Testing Platform for Hardware-in-the-Loop and In-Vehicle Testing
Based on a Common Off-The-Shelf Non-Real-Time PC

Daniel Ulmer*, Steffen Wittel!, Karsten Hiinlichf and Wolfgang Rosenstielt
*IT-Designers GmbH, Esslingen, Germany
Email: daniel.ulmer@it-designers.de
tDistributed Systems Engineering GmbH, Esslingen, Germany
Email: {steffen.wittel karsten.huenlich} @distributed-systems.de
iUm'versity of Tiibingen, Department of Computer Engineering, Tiibingen, Germany
Email: rosenstiel @informatik.uni-tuebingen.de

Abstract—The rapidly growing amount of software in em-
bedded real-time applications such as Driver Assistance Func-
tions in cars leads to an increasing workload in the field of
software testing. An important issue is thereby the timing
behavior of the software running on the target hardware. The
timing behavior of the Driver Assistance Functions is usually
tested on real-time capable Hardware-in-the-Loop platforms
as well as by in-vehicle tests, where the timing behavior is
evaluated with the help of data loggers. Both, the data loggers
and the Hardware-in-the-Loop platforms are mostly custom-
made, proprietary and in consequence expensive. Moreover,
many software developers usually have to share few instances.
Existing inexpensive solutions show deficits in their real-time
capabilities, which means for Hardware-in-the-Loop platforms
that the real-time behavior cannot be guaranteed and for data
loggers that they do not provide a common time base for
relating data from different vehicles involved in a maneu-
ver. This paper shows an approach for a real-time capable
Hardware-in-the-Loop platform based on a common off-the-
shelf PC running a non-real-time operating system and an
extended I/O interface, which can be used for in-vehicle tests as
well. Thereby, the simulation software runs on the developer’s
desktop computer while the extended I/O interface provides a
global time base and ensures the real-time communication with
the System Under Test even for complex timing requirements.
Two examples show how the introduced setup can be used to
test Driver Assistance Functions on a Hardware-in-the-Loop
platform and as a data logger for in-vehicle tests. Questions
such as ”How much time is needed by the Adaptive Cruise
Control System to determine the relative speed of the preceding
vehicle?”” can be answered.

Keywords-Hardware-in-the-Loop Testing; In-Vehicle Testing;
Embedded Real-Time Systems; Temporal Behavior; Driver As-
sistance Systems.

I. INTRODUCTION

Software development for embedded real-time systems, in
particular closed-loop control applications in the automotive
industry running on Electronic Control Units (ECUs), re-
quires testing of the timing behavior on the target hardware
as presented in [1]. Highly frequent hardware-software inte-
gration tests of the software module under development are
required, especially if the software development is done in an

agile or rapid prototyping manner. These tests are normally
executed on a Hardware-in-the-Loop (HiL) testing platform.

The established HiL testing platforms are usually complex
devices based on proprietary hardware and software, which
makes these platforms very expensive. Often, these testing
platforms are based on standard PC hardware in combination
with a Real-Time Operating System (RTOS), and therefore,
operated by separate tool chains. Since these testing plat-
forms are very complex and hence expensive, they are usu-
ally shared by several developers and are located in separate
laboratories instead of being close to the developers’ desks,
which inhibits the rapid prototyping development cycle.

The approach introduced in this paper uses a special,
real-time capable I/O interface denominated as Real Time
Adapter (RTA) designed for the usage with a non-real-time
desktop computer directly at the developer’s desk. The PC
is used to perform the simulation models and to define
the expected timing behavior while the I/O interface is
responsible for keeping and observing the timing towards
the System Under Test (SUT). Unlike most commercial
HiL testing platforms, this approach allows to specify an
arbitrary timing behavior concerning the communication
to the embedded SUT. Furthermore, the approach enables
the engineer to use the same software tools for function
development or unit testing as well as for testing on the
target hardware.

ECUs for Driver Assistance Functions are often con-
nected via bus interfaces to their surrounding ECUs and can
therefore be stimulated by supporting the corresponding bus
interfaces. Even ECUs communicating via analog or digital
I/O ports with their environment are mostly capable of
separating their application function from the I/O interfaces
by stimulating the application functions via a common
communication bus. Hence, a HiL platform for functional
testing on the target hardware is suitable for this case.

Conducted experiments and the results obtained in an
industrial setting addressing the tests of embedded systems
connected via the industry standard Controller Area Network
(CAN) [2] show that the combination of a real-time I/O

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

182

interface and standard desktop hardware are as effective as
established HiL testing platforms—but in a more efficient
way—enabling a higher test frequency.

