service Oriented Architecture (SOA) [1] reorganizes series
of previously operational software applications and support
infrastructure into an interconnected set of services, each
accessible through standard interfaces and messaging proto-
cols. It promotes services that are distributed, heterogeneous,
autonomous and open in nature. SOA is particularly applicable
when multiple applications running on varied technologiesand
platforms need to communicate with each other. With SOA,
enterprises can mix and match services to perform business
transactions with less programming effort. SOA is imple-
mented with web service technology. Thus there is consensus
today, that a web service is a programmable component that
provides a service and is accessible over the Internet. They
are based on standards like Simple Object Access Protocol
(SOAP) [2], [3], [4], can be standalone, or linked together to
provide enhanced functionality.

Businesses depend on web services, therefore their prop-
erties are of great importance, and informal checking and
consensus approaches to when a service is good enough may
not suffice. A business will only reluctantly use enterprise
applications offered as open web services, because of the
high risks involved in using untrusted services from unknown
providers. Formal contracts defining the desired properties are
therefore studied intensively today, because they are a wayto
manage the risks that come with the interaction among these
inter-organizational services.

Traditionally, contracts in an object oriented setting con-
sider only the functional aspect (pre-condition, post-condition,
invariant) of an interface specification. A pre-condition is a
constraint that must be satisfied before calling a method or

S o m e c o n t r a c t
S e r v i c e A

(B P E L o r C D L)

c o n s i s t e n t ?

p r o v i d e d

O r g a n i s a t i o n A

S o m e c o n t r a c t
S e r v i c e B

(B P E L o r C D L)

r e q u i r e d

D O M A I N

C o n t r a c t f o r
a g i v e n d o m a i n

 ~
 ~

 ~
 ~

O r g a n i s a t i o n B

Fig. 1. Analysis of Web Service Contracts

operation; it checks for valid arguments. A post-conditionis a
corresponding property that is true when the call completes; it
is the input-output relation. Finally, an invariant is a constraint
on the state of an object; it must hold before and after any
operation, and clearly after initialization of the object.These
concepts, as popularized by Meyer’s ”Design by Contract”
[5], are, however, just part of the properties exhibited by
web services. Since web services are intrinsically distributed,
they are by nature concurrent programs, and thus their overall
functionality depends not only on correct implementation of
the local functionality by sequential algorithms, but even
more on the interplay between local functionality and global
behavior (protocols and timing).

In this paper we focus on protocol or behavioural aspects
of service contracts. There are several proposals for con-
tract specification standards for web services, see e.g. [6]
for an overview. Prominent among these standards are the
Business Process Execution Language (WS-BPEL)[7] and
Choreography Description Language (WS-CDL) [8]. BPEL
offers a programming model for specifying the orchestration
of web services whereas CDL specifies the choreography of

30

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

interacting services. However, when web service contract are
specified using either BPEL or CDL, there is no assurance
that they are consistent unless verified. Though there are
efforts toward this form of analysis, there remain challenges
in the area of automated approach to checking consistency in
addition to other properties.

In previous work [9] we have demonstrated a viable solution
to the problem of checking for functional and behavioural
properties of individual services. This is done through trans-
lation of the specifications to timed automata followed by
model checking for relevant properties. In [10] we considered
the problem of consistency across specifications and identified
a need to set up a correspondence between the individual
automata. The novel contribution in this paper is to make such
a consistency check practical by translating the automata to
CCS, the input language for the Concurrency Work Bench. As
demonstrated by a case study, this technique is applicable and
gives a handle for automating yet another consistency check
for web services.

Directly Related Work:Web Service contracts is attracting
a lot of attention and several researchers propose various
approaches and frameworks toward specification and analysis.
For instance [11], [12], [13], [14] looks at it from a formal
semantics viewpoint, whereas [15], [16] propose languagesfor
specifying contracts. All these points to the fact that there is
an important need for contracts to be specified and analyzed.

An earlier treatment of contracts in an object-oriented
paradigm is Design by Contract [5]. Similar treatment con-
cerning components is found in [17]. Here, the functional
specification is achieved through assertions; which consists of
preconditions, post-conditions and invariants. The framework
in [18] takes a pragmatic approach at code level where the
assertions are part of the language. We agree that these
functional specifications are important in order to specifya
formal agreement between a service provider and its clients.
It expresses what a client should do before making a service
request and what the provider will give as result of it.

Among the related work of Web Service contracts is [19].
It proposes to visualize contracts by graph transformation
rules. Apart from expressing contracts in terms of pre- and
post-conditions of operations together with invariants, they
introduced the notions of provided and required contracts.
With this, they use the provided contracts to create the test
cases and test oracles whereas the required interfaces are used
to drive the simulation. We like their treatment of functional
specifications, but it needs to be supplemented with other
aspects, and one may gain something by investigating model
checking as a supplement to testing.

Quantitative aspect are researched in [20], [21], [22]. The
Web Service Level Agreement (WSLA) framework [20] is
targeted at defining and monitoring SLAs for Web Services.
WSLA enables service customers and providers to unambigu-
ously define the agreed performance characteristics and the
way to evaluate and measure them. We want to mention here
that WSLA complements Web Service Definition Language
(WSDL) [23], [24], which is an XML grammar that describes

Fig. 2. Wind Turbine Management System Components

the capabilities of Web services through its interface descrip-
tions. WSLA is used to define a contract between service
provider and service requester, but its treatment of functional
behavior is limited.

The above mentioned contributions focus on a single web
service language, and either the functional or the behavioral
side of a contract. We extend their perspective by considering
the overall consistency of a service specified in languages
covering more than one aspect. Furthermore we demonstrate
how existing tools are adapted for such checks.

Overview: In Section II, we give a detailed presentation
of Web Service contracts where the aspects of contracts are
described. We introduce in this section, a case study of a
Windmill Management System. Section III details the analysis
of Web Service contracts. General consistency, satisfiability,
and application specific issues are presented. A comparison
with other approaches follows and finally, we conclude in
Section V.

