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Abstract—The inverse scattering problem of a quantum star
graph is shown to be solvable as a diagonalization problem
of Hermitian unitary matrix when the connection condition is
given by scale invariant Fulop-Tsutsui form. This enables the
construction of quantum graphs with desired properties. The
quantum vertices with uniform and reflectionless scatterings are
examined, and their finite graph approximations are constructed.
It is shown that a controllable spectral filter can be constructed
from a certain reflectionless graph with the application of
external potential on a line.
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I. INTRODUCTION

The inverse scattering is one of the most intriguing problems
in quantum mechanics. The inverse scattering problem of
quantum graph [1], [2], [3], [4], in particular, has two aspects.
Because the quantum graph is a nontrivial solvable system
[5], it presents a challenge for extending the range of solvable
inverse scattering problems. It is also increasingly becoming
important as the design principle of single electron devices
based on nanoscale quantum wires.

In this article, we consider the inverse scattering problem on
a star graph with Fulop-Tsutsui vertices [6], the scale invariant
subset of most general vertex couplings [7]. A star graph is
the elementary building block of generic graph having many
half-lines connected together at a single point, the singular
vertex. The scattering matrix of star graph with Fulop-Tsutsui
condition is energy independent. We exploit this simplicity to
give the full answer to its inverse scattering problem in the
form of diagonalization problem of Hermitian unitary matrix.
Two special examples of inverse scattering problems, that of
reflectionless transmission, and of equal-scattering including
the reflection, are examined in detail. Very interesting designs
involving Diophantine numbers emerge for the realization of
quantum device with such properties. Since any singular vertex
is effectively reduced to Fulop-Tsutsui vertex in both high and
low energy limits [8], our study hopefully opens up a door
for the full study of inverse scattering problems for general
singular vertex.

The quantum graph has to be controllable by external field
of macroscopic scale, if it is to be useful as a quantum device.
We formulate scattering problems on a quantum graph with
constant potentials with differing strengths applied to graph

lines. The formalism is applied to analyze several models of
quantum graphs with external potential on a line. The existence
of threshold resonance phenomenon is pointed out, and it is
shown to be useful in designing controllable spectral filtering
devices. Specifically, a controllable band filter with flat spectral
response is constructed from a n = 4 reflectionless quantum
graph.

This article is organized as follows: In the second section,
we formulate the inverse scattering problem of scale invariant
graph vertices in terms of matrix diagonalization. In the
third section, a scheme to approximate the vertex with small
structures made up of δ-vertices is developed. In the fourth
section, the scheme is applied to obtain reflectionless and
equitransmitting quantum graphs. The accuracy of the approxi-
mating procedure is also examined in the same section. In the
fifth section, with the application of the quantum graphs as
controllable quantum devices in mind, the scattering formalism
is extended to handle the added external potentials on the lines.
In the sixth section, we take a look at the threshold resonance
phenomenon which is found in the quantum graph with a line
subjected to the added potential. In the seventh section, we
examine a n = 4 reflectionless graph with a positive external
potential on a line, and point out its utility as band spectral
filter. The paper ends with the concluding eighth section.

II. INVERSE SCATTERING AS DIAGONALIZATION

The quantum graph is a system made up of interconnected
one-dimensional lines on which a quantum particle moves
around. The simplest nontrivial quantum graph is a star-shaped
graph with a single node. This “elementary particle of quantum
graph” is also referred to as singular quantum vertex. We
start by considering a singular quantum vertex of degree n,
having n half-lines comming out of a point-like node (Fig. 1).
The quantum particle moving on i-th line is described by the
wave function ψi(xi) which satisfies the Schrödinger equation,
which, after proper rescaling of the units, read

− d2

dx2i
ψi(xi) = k2ψi(xi) (i = 1, ..., n). (1)

The coordinates xi on the i-th line are labeled outwardly from
the singular vertex, which is assigned the value xi = 0 for all
i. The specification of the connection condition at the node
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Fig. 1. Schematic representation of scattering of a quantum particle on a
star graph of degree n.

xi = 0 characterizes the system. Let us define the boundary
vectors Ψ and Ψ′ by

Ψ =

ψ1(0)
...

ψn(0)

 , Ψ′ =

ψ
′
1(0)
...