Testing Driver Assistance Functions in vehicles adds an-
other challenge to the test equipment. Having now the ECU
in the vehicle means that a surrounding vehicle on which
the Driver Assistance Function reacts has to be present.
Furthermore, the surrounding vehicle has to be considered
for evaluating the test result. The Driver Assistance Function
Adaptive Cruise Control (ACC) [3], e.g., is a closed-loop
control for the vehicle’s speed considering the speed of
the preceding vehicle. Common ACC systems have a radar
sensor, which determines the relative speed and distance of
the preceding vehicle. In some ACC systems, the driver can
set the desired distance to the preceding vehicle and the
ACC system tries to keep this distance by accelerating or
decelerating the vehicle. If such a system is to be tested on
the road it is necessary to be able to correlate the information
about the preceding vehicle with the information of the
vehicle with the ACC system. Issues to be tested might be:

o How much time elapsed between pressing the brake
pedal in the preceding vehicle and a deceleration de-
mand of the ACC system?

e How much time is needed by the radar device to
determine the relative speed of the two vehicles?

o What is the difference between ACC algorithms on the
behavior of the vehicle?

o How does an ACC algorithm perform compared to a
human driver?

All questions have in common that having data from the
vehicle with the ACC system is not enough. It is necessary
to know the state of the preceding vehicle and to be able
to correlate this information. Independent data loggers in
the vehicles do not allow to record data on a common time
base, which means that data cannot be correlated in time.
It is therefore necessary to synchronize the data loggers
in the different vehicles. The introduced RTA is able to
synchronize its internal clock to the time provided by the
Global Positioning System (GPS). Since the RTA is not only
able to record data with a highly precise GPS-based time
stamp but is also able to use the GPS-time to send data, it is
possible for applications to replay data recorded in a vehicle
with precisely the same timing behavior on a test platform
in the laboratory.

Section II of this paper gives an insight into the testing of
interconnected ECUs followed by a section that compares
current HiL testing platforms relating to timing issues. In
Section IV, the operating principles of the RTA as intelligent
I/O device are introduced as well as an approach for a HiL
testing platform based on the RTA. Finally, Section V shows
examples for a HiL test setup and an in-vehicle test of an
ACC system, which show the current usage of the RTA in
the automotive industry.

II. TEST OF INTERCONNECTED ECUS

Significant parts of vehicle functions, especially modern
Driver Assistance Functions, are realized with the help of
software. Commonly, several ECUs and their respective
software contribute to implement a vehicle function that can
be experienced by the driver [4].

The distribution of software on different ECUs of the
vehicle requires that the ECUs are able to communicate
with each other. A common widely accepted approach for
interconnecting the ECUs is by sending messages on a bus
system such as CAN. In order to obtain a deterministic
timing behavior, the majority of the messages are sent in
a cyclic manner with a pre-defined cycle time as shown
in Figure 1. ECUI periodically sends its calculation results
to ECU2 and vice versa. Especially for closed-loop control
vehicle functions—such as an ACC-it is important to meet
the given timing requirements. The ECUs usually monitor
the compliance with the pre-defined cycle strictly, because
a violation can result in failure, which might be life-
threatening to the passengers of the vehicle.

Since the CAN bus itself is not deterministic [5], the
ECU is responsible for the correct communication timing.
Additionally, the priority of a CAN message is depending on
its message ID. The precision of the bus timing of a certain
message is hence depending on the precision of the ECUs’
RTOS and on the predefined message ID. Both, the ECU
and the CAN bus contribute to a deviation of the intended
cycle time that can be measured on the bus. If a message
is supposed to be sent with a cycle time of 20 ms, the seen
cycle time of this message on the bus will differ from the
desired 20ms. The ECUs will tolerate such an inaccuracy
as long as the deviation is below a specified limit.

Modern Driver Assistance Functions narrow progressively
the tolerance band of the allowed timing faults while the
CAN bus is populated by more and more ECUs with
increasing bandwidth requirements that exacerbate the sit-
uation. Usually, the ECU for Driver Assistance Functions
monitors if the timing of the received messages is within
the predefined limits. In some cases, the data content is
additionally monitored on its in-time arrival as explained in
Section V-B. Considered from a testing perspective, it is thus

|ECu1

CAN_

. Transmit Slot D Receive Slot Wait D Calculation

ECU2

Figure 1. Cyclic communication of ECUs

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

183

essential that the reaction on corrupted bus timing is tested.
This implies that the testing device itself is able to meet the
timing requirements in the first instance and moreover to
manipulate it arbitrarily.

The first integration step in the development cycle, where
the timing behavior of an ECU’s CAN interface can be
tested, is the execution of the developed ECU software
on the target hardware. A common approach is to do this
integration testing on HiL testing platforms.

Further on, it is useful having the HiL testing platform
close to the software-developers’ desks, especially if the
ECU software is developed in an agile manner with frequent
integration steps that require frequent testing on the target
hardware. Commonly, different software parts for Driver
Assistance Functions are coded and tested by several de-
velopers in parallel. If these software parts are integrated
into the ECU software, the developers have to share the
available HiL platforms. Instead of having a Hil testing
platform waiting for the developer, the developer often needs
to wait for the HiLL platform.