II. W EB SERVICE CONTRACTS

To manage the risks that come with the interaction among
several services, the service provider and a consumer must
have a contract that specifies the details of the service. As
mentioned before, it is important to note, however, that there
are different aspects of contract in play when dealing with
web services. First, there is the functional aspect which
describes the functional properties, and second, there is the
protocols aspect which specifies the behaviour as a sequenceof
messages, events, signals, etc. There is also the extra functional
QoS (Quality of Service) requirements aspect. This is further
illustrated following the example presented in the following
subsection.

A. Example

We consider a Windmill Management System. The system
monitors and controls wind turbines, and it has several com-
ponents which are web services located in different places.
We focus on three of these components, because it gives us

31

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

Fig. 3. Wind Turbine Management System Sequence Diagram

the scenario needed to specify a web service contract. The
components are briefly described below and shown as an UML
component diagram in Figure 2. The interaction between these
services are illustrated using a RT-UML sequence diagram,
shown in Figure 3. The informal requirements for the compo-
nents are:

• Wind Turbine Management: sends a report to Productivity
management every hour.

• Productivity Management: receives and analyzes the re-
port from Wind Turbine Management.

• Demand Management: generates a report of power needs
for Productivity Management.

We look at this example from two perspectives; WS-CDL
and WS-BPEL. WS-CDL provides a definition of the infor-
mation formats being exchanged by all participants. In other
words, it specifies the protocols. WS-BPEL provides the mes-
sage exchanges and functions as viewed by one participant. It
describes the functionality of a single business process offered
as a service by an enterprise.

B. Contract Aspects in WS-CDL

CDL offers a model for specifying a common understanding
of message exchanges. This language describes the chore-
ography of web services systems, that is, the relationships
between the composite services in a peer-to-peer environment.
It uses the WS definition language (WSDL) to define and
locate common type definitions.

WS-CDL is a very verbose notation, therefor the key
concepts of contracts in WS-CDL are summarized below,
while a full description of the demand management system
is found in appendix A.

Interface: In WS-CDL, each interface is associated with
a particular role, where aroleType enumerates potential
observable behaviors a participant can exhibit when interacting
with other participants. The syntax is the following:

<roleType name="DemandRoleType">
<description type="description"/>
<behaviour name="DemandBehaviour"

interface="WSDLDemandType" />
</roleType>

The behaviour element defines an optional interface at-
tribute, which identifies a WSDL interface type.

Functional Specification: pre-conditions, post-conditions
and invariants: In WS-CDL these elements are defined by
means ofworkunits; which define the constraints that must
be fulfilled for making progress and describe some activities
within a choreography. The constraints are give byXPath 2.0
expressions.

XPath 2.0 supports date and time variables, so we can
use these variables in WS-CDL as well. Furthermore, XPath
provides a number of functions to manage these datatype
values.

<workunit name="demand increase detected"
guard="cdl:equal(cdl:getVariable

(’tns:DemandClock’),’’,’’),’0:00’)"
block="true">

<assign roleType="DemandRoleType">
<copy name="calculateincrease"

causeException="true">
<source variable="true"/>
<target variable=
"cdl:getVariable(’detectedincreaseDone’,’’,’’)"/>

</copy>
</assign>

</workunit>

A workunit’s guard element establishes the condition,
which has to be fulfilled to perform the workunit activities.
This element allows us to define pre-conditions. Postconditions
and invariants can be introduced by appending a workunit with
the condition as a guard at the end of the normal workunit flow.
In order to define a condition we use XPath and XML Schema
expressions.

Protocol: A sequenceof activities is modeled in WS-CDL
using the ordering structuresequence, which contains a set
of activities that can perform sequentially.

A non-deterministic choiceis implemented in WS-CDL
using the ordering structurechoice. The WS-CDL standard
says that when two or more activities are specified here, only
one of these is selected and the other ones are disabled. It
is assumed that the selection criteria for those activitiesare
non-observable.

The following WS-CDL code corresponds to the fragment in
which the productivity system sends a message to the turbine
system for the turbines to be turned on or else it sends a
message to the demand system to indicate that it is not possible
to satisfy the new demand. As you can see, it is modeled in
WS-CDL by a choice activity in which we have two activities,
and only one of them can be finally executed.

<choice>
<workunit name="alt_else1_if"

guard="Available == true" block="true">

<interaction name="TurbinesOn_interaction"
operation="TurbinesOn"
channelVariable=

"Productivity2WindTurbineChannel">
<participate relationshipType=

"ProductivityWindTurbine"
fromRole="ProductivityRoleType"
toRole="WindTurbineRoleType"/>

<exchange name="TurbinesOnExchange"
action="request"/>

</interaction>

32

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

</workunit>

<workunit name="alt_else1_else"
guard="Available != true" block="true">

<interaction name="Imposible_interaction"
operation="Imposible"
channelVariable=

"Demand2ProductivityChannel">
<participate relationshipType=

"ProductivityDemand"
fromRole="ProductivityRoleType"
toRole="DemandRoleType"/>

<exchange name="ImposibleExchange"
action="request"/>

</interaction>
</workunit>

</choice>

An external choiceis implemented in WS-CDL using the
ordering structureworkunit, since it allows us to establish
conditions to execute the corresponding activity. For that
purpose, we may use the guards of workunits, by including in
a guard an expression related with the value of a variable.

In WS-CDL, we use the workunitrepeat to implement
repetition. A workunit that completes successfully must be
considered again for matching (based on its guard condition),
if its repetition condition evaluates totrue.

<workunit name="alt_else1_if"
guard="Available == true"
repeat="false" block="true" >

<interaction name="TurbinesOn_interaction"
operation="TurbinesOn"
channelVariable=

"Productivity2WindTurbineChannel">
<participate relationshipType=

"ProductivityWindTurbine"
fromRole="ProductivityRoleType"
toRole="WindTurbineRoleType"/>

<exchange name="TurbinesOnExchange"
action="request"/>

</interaction>
</workunit>

Timing: Lower bounds, upper bounds, explicit clocks, reset
and stop operations are handled by XPath and XML Schema.

XPath 2.0 supports date and time variables, so we can also
use these variables in WS-CDL. Actually, XPath provides a
number of functions to manage these datatype values. These
variables can be used in particular to delay the execution for a
certain time, or to establish the instant at which some actions
must be executed. For that purpose, we may use the guards of
workunits, by including in a guard an expression related with
the value of a time variable.

