
SoC yield Improvement

Using TMR Architectures for Manufacturing Defect Tolerance in Logic Cores

Julien Vial Arnaud Virazel Alberto Bosio Luigi Dilillo Patrick Girard Serge Pravossoudovtich
Laboratoire d’Informatique, de Robotique et de Microélectronique de Montpellier – LIRMM

Université de Montpellier II / CNRS
161, rue Ada

34392 Montpellier Cedex 5, France
Email: {vial, virazel, bosio, dilillo, girard, pravo}@lirmm.fr URL: http://www.lirmm.fr/~w3mic

Abstract—Manufacturing processes in the nanoscale era are
less reliable leading to lower yields. As memories are the most
important contributor to SoC (System-on-Chip) yield, fault
tolerance techniques based on redundancy are generally used
to improved memory yield. Conversely, logic cores embedded
in SoC usually do not have these important features and
manufacturing defects affecting these cores decrease the yield
of the entire SoC. Therefore, meaningful techniques for SoC
yield improvement must also consider logic cores. In this
paper, we propose and investigate the use of TMR (Triple
Modular Redundancy) architectures for logic cores to increase
the overall SoC yield. We also propose to improve the defect
tolerance capabilities of TMR architectures by partitioning
logic cores and adding voters on logic core’s cuts. Results show
that this improvement of the TMR architecture is very fruitful
to improve its tolerance capability with a low overhead in term
of silicon area. Results obtained on SoC examples (ISCAS’85
and ITC’99 benchmark circuits as logic cores merged with
memory cores with different rates) demonstrate the interest of
using TMR architectures for logic cores for SoC yield
enhancement.

Keywords-system-on-chip; logic cores; manufacturing
defects; yield ramp-up; fault-tolerance; TMR; test of tolerant
architecture.

I. INTRODUCTION

System on Chip (SoC) has becoming a widely accepted
architecture for complex and heterogeneous systems that
include digital, analog, mixed-signal, radio frequency,
micromechanical, and other types of components on a single
piece of silicon. The context of this study is related to SoCs
that are composed of two types of cores: memory and logic
cores, where memory cores occupy the major silicon area.
This is confirmed by the SIA (Semiconductor Industry
Association) roadmap, which forecasts a memory density of
up to 90% w.r.t. the overall SoC area in the next few years
[1].

Despite the efficiency of their design and manufacturing
processes, SoCs may be affected by defects leading to yield
loss. To increase SoC yield, memory cores usually embed
fault tolerance techniques, based on hardware redundancy
(spare rows and columns) [2]. With the technology reaching

nano dimension even the logic cores, embedded in a SoC,
become a challenge for the overall SoC yield level. Thus, to
achieve a better yield, also logic cores have to be designed
with some fault tolerant techniques in order to tolerate
manufacturing defects.

Existing fault tolerant techniques are commonly used to
tolerate on-line faults [3]. They use redundancies, i.e., the
property of having spare resources that perform a given
function and tolerate defects. Fault tolerance techniques are
generally classified depending on the type of redundancy.
Basically, four types of redundancy are considered: software,
information, temporal and hardware [4].

In software redundancy, error detection and recovery are
based on replicating application processes on a single or
multiple computers [5].

In information redundancy, additional data are used. For
example, the use of error-correcting codes requires extra bits
that need to be added to the original data bits [4].
Nevertheless, the use of error-correcting codes is widely
used in memory context; its application to logic cores
requires an important design effort associated to a high area
overhead used to predict and compute the code computation.

Temporal redundancy consists in forcing the system to
repeat a given operation and then compare the results with
those of the previous operation [6]. Such a redundancy is
able to tolerate transient or intermittent errors but not
permanent errors. Since manufacturing defects lead to
permanent errors, this solution is not suitable for the target of
our study.

Hardware redundancy consists in modifying the design
by adding additional hardware. For example, instead of
having a single processor, three processors are embedded to
perform the same operation. The failure of one processor is
tolerated thanks to a voter that chooses the majority outputs
[4].

In [7, 8, 9, 10], we have considered the well-known TMR
fault tolerant architecture in order to tolerate manufacturing
defects in logic cores. In this paper, we extend this study to
the SoC context. We first determine the set of conditions to
be satisfied in order to successfully resort to TMR to ramp-
up the overall SoC yield. These conditions are related to the
testability of the TMR version of logic cores. Therefore,
these conditions are evaluated by using an ad-hoc ATPG
procedure. The evaluation has been done on several SoC

1

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

examples with different memory ratio. Based on these
results, we first analyze the impact of the robustness of the
voter. Then, we propose to improve the fault tolerance of
TMR architectures by partitioning logic cores. Results
obtained on SoC examples (composed of ISCAS’85 and
ITC’99 benchmark circuits as logic cores and different
memory ratio) demonstrate the interest of using TMR
architectures for logic cores in the SoC context.

The remaining of the paper is organized as follows. In
Section II, we detail the TMR approach. Section III shows
the impact of using TMR architectures for logic cores on the
overall SoC yield. Section IV details the test strategy
targeting TMR architectures. Section V presents a set of
experimental results. Section VI presents an analysis of voter
robustness and an improvement of the TMR structure to
make it able to tolerate more defects. Finally, concluding
remarks are given in Section VII.

II. THE TMR APPROACH

In this section, we first present the TMR architecture and
then we show how many defects it can tolerate.