After having tested the combination of ECU software and
hardware on a HiL platform, the ECU can be integrated into
a vehicle to see the Driver Assistance Function work in its
target environment. For Driver Assistance Functions such as
an ACC, the target environment is not limited to the vehicle
but the vehicle and its surrounding vehicles that the ACC
reacts on have to be considered [6], too. The same also
applies for the test of a Forward Collision Warning System
(FCWS). The National Highway Traffic Safety Administra-
tion (NHTSA) requests for testing a FCWS in [7] that the
instance in time when the driver has been warned can be
correlated to the position of both vehicles involved in the
test. This means that the measured data of both vehicles
have to be correlated.

III. CURRENT TESTING PLATFORMS

In the following, three different HiL approaches currently
used in the automotive industry are discussed with a closer
look on their timing behavior.

A. HiL Platform Based on an RTOS

Current HiLL platforms, as they are introduced in [8],
usually focus on ECU testing from both, a functional and
a non-functional perspective. This means that the testing
platform covers the testing of the reaction to electrical
errors as well as the test of the functions required by a
Driver Assistance Function. The approach of testing the
whole test plan at only one testing platform makes this
platform very complex from the hardware as well as from
the software point of view. Although current solutions, as
proposed by ETAS [9], are based on off-the-shelf computer
hardware, they have to be expanded by several special
software and hardware components needed to achieve the
required functionality. One important software component

ige:-19.996

Deviation: 0.197 ms

At (ms)

400 600 800

Message

1000 1200 1400

Figure 2. RTOS HiL — 20ms cycle time message

is the Residual Bus Simulation (RBS), which is responsible
for imitating the environment around the ECU seen from a
communication point of view. If the SUT is connected via
CAN buses to its surrounding components, the RBS needs
to ensure the same communication behavior as established
by the real environment of the SUT. To guarantee the real-
time behavior of the CAN communication, an RTOS is used
to implement the RBS for the CAN bus and the additional
required software components such as environment models.
If the schedule of the RTOS is set up correctly, a precise
execution of the desired CAN schedule is guaranteed within
the tolerance of the RTOS.

Figure 2 shows the measured time between two CAN
messages with the same message ID during a HiL test at a
platform based on an RTOS [10][11][12]. According to the
CAN schedule, the message is supposed to have a 20 ms cy-
cle time. The plot displays that this implementation achieves
an average cycle time of almost 20ms with a standard
deviation of about 197 ps. Single outliers are reaching up to
a period of 20.826 ms between two consecutive messages.
In this example, the measured timing still fulfills the SUT
requirements.

B. HiL Platform for Functional Testing

For testing the functional behavior of different software
modules running on the same ECU, it is helpful to have
several testing platforms close to the developers’ desks. Of
course, for testing the ECUs reaction to electrical errors it is
still necessary to use the complex platforms introduced be-
fore. For a quick test of a change in a hardware independent
software module, HiL platforms based on a Common Off-
The-Shelf (COTS) computer can be built. In this case, the
COTS computer can be connected via a CAN interface to
the SUT. In this context, using COTS components not only
refers to hardware but additionally to software including a
non-real-time Operating System (OS), typically Microsoft

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

184

Average: 20.023 ms
Deviation: 0.878 ms

0 500

1000
Message

1500

Figure 3. Non-real-time OS HiL — 20 ms cycle time message

Windows. Additionally, within the context of large compa-
nies, the IT support determines the use of virus scanners
and other tools, if the PC interconnects with the corporate
network. Using a standard computer means that it might
also be a laptop. In this case, it is easily possible to use
the HiL setup within a test vehicle or while being at a field
trial. Another advantage of using the standard desktop OS
is that the already existing tool chain can be used to set up
the HiL platform. Especially, the libraries of environment
models for Model-in-the-Loop (MiL) and Software-in-the-
Loop (SiL) simulations from earlier integration steps of the
Driver Assistance Function can be reused without the need
of being ported to an RTOS environment.

Figure 3 shows the time between two consecutive CAN
messages of the same message ID during a HiL test on
such a platform without an RTOS. The plot displays that
the implementation based on a COTS computer and a CAN
interface achieves an average cycle time of 20ms with
a more than fourfold standard deviation of approximately
900 us. Getting worse, in this case outliers of up to 8 ms
can be seen. This approach only works, if the ECU tolerates
such outliers.

A major drawback of this approach is that the environment
models and the RBS have to be either implemented on the
OS of the COTS computer or at least the RBS has to be
shifted to the CAN interface. In the first case, the timing
behavior of the RBS is depending on the timing behavior
of the non-real-time OS. In the latter case, a separate
development tool chain is necessary to implement the RBS
on the CAN interface. This leads to a fixed communication
schedule, which can be only manipulated at runtime if a
complex handshake between the PC and the RBS is set up.
If the implementation of the timing supervising software
within the ECU is not too strict, the first approach works
in practical use.