Specifically, we use the XPath and XML Schema notation
to specify the time aspects as follows:

a) Explicit clocks: are introduced byxs:time.
b) Bounds: are specified inside a workunit guard. In

fact, as we capture delays or instants of execution, the
specific expressions allowed are those constructed using
the operatorsop:time-equal op:time-less-than and
op:time-greater-than of XPath 2.0. We can also use the
hasDeadlinePassed operation, which is defined in the WS-
CDL specification to manage timing.

c) Reset.:In WS-CDL we reset a clock using anassign
activity, which creates or changes the variable defined by the

target element using the expression defined by the source
element (in the same role).

d) Stop.: In order to model that a clock is stopped, we
can capture the value of the time, of this specific instant, in
a clock variable and then, when we want to initiate the time
again, we can use the clock variable to continue from this
point. We use twoassign activities to capture and change
the time value.

e) Synchronization.:The interaction WS-CDL ele-
ment defines how the parties in a web services are syn-
chronized. An interaction activity involves two roletypes, and
an exchange of information between them. Actually, in WS-
CDL several exchanges of information are allowed in a single
interaction, and they can be eitherrequest or respond

types, and these actions can be synchronous or asynchronous,
depending on thealign attribute.

<interation name="The demand management system
sends increase in power demand to
the productivity system"

operation= = "sendIncreasing"
channelVariable="Demand2ProductivityC">
<description type="description">

Sending the necessary increase of demand
</description>
<participate

relationshipType= "DemandProductivity"
fromRole="DemandRoleType"
toRole="ProductivityRoleType" />

<exchange name= "CalculatedIncerasing"
informationType="Increase_demandType"
action="request">

</exchange>
<timeout

time-to-complete= "cdl:minor(cdl:getVariable
(’tns:Clock1’,’’,’’),’1:00’)">?

</interaction>

In thetime-to-complete attribute the timeframe in which
an interaction must complete is specified. Then, when this
time expires (after the interaction was initiated) and the
interaction has not completed, a timeout occurs and the
interaction finishes abnormally, causing an exception block
to be executed in the choreography. The optional attributes
fromRoleTypeRecordRef andtoRoleTypeRecordRef are
XML-Schema lists of references to record elements that will
take effect at both roleTypes of the interaction.

Faults: Choreographies may have one exception block,
which consists of some (possibly guarded)workunits, but only
one of them can be finally executed (the first one whose
guard evaluates to true). When the exception block is executed,
the choreography terminates abnormally, even if the default
exception workunit has terminated correctly. Exceptions are
the following:

f) Interaction failures: For instance, sending of a mes-
sage failed.

g) Timeout errors: For instance, an interaction did not
complete within the alloted time.

h) Application failures: These are for instance illegal
expressions.

CDL in summary:Overall CDL is a coordination language
which focuses on the communication between agents provid-
ing the services. It is therefore very appropriate to give it

33

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

a semantics by translation into a network of communicating
processes.

C. Contract Aspects in WS-BPEL

BPEL is a programming language to specify the behavior of
a participant in a choreography. It allows existing Web services
to be orchestrated into composite services. Choreography is
concerned with describing the message interchanges between
participants.

WS-BPEL is verbose also, so we do not include full
descriptions; but as for WS-CDL, we present the WS-BPEL
contract aspects below:

Interface: In WS-BPEL, the services with which a busi-
ness process interacts are modeled aspartnerLinks. Each
partnerLink is characterized by apartnerLinkType,
which defines the roles played by each of the services in the
conversation and specifies theportType provided by each
service to receive messages within the context of the conver-
sation. TheseportTypes are defined in the WSDL document,
and each role specifies exactly one WSDLportType.

In order to utilize operations via apartnerLink, the
binding and communication data, includingendpoint refer-
ences (EPR), for the partnerLink must be available. The
fundamental use of endpoint references is to serve as the
mechanism for dynamic communication of port-specific data
for services. An example fragment of apartnerLink is:

<partnerLinks>
<partnerLink name="productivity">
partnerLinkType="as:productivityDemandMSLT"

myRole="DemandMS"
partnerRole="productivity" />

</partnerLinks>

The endpoint references syntax is:

<service-ref reference-scheme="http://example.org">
<foo:barEPR xmlns:foo="http://example.org">
... </foo:barEPR>

</service-ref>

Functional Specification: preconditions, postconditionsand
invariants: WS-BPEL uses several types of expressions to
implement the functional part of a web service contract:

• Boolean expressions. These expressions can appear inside
a transition, a join, a while, and an if condition.

• Deadline expressions. The WS-BPEL elements that use
these expressions are until-expressions of onAlarm and
wait.

• Duration expressions. These appear in thefor expression
of onAlarm andwait, and therepeatEvery expression
of onAlarm.

• Unsigned Integer expressions, that include counter values
startCounterValue, finalCounterValue; as well
as branches in aforEach.

• General expressions inside assign activities.

Protocol: sequence, choice, and iteration:

• A sequence of activities is modeled by thesequence
structured activity. It contains one or more activities that
are performed sequentially, in the lexical order in which
they appear.

An example is the Productivity process which is given as
a sequence as follows:
<sequence>
<if
bpel:getVariableProperty(’x’,’time:level’)==0>

<then>
<!-Process productivity (invoke) - ->
<assign>

<copy>
<from partnerLink="productivityMS"
endpointReference="myRole" />
<to>&increaseData.productivityMSRef </to>
</copy>
</assign>
<invoke name="increaseDemand"

partnerLink="productivity"
portType="as:productivityPT"
operation="process"
inputVariable="increaseData">

<correlations>
<correlation set="increaseIdentification"
</correlations>

</invoke>
</if>

</sequence>

• Choice. Both non-deterministic and external choice are
expressed in WS-BPEL by means ofpick activities,
which waits for the occurrence of an event and then
executes the activity associated with it. When several
events occur simultaneously, an implementation depen-
dent choice is made. Thus, in analysis, the choice must
be modeled as non-deterministic.