A. Basic principle

Several hardware fault tolerant architectures have been
proposed in the literature [11]. Generally, the degree of fault
tolerance is defined as the maximum number of faults that
can be tolerated in the system [12]. The classical hardware
redundancy architecture is the NMR (N Modular
Redundancy). A NMR structure is a fault tolerant
architecture based on N modules performing the same
function. The outputs of these modules are compared by
using a majority voter. In general, this architecture can
tolerate at least (N - 1) / 2 defects.

The case of N = 3 is called TMR and has been widely
studied and used in practical applications [13, 4]. The inputs
to three identical modules are tied together receiving thus the
same data, and their outputs feed a majority Voter (V) circuit
as shown in Figure 1.

Figure 1. TMR principle

As a result, the TMR architecture significantly reduces
the error probability at the primary outputs of the system.
The erroneous value propagated by a defective module can
be masked thanks to the presence of the two other fault-free
modules. In the simplest structure, the voter is the weak
point. If a fault appears in the voter, the TMR structure can

be possibly faulty. To avoid this type of problem, the voter
can be realized in software or with more robust design
techniques [14].

B. How many defects can be tolerated?

Basically, the TMR architecture can tolerate one defect
but, in practice, it can tolerate more than one defect. In fact,
if there are two defects, the TMR may function properly
depending on the nature and the location of the defects. Two
defects are simply tolerated by the TMR if their induced
errors cannot simultaneously drive the majority voter. On the
other hand, two defects are not tolerated if there are located
in two different modules and then propagate an error towards
identical outputs on each module.

 Let P be the input pattern.
 Let i be the set of erroneous outputs in the

module i due to the first defect when P is the input
(i = 1, 2, 3).

 Let j be the set of erroneous outputs in the
module j due to the second defect when P is the
input (j = 1, 2, 3).

Under these constraints, the capability to tolerate two
defects is formalized as follows:

 If i = j, defects are in the same module and,
consequently, are tolerated.

 If i ≠ j and i ∩ j = , defects are tolerated.
 If i ≠ j and i ∩ j ≠ , defects are not tolerated.

In Figure 2, two examples are shown with the same
pattern P feeding the three modules. The voter has been
omitted. Each defect is modeled as a stuck-at fault (f1 and f2

respectively). In the case of Figure 2.a, f1 is propagated
towards O1 in the first module and f2 is propagated towards
O2 in the second module. The majority voter receives two
correct values and one wrong value. The outputs of the TMR
are therefore correct and, consequently, faults f1 and f2 are
tolerated.

In the case of Figure 2.b, f1 is propagated towards O1 and
O2 while f2 is propagated towards O2. The voter receives
one wrong value for O1 and two wrong values for O2. So,
the value on the second output of the TMR is faulty.
Consequently, faults f1 and f2 are not tolerated.

As a result, two faults are tolerated when there is no
pattern able to propagate errors, coming from the two faults
in different modules, toward identical outputs in each
module.

In the case of more than two defects, multiple defects can
be handled by considering all possible fault couples between
them. For example, three defects are supposed to behave as
three couples of defects. If we assume now that all these fault
couples have non-masking behaviors (which is very unlikely
in practice), we can handle multiple defects by simply
considering all fault couples independently. Moreover, three
defects are not observable if the three associated fault
couples are not observable individually. Such assumption is
reasonable as it relies on the same principles (seldom
masking phenomena) than the single stuck-at fault
assumption with respect to multiple stuck-at faults.

2

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

O2

O1

O2

O2

O1

f1

f2

O1

a)

O2

O1

O2

O2

O1

f1

f2

O1

b)

Figure 2. Two stuck-at faults are
a) tolerated and b) not tolerated

III. USING TMR ARCHITECTURES IN SOC CONTEXT

In this section, we investigate the interest of using TMR
architectures in order to tolerate manufacturing defects in
logic cores and consequently improve the overall SoC yield.
We therefore analyze the conditions to be fulfilled to achieve
benefits in implementing such a TMR architecture instead of
using a simple non-tolerant architecture.

A SoC composed of memory and logic cores has a yield
expressed by:

YSoC YL YM (1)

where YM is the yield of memory cores and YL is the yield of
logic cores. These two yield factors are computed by
considering the contribution of the whole memory cores and
the whole logic cores:

YM YMi

i1

mc

and

YL YLi

i1

lc

(2)

where mc is the number of memory cores and lc is the
number of logic cores. Assuming that memories embed fault
tolerance technique, YM can hence be considered close to
100%. Consequently, to further increase the SoC yield, we
may resort to TMR architectures for tolerating
manufacturing defects in logic cores.

Let AL be the area of logic cores in the original SoC, AM

be the area of memory cores and AV the area of voters needed

for the TMR implementation in the fault tolerant SoC
(SoCTMR). The resulting area overhead of the TMR
architecture will be:

AO
AM 3AL AV

AM AL

 M
3AL AV

AM AL (3)

with M = AM / (AM + AL) representing the memory occupancy
ratio in the SoC. Thus, if we triplicate all logic cores to
implement TMR architectures on a given silicon area (e.g., a
wafer) containing several SoCs, we can have n SoCTMR

having a yield equal to YSoCTMR (YSoCTMR n SoCTMR having a
correct behavior). On the other hand, without TMR we can
have AO n SoC having a yield equal to YSoC (YSoC AO n
defect-free SoC). TMR architectures are therefore
worthwhile only if:

YSoCTMR

Ao

 YSOC

(4)

As YSoCTMR ≤ 1, using TMR architectures for yield
improvement is interesting only if:

YSOC
1

AO (5)