C. Data Logger for In-Vehicle Testing

Testing a Driver Assistance Function in the vehicle is
usually done with the help of a data logger. The data
logger collects and stores the data, which is transferred
between ECUs within the vehicle. The test result is based
on the collected data. Common data loggers like [13] are
able to record several different buses within one vehicle
on a common time base. A time synchronization for data
loggers of several vehicles is mostly custom made and thus
expensive. For evaluating Driver Assistance Functions such
as an ACC, this feature is important. Since the interaction
between vehicles raise questions such as "How much time is
needed by the Adaptive Cruise Control System to determine
the relative speed of the preceding vehicle?”.

There are several ways like RFC 958 [14] or IEEE 1588
[15] to synchronize independent clocks. As mentioned by
Luther [16] IEEE 1588, also referred to as Precision Time
Protocol, reaches a temporal synchronicity among vehicles
with less than five milliseconds deviation. This turned out
to be sufficient for the verification of vehicle functions with
a velocity of up to 20m/s. For synchronization at least at
the beginning of each measurement, a connection between
the devices is required. A single adjustment of the clocks
may lead to inaccuracies of the time stamps at longer test
runs, whereas a continuous adjustment with IEEE1588 can
be difficult to be implemented especially for moving vehicles
without the existence of a direct wired connection. Thereby,
the clocks are usually synchronized amongst themselves and
not to a global time like provided by the Global Positioning
System (GPS) [17].

IV. TESTING PLATFORM OPTIMIZED FOR DRIVER
ASSISTANCE SYSTEMS

In this section, the RTA and the approach for a HiL
testing platform based on the RTA device that addresses the
requirements for an agile usage as well as for the timing
issues are introduced.

A. The Real Time Adapter

The RTA [18] combines the functionality of a mobile
data logger and an intelligent I/O device for CAN. Its core
functions [19] are implemented in VHDL to increase the
execution speed and run them as parallel as possible on
the built-in FPGA. Additionally the RTA’s time base, which
is implemented in VHDL as well, can be synchronized to
the time provided by a GPS receiver with a deviation of
less than 10ps [18]. In the case of the mobile data logger,
the CAN messages from the SUT can be stored locally
on the device, whereas in the case of the I/O device the
messages are transferred to an external PC and vice versa
via an Ethernet connection. In both cases, incoming as well
as outgoing CAN messages can be processed with respect
to the GPS-time.

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

185

As illustrated in Figure 4, the PC can process the provided
information and calculate the transmit time of the response
based on high precision time stamps added by the RTA to
each received CAN message. Hence, a variable processing
time on the PC within the tolerance range does not matter.
The RTA takes care about the correct sending points of the
CAN messages as well as it detects timing violations caused
by messages with time stamps that cannot be transmitted in
time. For the timing violation detection, the RTA compares
the intended sending point of each message with the actual
transmission time taking account of an adjustable tolerance
as described in [20]. The RTA decouples the non-real-time
behavior of the PC from the precise real-time behavior
towards the SUT, which allows the execution of complex test
cases with a repeatable precise timing behavior at each test
run. The timing of each message is thereby treated separately
by the RTA and thus the transmit time can be simply
manipulated during a test run. Especially, this characteristic
is important for test cases that validate the correctness of
the SUT communication timing at its limits.

The use of RTA devices in test environments allows
the recording and the replay of CAN messages with high
temporal precision. But without time synchronization be-
tween RTA devices the time stamps may not be generally
comparable, because they refer to built-in oscillators with
individual drifts. For the verification of Driver Assistance
Functions during road tests, e.g., of an ACC as illustrated in
Figure 35, it is necessary to record CAN messages in different
vehicles with synchronized time stamps. This allows a
comparison of the time stamps within the limits of the clock
synchronization accuracy. Having these synchronized CAN
traces enable us, e.g., to answer questions such as “How
much time elapsed from pressing the brake pedal in the
vehicle in front until the ACC decelerates the following
vehicle?”. Another use case with a detailed example is given
in Section V.

The synchronization of the RTA devices uses a GPS based
approach as shown in Figure 6 that ensures a comparable
global time base for the time stamps as well as a continuous
adjustment of the internal clocks during the test runs. In
addition to the position and time information, GPS receivers

RTA

1
: Time Stamping :

tld—l::l Lt
: o Message(m,) 1

~ Message(m, t;)]
1

SUT

Simulation
t=t +t,

Message(m,, t,)

1
1
1
1
I t
Idle Ti !
- ‘/ e Time ! A
1
1
1
1
1

L \Tolerance Range

: ProcessingTime/ '
1 1

Message(m,) 'I:l v

Figure 4. Sequence diagram of CAN RX/TX with an RTA

ACC-Processing

Networking

Figure 5. Schematic representation of an ACC test case

Long-Range
Radar

ACC-Processing

Networking

.
/
L/
/
RTA Device
oe
oo

Brake-ECU
CAN2
S

Figure 6. GPS synchronized RTA devices

provide a high-precision output so-called Pulse Per Second
(PPS), which signalizes the start of a second. The time
information initially preloads the clock of the RTA, whereas
the PPS and the built-in oscillator increment the clock.
Assuming that the drift of the RTA’s oscillator does not
abruptly change under ordinary circumstances but rather is
slowly influenced by, e.g., temperature and / or aging. These
assumptions did hold throughout all our experiments in the
last four years. The RTA counts the number of oscillator
ticks per GPS-second and thus obtains the time step per tick
to be used by the clock for the next second. This procedure
ensures a highly precise time base. Combined with the RTA’s
Time Stamping Unit it is possible to attach a time stamp
based on the GPS-time to each CAN message.