• Conditional. WS-BPEL contains a conventional condi-
tional statement as well.

• Iteration. WS-BPEL uses thewhile andrepeatUntil
activities, to model iteration.
<while>

<condition>
$numberWindTurbine < 10

</condition>
<scope>

...
</scope>

</while>

<repeatUntil standard-attributes>
standard-elements
activity
<condition expressionLanguage="anyURI"?>

... bool-expr ...
</condition>

</repeatUntil>

Timing: Lower bounds, upper bounds, explicit clocks, reset
and stop operations are specified as in WS-BPEL using XPath
and XML Schema.

i) Explicit clocks, lower and upper bounds:They are
defined using XML Scheme notations, as explained before.

j) Reset: In WS-BPEL we can reset the clock using
an assign activity, which copies data from one variable to
another.

<assign validate="yes|no"? standard-attributes>
standard-elements

(<copy keepSrcElementName="yes|no"?>
from-spec

to-spec
</copy> |
<extensibleAssign>

...assign-element-of-other-namespace...
</extensibleAssign>) +

</assign>

34

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

k) Stop: In order to model that a clock is stopped in
WS-BPEL we do as in WS-CDL.

l) Concurrency and Synchronizations:They are imple-
mented in WS-BPEL using aflow activity, which provides
concurrency and synchronization. Aflow completes when all
of the activities enclosed by it have completed.

<flow standard-attributes>
standard-elements
<links>?

<link name="NCName">+
</links>

activity+
</flow>

Faults: Business processes are usually of long duration.
They can manipulate data in back-end databases and line-
of-business applications. Error handling in this environment
is both difficult and business critical. The overall business
transaction can fail or be canceled after many transactions
have been committed. In this cases, the partial work done must
be undone or repaired as best as possible. Error handling in
WS-BPEL processes therefore leverages the concept of com-
pensation, that is, application-specific activities that attempt to
reverse the effects of a previous activity that was carried out
as part of a larger unit of work that is being abandoned. It
thus provides the means for a forward error recovery.

Specifically, WS-BPEL provides constructs to declare fault
handling and compensation.

m) Compensation handler:WS-BPEL allows scopes to
delineate that part of the behavior that is meant to be reversible
in an application-defined way by specifying a compensation
handler. AcompensationHandler is simply a wrapper for
an activity that performs compensation.

<compensationHandler>
activity

</compensationHandler>

It is invoked with compensateScope, when an explicit
scope is compensated, orcompensate when successfully
completed inner scopes are compensated in reverse order. A
compensation handler for a scope is available for invocation
only when the scope completes successfully.

<compensateScope target="NCName"
standard-attributes>

standard-elements
</compensateScope>

<compensate standard-attributes>
standard-elements

</compensate>

Compensations may only be invoked incatch, catchAll,
compensationHandler and terminationHandler activi-
ties, where termination handlers provide the ability for scopes
to control the semantics of forced termination by disablingthe
scope’s event handlers and terminating its primary activity and
all running event handler instances.

n) Fault handling: In a business process it can be
thought of as a mode switch from the normal processing in a
scope. Fault handling in WS-BPEL is designed to implement
backward error-recovery in that it aims to undo or repair

the partial and unsuccessful work of a scope in which a
fault has occurred. The completion of the activity of a fault
handler, even when it does not rethrow the handled fault, is
not considered successful completion of the attached scope.
Compensation is not enabled for a scope that has had an
associated fault handler invoked.

Explicit fault handlers attached to a scope provide a way
to define a set of custom fault-handling activities, defined
by catch and catchAll constructs. Eachcatch construct
is defined to intercept a specific kind of fault, defined by
a fault QName. If the fault name is missing, then the catch
will intercept all faults with the same type of fault data. A
catchAll clause can be added to catch any fault not caught
by a more specific fault handler.
<faultHandlers>

<catch faultName="QName"?
faultVariable="BPELVariableName"?
(faultMessageType="QName" | faultElement="QName")?>*
activity

</catch>

<catchAll>?
activity

</catchAll>
</faultHandlers>

There are various sources of faults in WS-BPEL. A fault
response to aninvoke activity is one source of faults, where
the fault name and data are based on the definition of the fault
in the WSDL operation. Athrow activity is another source,
with explicitly given name and/or data. WS-BPEL defines
several standard faults with their names, and there may be
other platform-specific faults such as communication failures.

BPEL summary:BPEL is essentially a programming lan-
guage. However it has some features that are specially tailored
to make it easier to build robust systems that can recover from
a variety of faults. It includes features for expressing internal
concurrent activities; they should however be used with care,
because it is not always easy to comprenhed the interaction
with compensations and fault handlers.

III. A NALYZING WEB SERVICE CONTRACT

Having described all the elements of specifications, we now
present the translation to automata. In order to perform this
translation, we note that WS-CDL and WS-BPEL are XML
based languages for describing Web Services. The timed au-
tomata formalism we use is UppAal [25]; and it is represented
by another XML document, thus, the translation has been
developed with XSLT [26], XML Style sheets Language for
Transformation, which is a language for transforming XML
documents into other XML documents.

Figure 4 shows how the translation works: we have created
some XSL style sheets, where we use XSLT instructions to
extract the information from the WS-CDL document, and
then the UppAal document is automatically generated. This
document can be opened with the UppAal tool, and thus,
we can use the model-checker of UppAal to verify some
properties of interest. The tool can also run simulations of
the model. We have also created some XSL style sheets to
perform the same translation for WS-BPEL documents.