Let us now compute YSoCTMR and YSoC by using the
Poisson distribution to model the defect distribution on the
SoC. It would not be completely accurate to use the Poisson
distribution for large circuits due to clustering effects on
defects. More accurate calculation could be obtained by
using, e.g., the negative binomial distribution model [15, 16].
But, for a first and rough evaluation this is reasonable. In our
case, the Poisson distribution is a discrete probability
distribution that defines the probability that a number of
manufacturing defects occurs in a fixed area if these defects
occur with a known probability. Let X be the number of
manufacturing defects. Let λ be the average number of
expected defects for a given silicon area. Then,
 = n × p with n being the number of logic gates (or
transistors) and p being the average defect rate of a gate (or a
transistor). Let P{X = k} be the probability that the circuit
has k manufacturing defects. If n is high and p is low, the
binomial distribution becomes the Poisson distribution:

P X k e
k

k!
(6)

In the original SoC, the presence of a fault in logic cores
makes the entire system faulty. So, YL is the probability that
there is no defect inside logic cores:

YL P X 0 eL

(7)

3

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Consequently, YSoC becomes:

YSoC eL YM

(8)

The computation of YSoCTMR is more complex as it
depends on i) the ability of the TMR to tolerate
manufacturing defects and ii) the yield of voters.
Consequently, YSoCTMR can be expressed as follows:

YSoCTMR YT YV YM

(9)

where YT is the yield of the triplication without considering
the voter and YV is the yield of voters. Let us first compute YT

as the probability that no defects occur plus the probability
that the TMR tolerates all the defects, YT is formally defined
as follows:

YT P X 0 P X 1 R P X 2 R 3 P X 3 ...

YT eT 1 T R (T)2

2! R 3 (T)3

3! ...
(10)

with R being the probability that two defects are tolerated,
i.e., R reflects the tolerance capability of the TMR
architecture.

There are three times more gates (or transistors) into a
TMR architecture than into a non-redundant logic core. So,
by substituting λT by 3λL we obtain:

YT e3L 1 3L RCi
2

 (3L)i

i!

i2

(11)

YV is the probability that there is no defect inside voters:

YV P X 0 e

V
(V)0

0!
 e

V

(12)

and, by substituting λV by λL AV / AL we obtain:

YV e
L

AV

AL

(13)

Consequently, by considering Eq. (3), (9), (11) and (13)
and by substituting L 1M SoC , YSoCTMR becomes:

YSoCTMR eAOM SoC 1 3 1 M SoC RCi
2

3 1M SoC i

i!

i2

YM

(14)

and with YSoC eSoC SoC lnYSoC :

YSoCTMR e
AOM lnYSoC 1 3 1M lnYSoC RCi

2

3 1M lnYSoC i

i!

i2

YM

(15)

To summarize, implementing TMR architectures for
logic cores can improve the overall SoC yield if two
conditions are satisfied. First, YSoC 1/AO; this condition is
related to the area overhead needed to implement TMR
architectures for logic cores. Secondly, YSoCTMR AO YSoC

with YSoCTMR depending on YSoC, AO, M and R as shown in Eq.
15. To satisfy these conditions, we have to analyze the
impact of AO, M and R on YSoCTMR. AO and M are easily
computed but R requires determining the percentage of
tolerated couple of defect. In fact, the problem is how can we
determine the percentage of tolerated couple of defects for a
given TMR architecture of logic cores. As shown in the
example of Figure 2, tolerated defects lead to fault-free
values at the outputs of the TMR architecture thus
corresponding to the untestable defects. Consequently the
problem of determining the percentage of couple of tolerated
defects is equivalent to determine the untestable ones. In the
next section we investigate the test issues related to TMR
architectures in order to determine this percentage.

IV. TEST OF TMR ARCHITECTURES

In this section we detail specificities of the test of TMR
architectures. Especially, we present how the fault list and
the ATPG procedure have been created.

A. Test specificities

Testing tolerant architectures should be addressed in a
different way compared to the test of standard circuits.
Hereafter, we present the peculiarities of TMR testing. For
the sake of simplicity, we consider that all modules are
structurally identical. Nevertheless, further considerations
are still valid also in case of structurally different redundant
modules. The first peculiarity of a TMR architecture induced
by its redundant nature makes the test approach very
different from the test of a classical structure without
redundancy. In this type of structure, a fault affecting only
one module is masked thank to the two other fault-free
modules.

Testing a TMR architecture depends on its final use. In a
classical way of use, the goal is to tolerate potential on-line

n defects are equivalent to Cn
2

couples of defects

Probability that
there is no defect

Probability that
there is 1 defect

Probability that there are 2 defects

Probability that
there are 3 defects

4

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

defects (permanent and/or transient). Each module should be
fault-free after manufacturing. Due to the intrinsic
impossibility to test single stuck-at fault, the architecture has
to be modified during test [3] as shown in Figure 3.a. In this
modified architecture, redundancy is removed and each
single stuck-at fault becomes testable. Each module is
individually tested.

In the proposed way of use, the goal is to increase the
yield by tolerating permanent defects due to an imperfect
manufacturing process. In this case, the test consists in
testing globally the TMR structure in order to determine
what are the couples of defects which are tolerated or not
(determination of the R value). In this case, the architecture
is not modified for test purpose like the one presented in
Figure 3.b. Finally, we remind that the TMR basically
tolerates one single defect and optionally two or more
defects as previously discussed. For example, if several
defects are located in the same module, the TMR still works
properly.

To summarize, in the first approach, the question to be
answered during the test of the TMR is: “Are there one or
more than one manufacturing defects in each module of the
TMR architecture?”.

In the second approach, the question becomes: “Does the
logic core pass the test despite the presence of one or more
than one manufacturing defects?”.