B. HiL Testing Platform Based on an RTA and a COTS
Computer

Since the timing requirements of the ECUs tighten and
the implemented Driver Assistance Functions require more
and more precise data at an accurate point in time, the
timing behavior shown in Figure 3 is not acceptable any-
more. Additionally, if the implemented function, e.g., for
interacting vehicles [21], is not only depending on the data
value but also on its arrival time, the targeted testing of the
reaction on certain bus timing becomes necessary. A HiL
platform, which solves the timing issues while leaving the
RBS on the COTS computer (PC), is introduced in [18]
and [19]. The approach leaves it up to the PC to define the
intended sending time of a message. This time stamp is then
handed over together with the payload to the RTA. While the
computer is responsible for calculating timing and content,
the RTA precisely plans, executes and supervises the desired

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

186

Average: 20.007 m
Deviation:..0.005 m

7

20.03

At (ms)

19.99

19.98

19.97

400 600 800

Message

1000 1200

Figure 7. RTA HiL — 20 ms cycle message

timing. If for any reason the desired timing cannot be kept
within a certain tolerance, the RTA informs the simulation
software on the computer. It is then up to the simulation
application to repeat the test case. Thereby, an upper limit
prevents the HiL testing platform from repeating the same
test case too often.

Timing violations usually originates from the non-real-
time OS on the PC in combination with time consuming
or concurrent executions during a test run, e.g., anti-virus
scanners, mail software, automatic update clients or mouse
movements. The test implementation itself and the resources
consumption associated with it also affect the timing. Test
cases, which need more processing time on the PC for one
simulation step as the expected cycle time of the SUT, are
not suitable to be executed on this platform.

Figure 7 shows the result of the introduced solution for a
current ECU with Driver Assistance Functions. The intended
cycle time of 20 ms is kept by the RTA HiL with a standard
deviation of 5 pus. Even the outliers, which occur in this case
due to the occupied bus, are less than 40 us.

The performance of the HiL testing platform primarily
depends on the COTS hardware used to set up the platform,
which determines the test case limitations in terms of timing.
Practical experiences with a prototypical implementation
show that approximately one of 1000 test cases has to
be repeated. Moreover, measurements during the evaluation
revealed an average pass through time of about 4ms to
receive a CAN message from the SUT and send the response
back. The time also includes the calculation of a common
test step within the simulation on the PC. In the example,
this means that the HiL testing platform has roughly 16 ms
at a cycle time of 20ms to compensate outliers occurred
during the performing of a test case. Based on these obtained
results the outliers are not an exclusion criterion for the use
in a production environment, because they are detected and
reported by the RTA.

V. APPLICATION OF THE INTRODUCED PLATFORM IN
REAL WORLD EXAMPLES

In the following, an in-vehicle verification of a Driver
Assistance System as well as a test of a monitoring algorithm
are presented. These examples describe the current usage of
the RTA in the automotive industry.

A. In-Vehicle Verification of a Driver Assistance System

In Figure 6, the test setup for an in-vehicle verification
of an ACC system is shown. Both the preceding and the
following vehicle are equipped with an RTA device. The
vehicles drive one behind the other as illustrated in the
figure. The goal of this in-vehicle test is to verify the
information about the relative speed between the preceding
vehicle and the following vehicle delivered by the long-range
radar.

Definition (System Vehicle). The system vehicle is the
vehicle equipped with the Driver Assistance System that is
to be tested.

Definition (Object Vehicle). The object vehicle is the pre-
ceding vehicle in the test case that is tracked by the long-
range radar of the following vehicle.

In this test, the system vehicle is the following vehicle
that tracks the preceding vehicle with its long-range radar.
One RTA records thereby the velocity of the object vehicle,
whereas the other RTA records the velocity of the system
vehicle as well as the relative velocity between both vehicles
determined by the long-range radar. Overall, the following
four road tests were performed in which the object vehicle
decelerates to a standstill and the system vehicle is stopped
to avoid a rear-end collision:

e Manual stop of the system vehicle carried out by a
defensive human driver.

o Manual stop of the system vehicle carried out by an
aggressive human driver.

« Automatic stop of the system vehicle carried out by
the ACC with the desired distance set to the maximum
possible value.

o Automatic stop of the system vehicle carried out by
the ACC with the desired distance set to the minimum
possible value.