35

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

AvailableTNTurbinesCalculateTA

x<120

noavailable!

x:=0

turbines_on?

available!available_t!request_n_t?

x:=0

A. WindTurbineMS

TURNON

OrderTurnOn

z<30

NuTurbinesCalculateT

noavailable?

performsI!

impossible_i!

turbines_on!

available?available_t?request_n_t!increase_demand?

z:=0

B. ProductivityMS
CalculateI

y<60

performsI? y:=0

impossible_i?

y:=0

increase_demand!

y==0

C. DemandMS

Fig. 4. Wind Mill Management System modeled in UppAal

For the two aspects we can check the following.
General Properties:We check the absence of deadlock for

the CDL and for the BPEL; thus we check that the system is
able to progress from start to termination; in UppAal this is
easily formulated:

A[]not deadlock

This property holds for both systems.
The system should also be useful. If there are enough

available turbines to fulfill the increase of demand, then the
Productivity Management system shall send the command
to turn on some of them to the Wind Turbine management
system. This is formulated as the invariant that says that for
all computations (A) and for all states ([]), the two automata
locations coincide:

A[] WindTurbineMS.AvailableT →

ProductivityMS.OrderTurnOn

This example prpoerty holds as well.
Meeting the demand:Here we check for a BPEL property

that the methods can be executed satisfying the contracts or
generating the exceptions. For instance, when the demand
system sends a message to the productivity system, because
it detects an increase in the power demand (the message
increase demand). Also, the Wind Turbine Management
system always sends the number of available turbines on Pro-
ductivity Management system’s demand. This is represented
in UppAal as follows:

A[] ProductivityMS.NuTurbines →

WindTurbineMS.CalculateTA

which holds as well.

TurbinesOn

AvailableTNTurbinesCalculateTA

x<=2

no_value! FaultValue==true

noavailable!

turbines_on?

available!available_t!request_n_t?

x:=0

A. WindTurbineMS-BPEL

TURNON

OrderTurnOn

z<2

NuTurbinesCalculateT

z<1

reset?

noavailable?

performsI!

unattended!

turbines_on!

available?available_t?request_n_t!increase_demand?

z:=0

B. ProductivityMS-BPEL

CalculateI

y<=1

reset?

performsI? y:=0

unattended?

y:=0

increase_demand!

y==0

C. DemandMS-BPEL

Fig. 5. Wind Mill Management System modeled in UppAal - from BPEL

Model checking summary:The form of checking that has
been shown above is really exhaustive testing. Analysis of
what properties to check depends on a systematic inspection
of both requirements and the design by some review process,
for instance Software Reviews, Code Inspections, and other
proactive management processes whose purpose is to eliminate
or to find and remove errors in product design as early as
possible.

IV. CONSISTENCYCHECKING - SIMULATION

To check whether the two individually derived models
are consistent, we use the concept of (bi-)simulation. A (bi-
)simulation is an equivalence relation between state transition
systems, associating systems which behave in the same way
in the sense that one system simulates the other and vice-
versa. The automata generated from the two contract aspects
specification systems (WS-CDL, WS-BPEL) turn out to be
bi-similar in the following aspects:

• they both accept the same operation sequence; since
the WS-CDL specified the protocols, while WS-BPEL
contains the operation names but with more information.

• they also accept the same message sequence. Thus, the
state that receives the message (e.g.increase demand

36

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

in the example in Figure 4) is followed by a state that
sends the message (request n t) inn both automata. The
automaton from WS-BPEL may contain some internal
states.

We use another model checking tool CWB-NC to check the
consistency. We first map the contract captured by both BPEL
and CDL to CCS [27], one of the the design languages for
CWB, which has communication similar to UppAal; actually,
UppAal was developed by people who had prior experience
with CCS and the Concurrency Workbench. With the analo-
gous roots, we have not found it useful to spend much time
on whether this simple mapping preserves the semantics; it
is fairly obvious that it does. More languages such as timed
actions version of CCS, CSP, basic lotos, etc are supported as
well in the CWB tool; it performs model checking, preorder
checking and equivalence checking. As mentioned above, we
focus on equivalence checking which allows to identify the
behaviourally/observationally equivalent states in a system.

One may ask, why CWB is not used throughout the analysis,
since it includes model checking. The answer lies in the lackof
state variables; CWB can model the communication structure
only, whereas UppAal supports state variables with bounded
domains as well as clocks.

Translation from Uppaal to CWB CCS (CDL):We translate
the contract specification models in UppAal to a process
algebra CCS to allow us to check consistency. The Wind Mill
management system consists of 3 processes as shown below:

proc WTMCDL = (WMC | DMC | PMC)\
{request_n_t, available_t,
noavailable, available,
increase_demand, unattended,
performsI}

Processes WMC, DMC, and PMC correspond to Windtur-
bine management system, demand management system and
productivity management system respectively as modeled in
Figure 5. The three processes communicate through synchro-
nization events. For instance,request n t in Windturbine
management and productivity management.

Translation from Uppaal to CWB CCS (BPEL):Similar to
the translation of CDL, we translate the contract specification
models in UppAal to a process algebra CCS. However, we
have more processes from the BPEL contract specifications.
These additional processes are fault handlers, compensation
handlers and event handlers; but we focus on a fault handler.
One can easily add other processes without violating consis-
tency, since they are abstracted away when checking against
CDL. In this case, the Wind Mill management system consists
of 4 processes as shown below:

proc WTMBPEL = (WMC | DMC | PMC | FH)\
{fault, reset
request_n_t, available_t,
noavailable, available,
increase_demand, unattended, performsI}

Processes WMC, DMC, and PMC correspond to windtur-
bine management system, demand management system and
productivity management system respectively as modeled in
Figure 5. The three processes communicate through syn-

A. WTMCDL and WTMBPEL are trace equivalent

B. WTMCDL and WTMBPEL are trace bisimilar but not
with fault handling

Fig. 6. Consistency Checking using CWB-NC

chronization events. For instance,requestn t in windturbine
management and productivity management.

The simulation results:Figure 6 shows the result of bisimi-
larity check between CDL and BPEL. The first check,eq -S
bisim WTMCDL WTMBPEL checks that they are bisimilar.
The system has 74 states and 322 transitions. The CWB-
NC reports that the processes are bisimilar as well as trace
equivalent as shown in Figure 6 A. Recall that the fault
handling events are hidden. Hence the bisimilarity. However,
when the fault handler is made part of the system, the CWB-
NC reports as expected that they are not trace equivalent. The
lower part of Figure 6 B shows this result of checking that the
two processes are trace equivalent. It shows that the resultis
FALSE with an additional information that WTMBPEL has
trace: fault while WTMCDL does not. Therefore we note
that CDL can only be consistent with an abstract version of
BPEL where fault handlers are hidden.