Figure 3. Test of a) an on-line fault tolerant structure and
b) a manufacturing fault tolerant structure

B. Fault Model

The fault model widely used in structural testing to detect
a manufacturing defect is the single stuck-at fault model. An
ATPG based on single stuck-at fault model generates
patterns able to detect all single stuck-at faults. Such patterns
are not efficient in the context of multiple stuck-at faults
occurring in a redundant TMR architecture. Since the single

stuck-at fault is by definition tolerated (untestable) in the
TMR architecture, a different fault model has to be
considered. This fault model must be testable on primary
outputs of the TMR, and also be representative of actual
manufacturing defects. In Figure 2 we have seen that a
couple of stuck-at faults can be observed (not tolerated) on
primary outputs of the TMR and also can be testable.

In the following, we refer to a couple of stuck-at fault as
fault pair [17]. If there are two stuck-at faults in the structure,
these two faults are a fault pair. If there are more than two
stuck-at faults, these multiple stuck-at faults can be gathered
in fault pairs (under the assumption that no masking effect
occurs between faults). For example, three stuck-at faults f1,
f2, and f3 are equivalent to three fault pairs {f1, f2}, {f1, f3} and
{f2, f3}. In general, n stuck-at faults are equivalent to Cn

2

fault pairs.
To be testable and thus not tolerated, the two faults

composing the fault pair must affect two different modules
and propagate toward common module’s outputs as shown in
Figure 2.

C. Size of the fault list

Let us consider that each module has n single stuck-at
faults. The whole number of stuck-at faults in the three
modules is 3n. As {f1, f2} = {f2, f1}, the total number ψ of
fault pairs is:

2

39

!2)!23(

!3 2
2
3

nn

n

n
C n

(16)

We have now to compute the percentage of untestable
(tolerated) fault pairs to determine if the TMR architecture is
worthwhile for yield improvement. So, we simply generate
test patterns able to detect all testable fault pairs. The
remaining fault pairs are untestable. Since ψ is quadratic to n,
the use of a classical ATPG to detect the entire set of fault
pairs will be unfeasible due to a huge CPU time. In the next
sub-section, we show how to handle this particular point.

D. ATPG procedure

In order to determine the convenience of using the TMR
architecture to handle manufacturing defects, we have first to
determine the untestable fault pairs. An ATPG targeting the
fault pair model has to be run. Since the goal of this work
was not to develop an ATPG for fault pairs, we have adapted
an ATPG tool targeting single stuck-at faults to target fault
pairs.

Considering that a fault pair is composed of two stuck-at
faults (f1, f2), the proposed approach is to inject a permanent
fault (f1) in one module of the TMR architecture by
modifying the netlist. Then, an ATPG is run to test all stuck-
at faults in presence of the permanent fault f1. This process is
repeated until we have injected all stuck-at faults in one
module.

The simplicity of this approach is obtained at the cost of
high simulation time since n (number of single stuck-at faults

5

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

in one module) full ATPG runs are needed. To reduce this
drawback, we have shortened the fault pair list to be handled
as follows:

 When there is only one faulty module, the outputs
of this module are masked by the voter. Thus, all
fault pairs, which impact only one module, are
structurally untestable. These fault pairs can be
removed from the ATPG fault list.

 Symmetries of the TMR architectures are used to
reduce the fault pair list of the ATPG. As the
module inputs are tied together during test, fault
pairs are equivalent when their two stuck-at faults
have the same location in two different modules.
Therefore, equivalent fault pairs are removed from
the ATPG fault list.

With the help of these simplifications, the size of the
fault pair list becomes:

Nb _ Faute
n 2 n

2
(17)

The list of fault pairs can be further reduced by
determining and removing fault pairs that are structurally
untestable. Let us consider the fault pair {f1, f2} and their
output cones (list of outputs where the fault effect may be
propagated) {ф1, ф2}. Due to the presence of the voter, if
ф1 ∩ ф2 = Ø, the fault pair {f1, f2} is structurally untestable

and therefore, can be removed from the fault pair list. In
practical cases, the number of structurally untestable fault
pairs is quite large leading to a huge improvement of the
overall ATPG performance.

To summarize, Figure 4 presents the ATPG algorithm
with the fault pair model.

V. TMR INTEREST FOR SOC YIELD IMPROVEMENT

In the previous section we state the constraints to be
fulfilled in order to use TMR to increase SoC yield. In this
section we evaluate those constraints on a set of benchmark
SoCs.

Figure 4. ATPG algorithm

For the analysis, both ISCAS’85 and ITC’99
(combinational part only) benchmark circuits are used as
logic cores in a SoC. These benchmark circuits are simply
cloned three times and majority voters have been added to
implement a TMR architecture. Results of the ATPG runs
are reported in Table 1 for different values of M (Memory
occupancy ratio).

The first column lists the benchmark circuit name used as
logic core. Second and third columns show the number of
stuck-at faults in one logic core (# SAF) and the number of
fault pairs in the ATPG fault list (# ATPG FP) using
reduction techniques proposed in [8]. The next columns give
for three M scenarios (50%, 70% and 90%):

 1/AO: YSoC limit under which it is interesting to
implement a TMR as presented in Eq. 5.