After the test runs the velocity information of the object
vehicle (vqp;) and the system vehicle (vgy,) recorded by
the two GPS synchronized RTA devices is merged and
visualized on a common time axis. Figure 8 shows the
velocity curve of the object vehicle and of the system
vehicle as well as the difference of the velocities (Vyei caic)-
Furthermore, the relative velocity provided by the long-
range radar (VUrel,radar) 1S shown as a dotted line of the
provided data points. The steep curve of vy, relative to
Uop; in Figure 8 shows that the defensive driver of the system
vehicle responds very quickly and with strong braking to the

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

187

60

55 sys

obj

v,
v

50 —V
rel,calc

7

451 * relradar

Velocity (km/h)

30 325 35 375 40 425 45 475
Time (s)

Figure 8. Driver with a defensive braking response

deceleration of the object vehicle. Thus, the system vehicle
stops at 45.13 s while the object vehicle comes to a standstill
at 45.65s.

Figure 9 shows a stopping process of the system vehicle
carried out by an aggressive driver. Thereby, the system
vehicle stops in the test run just behind the object vehicle
and nearly at the same point in time. This is shown in the
graph by the fact that the velocity curves of both vehicles
reach 0 km/h almost simultaneously. Moreover, it is seen that
there are points in time where the long-range radar does not
provide information about the relative velocity between the
object vehicle and the system vehicle. In the time range
between 54.91 s and 56.81 s, the object vehicle could not be
correctly recognized.

Figure 10 shows a stopping process of the system vehicle
carried out by the ACC with the desired distance set to the
maximum possible value. Thereby, the Driver Assistance

55

sys

50

obj
45+

< < < <

rel,calc

rel,radar

40

Velocity (km/h)

-15 L L L L
475 50 52.5 55 57.5 60 62.5 65

Time (s)

Figure 9. Driver with an aggressive braking response

50

45

v
40+ rel,calc

%
rel,radar

Velocity (km/h)

I I
40 425 45 475 50 525 55 57.5 60
Time (s)

Figure 10. ACC with the desired distance set to the "MAXIMUM”

Function decelerates the system vehicle depending on the
object vehicle. The ACC is trying to keep the specified
distance. It is apparent that the system vehicle responds
in the road test with a delay of about 1.7s. The nearly
parallel course of v,,s and vy, indicates that the ACC keeps
the driver’s distance setting most of the time. In contrast,
the defensive driver in Figure 8 has decelerated the system
vehicle more than the driver of the object vehicle did, which
can be seen by the intersection of the velocity curves at the
end of the measurement.

Figure 11 shows a stopping process of the system vehicle
carried out by the ACC with the desired distance set to
the minimum possible value. It is apparent that the curves
of veys and vep; run parallel to each other with a larger
temporal distance of approximately one second compared to
the test in Figure 10. Thereby, the larger temporal distance
results in a standstill of the system vehicle at a later time.

50

45 sys

obj

\J

v

40 = Vrel,calc
\

rel,radar

35

30
25

20

Velocity (km/h)

I
40 425 45 475 50 525 55 57.5 60
Time (s)

Figure 11. ACC with the desired distance set to the "MINIMUM”

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

188

—V
rel,calc
.« Vv
rel,radar

-3.5

-4

Velocity (km/h)

approx. 200ms

55 I I I I i i
52.6 52.7 52.8 52.9 53 53.1 53.2
Time (s)

Figure 12. Processing time of the radar ECU

Just before standstill v;.¢; rqdqr 1S inaccurate. Beginning from
58.105, Vrel,radar diverges from v,e; caic.

In accordance to [22], the radar ECU should provide the
information with a maximum delay of 250 ms. To verify this
precept, an enlargement of Figure 11 is shown in Figure 12,
in which the delay (At) between vye; radar and Vrey cqle 18
marked. Thereby, At is calculated according to

At = tvrel,'r‘adar (U) - tvrcl,calc(v)

with v = —4.32 km/h. In this case, At is about 200 ms.

B. Test of a Monitoring Algorithm

An example for a HiL test setup used in the automotive
industry is displayed in Figure 13, which comprises of a
standard PC with an RTA as well as of the SUT itself
consisting of two CPUs that are connected to the same
clock oscillator. Thereby, the PC and the RTA are used to
simulate the ECU’s environment. For safety critical reasons,
some applications within the ECU are tested on module
level embedded into the final hardware. The Communication
CPU has two tasks with 20ms cycle time. On the one
hand, it implements the bus communication that consists
of receiving and transmitting messages and updating the
internal signal database. On the other hand, this CPU is
used to validate the results of critical functions running on
the Application CPU. The Application CPU runs at 40 ms

System Under Test (SUT)

c P P
PC Ethernet CAN bus Can cry] cpy
(20ms Cycle) [*(40ms Cycle)
ik t i

Figure 13. Example for a test setup

CPU
7 — 1 — et (ms)
120 40 60 80 100 120 ;140
Comm. éAbp. Result D
cPU H
— t (ms)
CAN =-mrertb e ¥ Voo Vi
i At=4ims
RTA ! Time Stamp Wait for Time Triggered Send
M //l: Ly ¢ (ms)
: C';P""Offset +41ms B Application Result
Ethormet e [] simulation Result
| [] Application Cycle
pC [Transmit/Receive Slots
y

Wait
Bl Validation of App. CPU

22 G778 1 s)

Figure 14. Synchronization of the testing platform with the SUT

cycle time and is responsible for processing the implemented
Driver Assistance Functions.