V. COMPARISON WITH OTHER APPROACHES

Several model checking approaches has been employed
to provide some form of analysis. An illustrative example
which is well-explained is [28]. It deals with specification
in only BPEL where both the abstract model and executable
model are specified. The approach is based on Petri nets
where a communication graph is generated representing the

37

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

process’s external visible behaviour. It verifies the simulation
between concrete and abstract behaviour by comparing the
corresponding communication graphs.

Abouzaid and Mullins [29] propose a BPEL-based seman-
tics for a new specification language based on theπ-calculus,
which will serve as a reverse mapping to theπ-calculus
based semantics introduced by Lucchi and Mazzara [30]. The
mapping in this work is implemented in a tool integrating the
toolkit HAL and generating BPEL code from a specification
given in the BP-calculus. Unlike in our approach, this work
covers the verification of BPEL specifications through the
mappings while the consistency of the new language and the
generated BPEL code is yet to be considered. As a future
work, the authors plan to investigate a two way mapping. We
expect that our approach will be useful in this setting by taking
care of the consistency part of their approach.

In [31] the authors have presented an approach different
from model checking: a state propagation approach. It uses
preconditions and postconditions, and computes weakest ex-
ecution states. The authors argue that descriptions of pre-
conditions and postconditions are easier and more intuitive
compared to linear temporal logic formulae for example.
However, similar to the above mentioned approaches, only
one language is considered. In this case, consistency checking
of Web service function invocations using OWL-S metadata
descriptions.

Compared to our approach, the final goal is similar: that is
checking of consistency. However, there are some differences
in the approach. First, our approach considers more than one
language. This is because CDL has a more detailed capture of
abstract processes compared to the BPEL abstract processes.
Further, BPEL is a programming language to specify the
behavior of a participant in a choreography whereas choreog-
raphy is concerned with describing the message interchanges
between participants. In addition, a choreography definition
can be used at design time by a participant to verify that its
internal processes will enable it to participate appropriately in
the choreography. With this, certain properties of individual
services can be verified as well as verifying the consistency
between the protocols in both BPEL and CDL. This can also
be extended with some domain specific languages.

VI. CONCLUSION

We have presented an approach for the analysis of web
service contracts which uses model checking as its prime
tool. The analysis is kept manageable by separating contract
aspects and analyzing them individually. The price we pay
for this aspect oriented analysis is a check for consistency
between the individually derived models. However, this check
by setting up a bi-simulation between automata can perhaps
be automated, because the configurations of the two automata
are systematically related through naming conventions and
similarities in the WS-CDL and WS-BPEL constructs. The
ideas are illustrated with an example specification of a Wind
Turbine Management System which consists of three major
components (with their services).

In the current contribution, we demonstrate the approach
using timed automata as used in the UppAal tool [25], but in
other contexts [32] we have experimented with using JML [33]
for the functional aspects. We have not touched on verification
of timing aspects, although this work was initiated in [9]. Thus
the use of UppAal is to some extent a practical decision. We
feel that it is well justified for the kinds of analyses that
we discuss, because they are concerned with checking the
properties of the service as such. For checking implementation
conformance, it may not be ideal, and a translation to JML
may be much more useful, in particular since Java may be
an underlying implementation language, and JML is a formal
specification language tailored to Java. Its basic use is thus
the formal specification of the behavior of Java program
modules. This direction is, however, not the main line of our
investigation. The immediate work facing us is to streamline
the tool fragments developed for these experiments, and in
particular to make true the claim that the bi-simulation can
be integrated in a more automated analysis process. It is well
known that model checking has its limits, and investigations
are also being done of theorem proving approaches [34] which
may be more suitable for full implementation conformance
checking.

ACKNOWLEDGMENT

The second author is funded by the Nordunet3 Project
“Contract-Oriented Software Development for Internet Ser-
vices”.

REFERENCES

[1] T. Erl, Service-Oriented Architecture: Concepts, Technology, and De-
sign. Prentice Hall PTR, 2005.

[2] Y. Lafon and N. Mitra, “SOAP Version 1.2 Part 0: Primer
(Second Edition),” W3C, W3C Recommendation, Apr. 2007,
http://www.w3.org/TR/2007/REC-soap12-part0-20070427/.

[3] S. Seely,SOAP: Cross Platform Web Service Development Using XML.
Upper Saddle River, NJ, USA: Prentice Hall PTR, 2001, foreword By-
Kent Sharkey.

[4] A. Karmarkar, M. Gudgin, M. Hadley, Y. Lafon, J.-J. Moreau, H. F.
Nielsen, and N. Mendelsohn, “SOAP version 1.2 part 1: Messaging
framework (second edition),” W3C, W3C Recommendation, Apr. 2007,
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/.

[5] B. Meyer, Object-oriented software construction (2nd ed.). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1997.

[6] J. C. Okika and A. P. Ravn, “Classification of SOA ContractSpecifica-
tion Languages.” inProceedings of The IEEE International Conference
on Web Services (ICWS), Sep. 2008, to appear.

[7] T. Andrews, F. Curbera, H. Dholakia, Y. Goland, J. Klein,
F. Leymann, K. Liu, D. Roller, D. Smith, S. Thatte, I. Trickovic, and
S. Weerawarana,BPEL4WS, Business Process Execution Language
for Web Services Version 1.1, IBM, 2003. [Online]. Available:
http://download.boulder.ibm.com/ibmdl/pub/software/dw/specs/ws-
bpel/ws-bpel.pdf

[8] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, andY. Lafon, “Web
services choreography description language version 1.0,”W3C, W3C
Working Draft, Dec. 2004, http://www.w3.org/TR/2004/WD-ws-cdl-10-
20041217/.

[9] G. Diaz, J. J. Pardo, M. E. Cambronero, V. Valero, and F. Cuartero,
“Verification of Web Services with Timed Automata,” inProceedings
of First International Workshop on Automated Specificationand Verifi-
cation of Web Sites, vol. 157. Springer Verlags Electronics Notes in
Theoretical Computer Science series, 2005, pp. 19–34.