TABLE I. INTEREST OF USING TMR ARCHITECTURES FOR SOC YIELD IMPROVEMENT

Logic
core

ATPG data M = 50% M = 70% M = 90%

SAF # ATPG FP 1/AO (%) Rmin (%) R (%) 1/AO (%) Rmin (%) R (%) 1/AO (%) Rmin (%) R (%)

c1908 1812 1.30M 49.02 90.68 56.42 61.58 86.36 56.42 82.78 65.75 56.42

c2670 2852 1.87M 46.19 95.88 75.95 58.86 94.00 75.95 81.10 84.92 75.95

c3540 3438 4.91M 49.50 89.54 54.09 62.03 84.67 54.09 83.06 61.59 54.09

c5315 4970 3.44M 48.08 92.69 93.20 60.68 89.31 93.20 82.24 73.10 93.20

c6288 6250 18.2M 49.63 89.24 38.02 62.15 84.23 38.02 83.13 60.49 38.02

c7552 7438 7.40M 48.90 90.95 84.92 61.46 86.76 84.92 82.71 66.74 84.92

b04 1477 535k 46.30 95.73 84.32 58.96 93.78 84.32 81.17 84.35 84.32

b05 2553 1.17M 48.08 92.69 88.65 60.68 89.31 88.65 82.24 73.10 88.65

b07 1120 399k 45.66 96.59 81.91 58.34 95.05 81.91 80.78 87.56 81.91

b11 1308 703k 47.73 93.35 74.50 60.35 90.28 74.50 82.03 75.54 74.50

b12 2777 857k 46.51 95.41 95.45 59.17 93.31 95.45 81.30 83.17 95.45

b13 835 59.6k 44.54 97.86 96.94 57.24 96.90 96.94 80.06 92.23 96.94

 Rmin: minimum value of R (percentage of
untestable fault pairs) above which it is beneficial to
use a TMR architecture.

 R: tolerance of the TMR architecture. It corresponds
to the percentage of untestable fault pairs provided
by the ATPG procedure.

6

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

On the base of these APTG results, we are now able to
determine if implementing TMR architectures for logic cores
will improve the overall SoC yield. This is simply done by
comparing columns Rmin and R in Table 1 for each M
scenario. It appears (concerned cases are highlighted by
shaded boxes) that using TMR for logic cores in SoC is
suitable for 2 logic core examples when
M = 50%, 3 logic core examples when M = 70% and 5 logic
core examples when M = 90% among the 12 logic core
examples. Therefore, TMR architectures are promising
solutions for SoC yield improvement. In the next, section we
propose to improve the fault tolerance of the TMR to achieve
higher yield benefit.

VI. TMR IMPROVEMENT AND DISCUSSION

As shown in the previous section, TMR architecture
seems to be a promising fault tolerant structure for logic core
to improve the overall SoC yield. Hereafter, we discuss
possible improvements of the basic TMR architecture by
first analyzing the impact of the yield of the voters and
secondly, by partitioning logic cores to increase the tolerance
of the TMR architecture. Then, we analyze the SoC yield
improvement. Finally, we extend the study to the general
SoC context where several logic cores are embedded in a
SoC.

A. Voter yield impact

For all equations and results presented before, the voters
added to implement TMR architectures for logic cores have
been considered to be possibly defective with the same
defect density than the overall SoC. In this sub-section, we
provide results by also considering that voters can be fault-
free as they are manufactured with robust design techniques.

Results are reported in Table 2. The first column lists the
benchmark circuit names used as logic cores in a SoC with
three M scenarios (50, 70 and 90%). Then, for each M
scenario, Table 2 first recalls 1/AO, values Rmin and R of
Table 1 and then gives values Rmin and R obtained when
voters are defect-free (Yv = 1). By comparing again columns
Rmin and R in Table 2, using TMR architectures for logic
cores is suitable for SoC yield improvement if voters are
designed in a robust way (Yv close to 100%).

B. Fault tolerance improvement

To improve the tolerance of TMR architectures, we
propose to increase the number of untestable fault-pairs by
reducing the combinational depth of logic cores. This is done
by partitioning each logic core into two or three equivalent
blocks so as to increase the tolerance of the TMR
architecture. As shown in Figure 5, majority voters are added
on circuit’s edge cut.

An important feature of partitioning the circuit is that the
tolerance of fault pairs increases when the number of
partition increases as well. For example, in the case of
double TMR (Figure 5.b), cores (modules) are divided into
two equivalent blocks. Each block operates independently
and a manufacturing defect in the first block has no impact
on the second block.

In a basic TMR architecture, the percentage of untestable
fault pairs is always greater than 33.33% as two stuck-at
faults in the same module are untestable. In a double TMR
architecture, if we consider that the first fault f1 impacts M1’,
then the fault pair {f1, f2} can be detected (not tolerated) if
and only if f2 is in M2’ or M3’. Conversely, if f2 is in M1’,
M1’’, M2’’ or M3’’, the fault pair is necessarily tolerated due
to the presence of the voters. Therefore, the percentage of
tolerated fault pairs in a double TMR architecture is always
greater than 66.66%.