One software module running on the Application CPU
implements a safety critical requirement. In this example,
we assume that a sensor sends a signal denominated Object
Type. This signal is specified to be zero for two CAN
cycles and four for the following three CAN cycles, if
the sensor is faulty. The safety critical requirement of the
software module is to detect this situation and to prevent
a Driver Assistance Function from interfering. The correct
implementation of the software module is to be tested on
the target hardware and hence at a HiL platform. Since the
clocks of the SUT and the HiL platform are independent, it
cannot be guaranteed that the sequence is received correctly
at the SUT’s internal data interface. To achieve reproducible
test results, it is necessary to synchronize the testing platform
with the SUT. The synchronization mechanism is shown in
Figure 14. Some Application Results are handed over from
the Application CPU to the Communication CPU, which
transmits the corresponding CAN message on the CAN bus.
The RTA delivers this message together with a receive time
stamp to the PC running the environment simulation. After
calculating the simulation environment model, the result is
handed over to the RTA for being sent 41 ms ahead in time.
This ensures that the result is available for the Application
CPU right before a new application cycle begins.

Listing 1 illustrates a pseudo-code sample for an imple-
mentation on a PC-based platform for functional testing.
Since the sending time of the message is in this case
depending on the scheduling of the TransmitThread of the
non-real-time OS, it cannot be guaranteed that the sequence
is sent as specified.

Listing 2 illustrates that in case of an RTA based HiL
testing platform the precise sending of the message is done
by the RTA and therefore independently of the OS timing

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

189

deviations. In the worst case, a message is sent too late to
the RTA and the test case is then being declared invalid and
repeated.

Figure 15 shows the results achieved on the CAN bus
with a bus load of 60 % and a cycle time of 20 ms for the
CAN messages. The sequence of two cycles zero and three
cycles four is precisely executed. In the project context,
we have implemented this testing challenge on the RTA
based HilL platform since this platform is available at

WHILE (NOT quit)
BEGIN

// Receive CAN Message
Receive (in_message)

// Calculate Environment Simulation Model
out_message = CalcEnvModel (in_message)

// Calculate Output Message Time Stamp
time_stamp = in_message.time_stamp + 41

// Transmit CAN Message using the Windows
// Event Timer in a separate Thread
TransmitThread (out_message, time_stamp)

// Wait until next Cycle
WaitForNextWindowsTimeEvent ()

END

Listing 1. Standard PC synchronization mechanism

WHILE (NOT quit)
BEGIN

// Receive CAN Message
RTA_ReceiveMessage (in_message)

// Calculate Environment Simulation Model
out_message = CalcEnvModel (in_message)

// Calculate Output Message Time Stamp
time_stamp = in_message.time_stamp + 41

// Transmit CAN Message to RTA

RTA_TTS_TransmitMessage (out_message, time_stamp)

// Wait until next Cycle
RTA WaitForNextCycle ()

END

Listing 2. RTA synchronization mechanism

Object Type =0
el Object Type = 4

2 Cyel
Value (2 Cycles) \ " (3Cycles)

P>
A

4
34
24
14

+ » Cycle
0 2 5 7 10 12 15 17

Figure 15. CAN trace for cyclic stimulation

every developer’s desk and the modification of the existing
simulation code has been limited to adding a constant
offset to the time stamp of an incoming message. We have
decided against an implementation on an RTOS HiL since
there is only one instance available, which can either be
used for implementing new features or for running tests.
Synchronizing the time slice based RTOS to the SUT would
have meant to change the complete simulation kernel and
therefore several days of implementation work.

VI. CONCLUSION AND FUTURE WORK

The measurements demonstrated that it is possible to
implement a HiL testing platform fulfilling the timing re-
quirements of modern Driver Assistance Functions and the
requirements of an agile or rapid prototyping development
process within the automotive industry. It has also been
shown that current testing platforms address one of these
aspects while the RTA approach addresses both. It has also
been argued that the achieved timing on the CAN bus of the
RTA based HiL platform is more precise than the timing
of the RTOS HiL. It is left for future work to study the
advantages of the RTA approach in terms of the definition
and flexible manipulation of the timing behavior, e.g., for
deterministic robustness tests of the function software. One
aspect might be the modeling of a statistic temporal distri-
bution where the parameters can be influenced by random
testing or by evolutionary testing. Additionally, the RTA
approach might be used as a cost efficient HiLL setup for
a continuous integration tool chain for embedded software
development. Due to the usually large number of variants
on the level of hardware-software integration, a high test
volume must be considered here. For each variant, the tests
can be executed at maximum in real-time. This means that
for quick results many parallel HiL platforms are necessary.
The price efficient HiL testing platform based on the RTA is
a necessary step to implement this idea. An additional benefit
of the introduced RTA is that the same hardware supports in-
vehicle testing of Driver Assistance Functions. It has been
shown that the precise time stamping synchronous to the
global GPS-time can be used to correlate the information
of several vehicles in one diagram on a common time axis.
The reaction of the system vehicle to an action executed by
an object vehicle can be evaluated quantitatively. It has been
shown that the information about the object vehicle provided
by the long-range radar can be verified independently by the
information of the two RTAs.