38

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

[10] E. Cambronero, J. C. Okika, and A. P. Ravn, “Analyzing Web Service
Contracts - An Aspect Oriented Approach.” inProceedings of the
International Conference on Mobile Ubiquitous Computing,Systems,
Services and Technologies (UBICOMM’2007). IEEE Computer Society
Press, November 2007, pp. 149 – 154.

[11] G. Castagna, N. Gesbert, and L. Padovani, “A theory of contracts
for web services,” inPLAN-X ’07, 5th ACM-SIGPLAN Workshop on
Programming Language Technologies for XML, jan 2007.

[12] S. Carpineti, G. Castagna, C. Laneve, and L. Padovani, “A formal
account of contracts for Web Services,” inWS-FM, 3rd Int.l Workshop
on Web Services and Formal Methods, ser. LNCS, no. 4184. Springer,
2006, pp. 148–162.

[13] H. Davulcu, M. Kifer, and I. V. Ramakrishnan, “CTR-S: A Logic for
Specifying Contracts in Semantic Web Services,” inProceedings of
WWW2004, May 2004, pp. 144–153.

[14] G. Pu, X. Zhao, S. Wang, and Z. Qiu, “Towards the semanticsand
verification of bpel4ws,”Electr. Notes Theor. Comput. Sci., vol. 151,
no. 2, pp. 33–52, 2006.

[15] D. Reeves, B. Grosof, M. Wellman, and H. Chan, “Toward a declarative
language for negotiating executable contracts,” inIn Proc. AAAI-99,
1999.

[16] C. Prisacariu and G. Schneider, “A formal language for electronic
contracts,” in9th IFIP International Conference on Formal Methods
for Open Object-Based Distributed Systems (FMOODS’07), ser. Lecture
Notes in Computer Science, M. Bonsangue and E. B. Johnsen, Eds., vol.
4468. Springer, June 2007, pp. 174–189.

[17] A. Beugnard, J.-M. Jezequel, N. Plouzeau, and D. Watkins, “Making
Components Contract Aware,”Computer, vol. 32, no. 7, pp. 38–45,
1999.

[18] B. Meyer,Eiffel: the language. Upper Saddle River, NJ, USA: Prentice-
Hall, Inc., 1992.

[19] R. Heckel and M. Lohmann, “Towards contract-based testing of web
services,” 2004.

[20] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services,”Journal of
Network and Systems Management, vol. 11, no. 1, pp. 57–81, March
2003.

[21] “Web Services Agreement Specification (WS-Agreement),”
https://forge.gridforum.org/projects/graap-wg/document/WS-
AgreementSpecification/en/7, 2004.

[22] “Web Services Architecture,” W3C Working Group Note,
www.w3.org/TR/ws-arch/, Feb 2004.

[23] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana, Web
Services Description Language (WSDL) 1.1, 1st ed., W3C, March 2001,
URL: http://www.w3c.org/TR/wsdl.

[24] D. Booth and C. K. Liu, “Web services description language (WSDL)
version 2.0 part 0: Primer,” W3C, Candidate Recommendation, March
2006.

[25] J. Bengtsson, K. G. Larsen, F. Larsson, P. Pettersson, and W. Yi,
“UPPAAL in 1995,” in Tools and Algorithms for Construction
and Analysis of Systems, 1996, pp. 431–434. [Online]. Available:
citeseer.ist.psu.edu/article/bengtsson96uppaal.html

[26] J. Clark, “XSL Transformations (XSLT) Version 1.0,” W3C,Tech.
Rep. REC-xml-19980210, 1998, http://www.w3.org/TR/xslt.[Online].
Available: citeseer.nj.nec.com/bray98extensible.html

[27] R. Milner, Communication and Concurrency. Upper Saddle River, NJ,
USA: Prentice-Hall, Inc., 1989.

[28] A. Martens, “Consistency between executable and abstract processes,”
in EEE ’05: Proceedings of the 2005 IEEE International Conference on
e- Technology, e-Commerce and e-Service (EEE’05) on e-Technology,
e-Commerce and e-Service. Washington, DC, USA: IEEE Computer
Society, 2005, pp. 60–67.

[29] F. Abouzaid and J. Mullins, “A calculus for generation,verification and
refinement of bpel specifications,”Electron. Notes Theor. Comput. Sci.,
vol. 200, no. 3, pp. 43–65, 2008.

[30] R. Lucchi and M. Mazzara, “A pi-calculus based semanticsfor ws-bpel,”
J. Log. Algebr. Program., vol. 70, no. 1, pp. 96–118, 2007.

[31] T. Kaizu, T. Noro, and T. Tokuda, “A state propagation method for
consistency checking of web service function invocations in web appli-
cations,” inICWE ’06: Workshop proceedings of the sixth international
conference on Web engineering. New York, NY, USA: ACM, 2006,
p. 18.

[32] GI-Dagstuhl, “Modelling contest: Common component modelling

example (cocome).” [Online]. Available: http://agrausch.informatik.uni-
kl.de/CoCoME

[33] J. Leavens, “JML’s rich, inherited specification for behavioural sub-
types,” in Proc. 8th International Conference on Formal Engineering
Methods (ICFEM06), ser. LNCS, vol. 4260. Springer, 2006.

[34] P. Giambiagi, O. Owe, A. P. Ravn, and G. Schneider, “Language-based
support for service oriented architectures: Future directions,” in ICSOFT
(1), J. Filipe, B. Shishkov, and M. Helfert, Eds. Setúbal, Portugal:
INSTICC Press, September 2006, pp. 339–344.