TABLE II. IMPACT OF THE VOTER YIELD ON THE SOC YIELD IMPROVEMENT

Logic
core

M = 50% M = 70% M = 90%

1/AO

(%)
Rmin
(%)

R
(%)

Yv = 1 1/AO

(%)
Rmin
(%)

R
(%)

Yv = 1 1/AO

(%)
Rmin
(%)

R
(%)

Yv = 1

Rmin (%) R (%) Rmin (%) R (%) Rmin (%) R (%)

c1908 49.02 90.68 56.42 88.61 56.42 61.58 86.36 56.42 83.35 56.42 82.78 65.75 56.42 58.52 56.42

c2670 46.19 95.88 75.95 89.48 75.95 58.86 94.00 75.95 84.75 75.95 81.10 84.92 75.95 62.40 75.95

c3540 49.50 89.54 54.09 88.46 54.09 62.03 84.67 54.09 83.10 54.09 83.06 61.59 54.09 57.82 54.09

c5315 48.08 92.69 93.20 88.91 93.20 60.68 89.31 93.20 83.83 93.20 82.24 73.10 93.20 59.85 93.20

c6288 49.63 89.24 38.02 88.42 38.02 62.15 84.23 38.02 83.04 38.02 83.13 60.49 38.02 57.64 38.02

c7552 48.90 90.95 84.92 88.65 84.92 61.46 86.76 84.92 83.42 84.92 82.71 66.74 84.92 58.69 84.92

b04 46.30 95.73 84.32 89.45 84.32 58.96 93.78 84.32 84.70 84.32 81.17 84.35 84.32 62.26 84.32

b05 48.08 92.69 88.65 88.91 88.65 60.68 89.31 88.65 83.83 88.65 82.24 73.10 88.65 59.84 88.65

b07 45.66 96.59 81.91 89.63 81.91 58.34 95.05 81.91 84.99 81.91 80.78 87.56 81.91 63.08 81.91

b11 47.73 93.35 74.50 89.02 74.50 60.35 90.28 74.50 84.01 74.50 82.03 75.54 74.50 60.33 74.50

b12 46.51 95.41 95.45 89.39 95.45 59.17 93.31 95.45 84.60 95.45 81.30 83.17 95.45 61.97 95.45

b13 44.54 97.86 96.94 89.95 96.94 57.24 96.90 96.94 85.50 96.94 80.06 92.23 96.94 64.46 96.94

In the case of a triple TMR architecture (see Figure 5.c),
circuits (modules) are divided into three equivalent blocks. If
f1 impacts M1’, the fault pair {f1, f2} is necessarily tolerated if
f2 impacts M1’, M1’’, M2’’, M3’’, M1’’’, M2’’’ and M3’’’.

Consequently, the percentage of tolerated fault pairs is
always higher than 77.77%.

7

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 5. Improvement of the TMR architecture
a) basic, b) double and c) triple TMR architectures

More formally, if circuits are partitioned into k blocks,
then the percentage of tolerated fault pairs is always higher
than:

Tol _ FP 100
3k 2

3k
(18)

With this technique, the tolerance of the TMR
architecture increases with the number of partitions. The
main drawback of this technique is the requirement of
additional voters. In the next sub-section, we show that the
overhead of silicon area due to additional voters still remains
very low (less that 3% for large benchmark circuits).

The circuit partitioning consists in three steps. First, we
transform the circuit into a hypergraph. A hypergraph is a
generalization of a graph, where the set of edges is replaced
by a set of hyperedges. A hyperedge extends the notion of an
edge by allowing more than two vertices to be connected
together. Formally, a hypergraph H = (V, Eh) is defined as a
set of vertices V and a set of hyperedges Eh, where each
hyperedge is a subset of the vertices set V, and the size of an

hyperedge is the cardinality of this subset. Hypergraphs can
be used to naturally represent a gate-level VLSI circuit. The
vertices of the hypergraph can be used to represent the gates
of the circuit, and the hyperedges can be used to represent
the lines connecting these gates.

In a second step, we make the hypergraph partitioning.
The proposed technique of circuit partitioning for TMR
architecture improvement utilizes sh-METIS, a multilevel
hypergraph partitioning algorithm based upon the multilevel
paradigm [18]. The quality of the partitioning produced by
sh-METIS in terms of cut size (the size of the hyperedge cut
is representative of the area overhead of the proposed
solution), the computational time needed to partition large
combinational circuits, and the availability of sh-METIS in a
free access on the Web site of the University of Minnesota
have motivated our choice for this academic tool. In a
performance comparison of their multilevel partitioning
algorithm with other state-of-the-art partitioning schemes,
the authors of sh-METIS reported that their algorithm
produces partitioning that are on the average 6% to 23%
better (in terms of cut size) than existing algorithms, and
often requires 4 to 10 times less time than that required by
other schemes.

The final step consists in adding voters in the place of
hyper-cuts. The number of added voters is equal to number
of hyper-cuts that is optimal using sh-METIS software.

The ATPG procedure presented in Section IV.D has been
run on Double TMR architecture, i.e., logic cores have been
partitioned into two modules (having the same size).
Experimental results are reported in Table 3. The first
column of the table lists the benchmark circuit names used as
logic cores in a SoC with three M scenarios (50, 70 and
90%). Then, for each M scenario, Table 3 (see the last page
of the paper) provides results for both Basic TMR and
Double TMR. As previously, each sub-column gives values
1/AO, Rmin and R.

A first comment regarding these results is that the
partitioning of logic cores increases the probability R. For
example, when M = 90%, 11 logic core examples make the
use of TMR architectures suitable for SoC yield
improvement. Of course, if the number of partitions
increases, the tolerance of the TMR increases too. This is
shown in Table 4 that provides results using Basic, Double
and Triple TMR for a unique M scenario (70%).

A second comment is that we can analyze the impact of
the logic core partitioning on the area overhead (AO). From
data in Table 3 (column 1/AO) we have computed the area
overhead needed to implement a Double TMR compared to a
Basic TMR and done it for the different memory ratio. From
these results, we notice that the area overhead is low for
large benchmark circuits: less than 4.53% when M = 50%,
less than 3.45% when M = 70% and less than 1.55% when
M = 90%.