Combining the synchronization to GPS with the time
triggered sending mechanism of the RTA enables the highly
precise replay of data that is recorded during an in-vehicle
test. It is left for future work to evaluate how the RTA can
support ECU testing with recorded data. For recorded data as
well as for in-the-loop simulations, the GPS synchronization
combined with the time triggered sending ensures that

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

190

International Journal on Advances in Systems and Measurements, vol 4 no 3 & 4, year 2011, http://www.iariajournals.org/systems_and_measurements/

independently of time, location and RTA device a test case
can be repeatedly executed with precisely the same timing.

(1]

[2

—

[3

—

[4

—

[5

—

(6]

[7

—

(8

—_—

[9

—

(10]

(11]

REFERENCES

Daniel Ulmer, Steffen Wittel, Karsten Hiinlich and Wolfgang
Rosenstiel, “A Hardware-in-the-Loop Testing Platform Based
on a Common Off-The-Shelf Non-Real-Time Simulation PC,”
in ICONS 2011, The Sixth International Conference on Sys-
tems, 2011.

ISO, ISO 11898-1:2003: Road vehicles — Controller area
network (CAN) — Part 1: Data link layer and physical
signalling. International Organization for Standardization,
1993.

Daimler AG, “The challenge of accident prevention,” Mile-
stones in Vehicle Safety. The Vision of Accident-free Driving,
20009.

Christoph Marscholik and Peter Subke, Road vehicles - Diag-
nostic communication: Technology and Applications. Hiithig,
2008.

Konrad Etschberger, Controller Area Network. Basics, Proto-
cols, Chips and Applications. IXXAT Automation, 2001.

Bart Broekman and Edwin Notenboom, Testing Embedded
Software. Addison-Wesley, 2002.

National Highway Traffic Safety Administration, “Forward
Collision Warning System Confirmation Test,” 2008.

Christoph Marscholik and Peter Subke, Datenkommunikation
im Automobil. Hiithig, 2007.

ETAS GmbH, “LABCAR System Components,” Access
Date: December 28, 2011. [Online]. Available: http://www.
etas.com/en/products/labcar_system_components-details.php

ETAS GmbH, “LABCAR-RTPC - Real-Time Simulation
Target for HiLL Testing,” Access Date: December 28, 2011.
[Online]. Available: http://www.etas.com/en/products/labcar_

rtpc.php

Gerd Wittler and Jiirgen Crepin, “Real-time and Performance
Aspects of Hardware-in-the-Loop (HiL) Testing Systems,”
ATZonline, 2007.

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

(21]

[22]

Jan Kiszka, “Xenomai: The RTOS Chameleon for Linux,”
Real-Time Systems Group, Leibniz Universitit Hannover,
Tech. Rep., 2007.

G.i.N. Gesellschaft fiir industrielle Netzwerke GmbH,
“MultiLog,” Access Date: December 30, 2011. [Online].
Available: http://gin.de/index.php?device=1002&lang=de

David Mills, “Network time protocol,” RFC 958, Internet
Engineering Task Force, 1985.

Kang Lee and John Eidson, “IEEE-1588 Standard for a Pre-
cision Clock Synchronization Protocol for Networked Mea-
surement and Control Systems,” in In 34th Annual Precise
Time and Time Interval (PTTI) Meeting, 2002.

Jiirgen Luther and Hans-Werner Schaal, “Luftbriicke fiir Bus-
daten,” Elektronik automotive, 2010.

Guochang Xu, GPS - Theory, Algorithms and Applications.
Springer, 2007.

IT-Designers GmbH, “Real Time Adapter Datasheet (RTA-
C4ENa),” 2010.

Daniel Ulmer, Andreas Theissler and Karsten Hiinlich, “PC-
Based Measuring and Test System for High-Precision Record-
ing and In-The-Loop-Simulation of Driver Assistance Func-
tions,” in Proceedings of the Embedded World Conference,
2010.

Daniel Ulmer and Steffen Wittel, “Approach for a Real-Time
Hardware-in-the-Loop System Based on a Variable Step-Size
Simulation,” in Proceedings of the 22nd IFIP International
Conference on Testing Software and Systems: Short Papers,
2010.

Daniel Ulmer and Andreas Theissler, “Application of the
V-Model for the development of interacting vehicles and
resulting requirements for an adequate testing platform,” in
Proceedings of the Software and Systems Quality Confer-
ences, 2009.

Hermann Winner, Stephan Hakuli and Gabriele Wolf, Hand-
buch Fahrerassistenzsysteme. Vieweg+Teubner Verlag, 2009.

2011, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

191