APPENDIX A: WS-CDL DESCRIPTION OF THEDEMAND

MANAGEMENT SYSTEM

<?xml version="1.0" encoding="UTF-8"?>
<package author="SCTR Group" name="" version="1.0">

<token name="WindTurbineRef" informationType="StringType"/>
<token name="ProductivityRef" informationType="StringType"/>
<token name="DemandRef" informationType="StringType"/>

<roleType name="WindTurbineRoleType">
<description type="description"/>
<behaviour name="WindTurbineBehaviour"/>
</roleType>

<roleType name="ProductivityRoleType">
<description type="description"/>
<behaviour name="ProductivityBehaviour"/>
</roleType>

<roleType name="DemandRoleType">
<description type="description"/>
<behaviour name="DemandBehaviour"/>
</roleType>

<relationship name="DemandProductivity">
<role type="DemandRoleType"/>
<role type="ProductivityRoleType"/>
</relationship>

<relationship name="ProductivityWindTurbine">
<role type="ProductivityRoleType"/>
<role type="WindTurbineRoleType"/>
</relationship>

<channelType name="Demand2ProductivityChannelType">
<role type="ProductivityRoleType"/>
<reference>
<token name="ProductivityRef"/>
</reference>
</channelType>

<channelType name="Productivity2WindTurbineChannelType">
<role type="WindTurbineRoleType"/>
<reference>
<token name="WindTurbineRef"/>
</reference>
</channelType>

<choreography>
<relationship type="DemandProductivity"/>
<relationship type="ProductivityWindTurbine"/>

<variableDefinitions>
<variable name="Demand2ProductivityChannel"

channelType="Demand2ProductivityChannelType"/>
<variable name="Productivity2WindTurbineChannel"

channelType="Productivity2WindTurbineChannelType"/>

<variable name="Available" informationType="xsd:boolean"
roleTypes="Productivity"/>

<variable name="WindTurbineClock"
informationType="tns:Clock" roleTypes="WindTurbine"/>

<variable name="DemandClock" informationType="tns:Clock"
roleTypes="Demand"/>

<variable name="ProductivityClock"
informationType="tns:Clock" roleTypes="Productivity"/>

<variable name="detectedincreaseDone"
informationType="tns:boolean" roleTypes="Demand"/>

</variableDefinitions>

<assign roleType="Productivity">

39

International Journal On Advances in Systems and Measurements, vol 1 no 1, year 2008, http://www.iariajournals.org/systems_and_measurements/

<copy name="Available_assign">
<source expression="true"/>
<target variable="Available"/>
</copy>
</assign>

<assign roleType="Demand">
<copy name="detectedincrease">
<source expression="false"/>
<target variable="detectedincreaseDone"/>
</copy>
</assign>

<sequence>
<workunit name="demand increase detected"

guard="cdl:equal(
cdl:getVariable(’tns:DemandClock’),

’’,’’),’0:00’)" block="true">
<assign roleType="DemandRoleType">
<copy name="calculateincrease"

causeException="true">
<source variable="true"/>
<target variable=

"cdl:getVariable(’detectedincreaseDone’,
’’,’’)"/>

</copy>
</assign>

</workunit>

<interaction name="Demand management system"
operation="sendIncreasing"
channelVariable="Demand2ProductivityChannel">

<participate relationshipType="DemandProductivity"
fromRole="DemandRoleType"
toRole="ProductivityRoleType"/>

<exchange name="CalculatedIncreasing"
action="request"/>

<timeout time-to-complete= "cdl:minor(
cdl:getVariable(’tns:DemandClock’,

’’,’’),’0:01’)"/>
</interaction>

<interaction name="RequestTurbines_interaction"
operation="RequestTurbines"
channelVariable="Productivity2WindTurbineChannel">

<participate
relationshipType="ProductivityWindTurbine"
fromRole="ProductivityRoleType"
toRole="WindTurbineRoleType"/>

<exchange name="RequestTurbinesExchange"
action="request"/>

<timeout time-to-complete= "cdl:minor(
cdl:getVariable(’tns:ProductivityClock’,’’,’’),
’0:02’)"/>

</interaction>

<interaction name="AvailableTurbines_interaction"
operation="AvailableTurbines"
channelVariable="Productivity2WindTurbineChannel">

<participate
relationshipType="WindTurbineProductivity"
fromRole="WindTurbineRoleType"
toRole="ProductivityRoleType"/>

<exchange name="AvailableTurbinesExchange"
action="request"/>

</interaction>

<choice>
<workunit name="alt_else1_if"
guard="Available == true" block="true">
<interaction name="TurbinesOn_interaction"

operation="TurbinesOn"
channelVariable="Productivity2WindTurbineChannel">

<participate
relationshipType="ProductivityWindTurbine"
fromRole="ProductivityRoleType"
toRole="WindTurbineRoleType"/>

<exchange name="TurbinesOnExchange"
action="request"/>

</interaction>
</workunit>
<workunit name="alt_else1_else"
guard="Available != true" block="true">

<interaction name="Imposible_interaction"
operation="Impossible"
channelVariable="Demand2ProductivityChannel">

<participate relationshipType="ProductivityDemand"
fromRole="ProductivityRoleType"
toRole="DemandRoleType"/>

<exchange name="ImposibleExchange"
action="request"/>

</interaction>
</workunit>

</choice>
</sequence>
</choreography>
</package>

APPENDIX B: CCS DESCRIPTION OF THEWIND M ILL

MANAGEMENT SYSTEM IN CDL AND BPEL
**
* This models the Wind Mill Management System

*
* CDL system is consistent with abstract BPEL
*
**

**** CDL Specification Description ***********

proc WTMCDL = (WMC | DMC | PMC)\
{request_n_t, available_t,
noavailable, available,
increase_demand, unattended, performsI}

proc WMC =
request_n_t.’available_t.(’noavailable.WMC
+ ’available.WMC)

proc PMC =
increase_demand.’request_n_t.available_t.
(available.’performsI.PMC
+ noavailable.’unattended.PMC)

proc DMC =
increase_demand.(unattended.DMC + performsI.DMC)

************************** BPEL *******************

proc WTMBPEL = (WMC | DMC | PMC | FH)\{fault, reset
request_n_t, available_t,
noavailable, available,
increase_demand, unattended, performsI}

proc FH = fault.’reset.FH

proc WMB =
request_n_t.(’novalue.WMB + ’available_t.
(’noavailable.WMB + ’available.turbines_on.WMB))

proc PMB =
increase_demand.’request_n_t.
(’reset.PMB + (available_t.
(available.’turbines_on.’performsI.PMB
+ noavailable.’unattended.PMB)))

proc DMB =
increase_demand.(’reset.DMB +
(unattended.DMB + performsI.DMB))