TABLE III. INTEREST OF USING LOGIC CORE PARTITIONING FOR SOC YIELD IMPROVEMENT

Logic
core

M = 50% M = 70% M = 90%

Basic TMR Double TMR Basic TMR Double TMR Basic TMR Double TMR

8

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1/AO

(%)
Rmin
(%)

R
(%)

1/AO

(%)
Rmin
(%)

R
(%)

1/AO

(%)
Rmin
(%)

R
(%)

1/AO

(%)
Rmin
(%)

R
(%)

1/AO

(%)
Rmin
(%)

R
(%)

1/AO

(%)
Rmin
(%)

R
(%)

c1908 49.02 90.68 56.42 47.85 93.13 89.49 61.58 86.36 56.42 60.46 89.96 89.49 82.78 65.75 56.42 82.10 74.74 89.49

c2670 46.19 95.88 75.95 45.77 96.46 92.46 58.86 94.00 75.95 58.45 94.85 92.46 81.10 84.92 75.95 80.84 87.06 92.46

c3540 49.50 89.54 54.09 48.78 91.22 88.36 62.03 84.67 54.09 61.35 87.15 88.36 83.06 61.59 54.09 82.64 67.70 88.36

c5315 48.08 92.69 93.20 47.73 93.35 94.30 60.68 89.31 93.20 60.35 90.28 94.30 82.24 73.10 93.20 82.03 75.54 94.30

c6288 49.63 89.24 38.02 49.38 89.84 76.35 62.15 84.23 38.02 61.92 85.11 76.35 83.13 60.49 38.02 82.99 62.66 76.35

c7552 48.90 90.95 84.92 48.66 91.48 94.40 61.46 86.76 84.92 61.24 87.53 94.40 82.71 66.74 84.92 82.58 68.65 94.40

b04 46.30 95.73 84.32 45.25 97.10 93.19 58.96 93.78 84.32 57.94 95.79 93.19 81.17 84.35 84.32 80.52 89.43 93.19

b05 48.08 92.69 88.65 47.73 93.35 89.09 60.68 89.31 88.65 60.35 90.28 89.09 82.24 73.10 88.65 82.03 75.54 89.09

b07 45.66 96.59 81.91 44.05 98.32 91.23 58.34 95.05 81.91 56.75 97.56 91.23 80.78 87.56 81.91 79.74 93.90 91.23

b11 47.73 93.35 74.50 45.66 96.59 87.75 60.35 90.28 74.50 58.34 95.05 87.75 82.03 75.54 74.50 80.78 87.56 87.75

b12 46.51 95.41 95.45 46.19 95.88 96.27 59.17 93.31 95.45 58.86 94.00 96.27 81.30 83.17 95.45 81.10 84.92 96.27

b13 44.54 97.86 96.94 44.35 98.05 97.36 57.24 96.90 96.94 57.05 97.18 97.36 80.06 92.23 96.94 79.94 92.93 97.36

TABLE IV. BASIC, DOUBLE AND TRIPLE TMR COMPARISONS

Logic
core

M = 70%

Basic TMR Double TMR Triple TMR

1/AO

(%)
R

(%)
1/AO

(%)
R

(%)
1/AO

(%)
R

(%)

c1908 61.58 56.42 60.46 89.49 59.92 96.50

c2670 58.86 75.95 58.45 92.46 57.94 93.90

c3540 62.03 54.09 61.35 88.36 60.28 93.78

c5315 60.68 93.20 60.35 94.30 60.24 96.38

c6288 62.15 38.02 61.92 76.35 61.69 84.14

c7552 61.46 84.92 61.24 94.40 61.01 96.22

b04 58.96 84.32 57.94 93.19 57.44 95.53

b05 60.68 88.65 60.35 89.09 59.81 93.30

b07 58.34 81.91 56.75 91.23 56.47 94.11

b11 60.35 74.50 58.34 87.75 57.44 93.91

b12 59.17 95.45 58.86 96.27 58.24 97.79

b13 57.24 96.94 57.05 97.36 56.75 97.83

C. SoC yield improvement

To illustrate and prove the interest of using TMR
architectures, we have considered, as case study, two
benchmark circuits (c5315 with M = 70% and b05 with
M = 90%) as the logic cores in a SoC. We have computed
the yield improvement (YI) reachable if a fault-tolerant SoC
(using TMR for logic cores) is manufactured instead of a
classical SoC (only memory cores are fault-tolerant):

YI 100
YSoCTMR YSoC AO

YSoC AO (17)

The graphs in Figures 6 and 7 show the yield
improvement for the two SoC examples. In each graph,
Basic and Triple TMR implementations are considered.
Moreover, voters are considered to be either possibly faulty
or fault-free.

Figure 6. Yield improvement for the c5315 with M = 70%

Figure 7. Yield improvement for the b05 with M = 90%

For example, let us consider the b05 benchmark circuit
used as unique logic core. From Figure 7, if the initial yield
YSoC = 30%, the yield improvement (YI) is about 31.28% for
a Basic TMR implementation (59.17% when voters are fault-
free) and about 42.69% for a Triple TMR implementation
(90.49% when voters are fault-free). These results clearly
show the interest of using TMR architectures for SoC yield
improvement.

9

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

D. General SoC context

Until now, we have considered simple SoC examples
composed by only one logic core. In the general SoC
context, several logic cores are embedded. Consequently, the
probability R (Ri) has to be computed for each logic core i
translated into a TMR architecture. Then, we have to
compute the value R (Req) representing the fault tolerance of
the whole logic part by applying the following equation:

Req 1

(1 Ri) 3ni

2

C
i1

lc

n j

j1

lc

2

C (19)

where lc is the number of logic cores and ni is the number of
single stuck-at faults in the logic core i. We also have to
compute the Rmin value (Rmineq), which represents the
minimum value of Req above which it is beneficial to use
TMR architectures, by using Eq. 15.

For example, let us assume a SoC with M = 70% and two
logic cores C1 (c7552) and C2 (b05). From data reported in
Table 1, we extract that R1 = 84.92% and R2 = 88.65%. If
considered as independent, these two cores have no interest
to successfully resort to TMR, i.e., R < Rmin in Table 1.
Now, if these cores are embedded in the same SoC,
Req = 90.90% and Rmineq = 87.45%. So, as Req > Rmineq the
TMR versions of C1 and C2 are suitable for SoC yield
improvement.

It is also important to notice that C1 and C2 can be viewed
as two partitions of a logic core C. Each partition is not
enough fault tolerant (Ri < Rmini) but C tolerates enough
fault pairs as Req > Rmineq. Consequently, this example
demonstrates the interest of using logic core partitioning to
improve the fault tolerance of the TMR.

VII. CONCLUSION

In this paper analyzes the use of TMR architectures for
logic cores to improve the overall SoC yield. We have
computed the necessary conditions that make TMR
architectures more attractive compared to non-tolerant logic
cores. These conditions are related to i) the initial SoC yield
(YSoC), ii) the memory ratio (M), iii) the area overhead
needed to implement the TMR (AO) and iv) the tolerance of
the TMR implementation (R). A dedicated ATPG targeting
TMR architectures has been used to evaluate the R parameter
for different values of AO and M. We have also analyzed the
impact of the voter yield and the interest of partitioning logic
cores to increase the fault tolerance of the TMR architecture.
Results have shown that using TMR architectures for logic
cores can be very fruitful to improve the overall SoC yield.

REFERENCES

[1] Semiconductor Industry Association (SIA), “International
Technology Roadmap for Semiconductors (ITRS)”, http://itrs.net,
2007.

[2] S. Shoukourian et Al., “SoC Yield Optimization via an Embedded-
Memory Test and Repair Infrastructure”, Proc of IEEE Design & Test
of Computer, pp. 200-207, 2004.

[3] C. E. Stroud and A. E. Barbour, “Design for Testability and Test
Generation for Static Redundancy System Level Fault Tolerant
Circuits”, Proc. of IEEE International Test Conference, pp. 812-818,
1989.

[4] I. Koren and C. Krishna, “Fault Tolerant Systems”, Morgan
Kauffman Publisher, 2007.

[5] T. Tsai, “Fault tolerance via N-modular software redundancy”, Proc.
of IEEE International Symposium on Fault Tolerant Computing, pp.
201 1998.

[6] S. Laha and J. H. Patel, “Error correction in arithmetic operations
using time redundancy”, Proc. of IEEE Fault Tolerant Computing
Symposium, pp. 298-305, 1983.

[7] J. Vial, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch and A.
Virazel, “Yield Improvement, Fault-Tolerance to the Rescue?”, Proc.
of IEEE International On-Line Testing Symposium, pp. 165-166,
2008.

[8] J. Vial, A. Bosio, P. Girard, C. Landrault, S. Pravossoudovitch and A.
Virazel, “Using TMR Architectures for Yield Improvement”, Proc. of
IEEE International Symposium on Defect and Fault Tolerance in
VLSI Systems, pp. 7-15, 2008.

[9] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault and S.
Pravossoudovitch, “Using TMR Architectures for SoC yield
Improvement”, International Conference on Advances in System
Testing and Validation Lifecycle, pp 155-160, 2009.

[10] J. Vial, A. Virazel, A. Bosio, P. Girard, C. Landrault and S.
Pravossoudovitch, “Is TMR Suitable for Yield Improvement?”, IET
Computers and Digital Techniques, Vol. 3, No 6, November 2009,
pp. 581-592.

[11] P. K. Lala, “Self-Checking and Fault-Tolerant Digital Design”,
Morgan Kauffman Publisher, 2000.

[12] P. K. Lala, “Fault Tolerant and Fault Testable Hardware Design”,
Prentice-Hall International, 1985.

[13] R. E. Lyons and W. Vanderkulk, “The Use of Triple-Modular
Redundancy to Improve Computer Reliability”, IBM Journal of
Research and Development, Vol. 6, No 2, April 1962, pp.200-209.

[14] J. M. Cazeaux, D. Rossi and C. Metra, “New High Speed CMOS
Self-Checking Voter”, Proc. of IEEE International On-Line Testing
Symposium, pp. 58-63, 2004.

[15] I. Koren, Z. Koren and C. H. Stapper, “A Unified Negative-Binomial
Distribution for Yield Analysis of Defect-Tolerant Circuits”, IEEE
Transaction of Computers, Vol. 42, No 6, 1993, pp. 724-734.

[16] P. de Gyvez, “Integrated Circuit Manufacturability”, John Wiley &
Sons Inc, 1999.

[17] L. Fang and M. S. Hsiao, “Bilateral Testing of Nano-scale Fault
Tolerant Circuits”, Proc. of IEEE Defect and Fault Tolerance in VLSI
Systems, pp. 309-317, 2006.

[18] G. Karypis, R. Aggarwal, V. Kumar and S. Shekhar, “Multilevel
Hypergraph Partitioning: Applications in VLSI Domain”, Technical
Report, Department of Computer Science, University of Minnesota,
1998.

10

International Journal on Advances in Systems and Measurements, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/systems_and_measurements/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