ψ′n(0)

 , (2)

in which ψ′i(xi) is the spatial derivative of the wave function
on i-th line. The current conservation at the node can be
expressed as

Ψ†Ψ′ −Ψ′†Ψ = 0. (3)

It is hown in [7] that this condition can be rephrased as

AΨ +BΨ = 0. (4)

with two n× n matrices A and B, which satisfy

A†B = B†A, rank(A,B) = n. (5)

It is shown in [9] that this most general connection condition
is characterized by a complex matrix T of size (n−m)×m
where m can take the integer value m = 1, 2, ..., n − 1, and
is given by(

I(m) T
0 0

)
Ψ′ =

(
S 0
−T † I(n−m)

)
Ψ, (6)

where S is a Hermitian matrix of size m × m. The scale
invariant subfamily of most general connection condition is
characterized by a complex matrix T of size (n − m) × m
where m can take the integer value m = 1, 2, ..., n − 1, and
is given by(

I(m) T
0 0

)
Ψ′ =

(
0 0
−T † I(n−m)

)
Ψ, (7)

where I(l) signifies the identity matrix of size l× l. To achieve
the from (7), we may have to suitably renumber lines, in
general.

The particle coming in from the j-th line and scattered off
the singular vertex is described by the scattering wave function
on the i-th line, ψ(j)

i (x) which is given in the form

ψ
(j)
i (x) = e−ikx + Sjjeikx (i = j)

= Sijeikx (i 6= j). (8)

Consider matrices M = {ψij(0)} and M ′ = {ψ′ij(0)}. They
are given, in terms of S by

M = I(n) + S, M ′ = ik(−I(n) + S), (9)

Since each column of M and M ′ satisfies the equation (7),
we have(

I(m) T
0 0

)
M ′ =

(
0 0
−T † I(n−m)

)
M. (10)

From (9) and (10), we easily obtain the explicit solution of
the scattering matrix S = {Si,j} in the form

S = −I(n) + 2

(
I(m)

T †

)(
I(m) + TT †

)−1 (
I(m) T

)
. (11)

Squared moduli of the elements of S have the following
interpretation: |Sij |2 for j 6= i represents the probability
of transmission from the i-th to the j-th line, |Sjj |2 is the
probability of reflection on the j-th line. A notable feature of
this S obtained from Fulop-Tutsui vertex its Hermiticity;

S† = S. (12)

Since the scattering matrix is unitary for any system, in
general, i. e.

S†S = I(n), (13)

S belongs to a special class of square matrix that is at the
same time Hermitian and unitary [10].

A natural question to be asked is what subset of Hermitian
and unitary matrix, the scattering matrix of entire Fulop-
Tsutsui vertex forms. To answer this question, we look for
an alternative expression of (11). By multiplying

(
I(m) T

)
from the left, we obtain(

I(m) T
)
S =

(
I(m) T

)
(14)

Similarly, by multiplying
(
T † I(n−m)

)
from the left, we

obtain (
T † I(n−m)

)
S = −

(
T † I(n−m)

)
. (15)

Combing these two expression, we have XmS = ZmXm with
the definitions

Xm =

(
I(m) T
T † −I(n−m)

)
,

Zm =

(
I(m) 0

0 −I(n−m)

)
. (16)

Thus we can express S in the form of a products of three
Hermitian matrices as [10]

S = X−1m ZmXm. (17)

Interestingly, (17) can also be viewed as the diagonalization
of Hermitian unitary matrix S by a non-unitary Hermitian
matrix Xm. We can show, in fact, that this form leads to
the path to the inverse scattering problem for quantum graph
vertex of Fulop-Tsutsui type: Let us suppose that the full set
of scattering data is given in terms of an arbitrary Hermitian
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unitary matrix S. Let us signify the rank of the matrix S+I(n)

by m. After proper renumbering of lines, we can write this
matrix in the form

S + I(n) =

(
I(m)

T †

)
M
(
I(m) T

)
, (18)

where M is a Hermitian m × m matrix, and T , a complex
(n − m) × m matrix. From the unitarity of S, we find the
relation (S + I(n))2 = 2(S + I(n)), from which we obtain

M = 2(I(m) + TT †)−1, (19)

and we therefore arrive at (11). We conclude, therefore, that
any Hermitian unitary matrix can be viewed as a scattering
matrix S of a Fulop-Tsutsui vertex.

In order for a quantum star graph to break scale invariance
and obtain k-dependence, its scattering matrix needs to be-
come non-Hermite. The existence and the uniqueness of the
inverse scattering solution of quantum star graph extend to this
more general non-Hermite case also. These observations can
be reached easily and directly from the original “U-form” of
connection condition using a unitary matrix [2], [7], but our
procedure holds definite advantage of giving us T directly,
which is known [9] to allow us the physical construction of
a finite quantum graph whose small size limit reproduces the
prescribed S.

The procedure of diagonalization, in practice, is quite cum-
bersome for large n. A simpler alternative to obtain T from
S is the following: Let us divide S into four submatrices S11,
S12, S21 and S22 of size m×m, m× (n−m), (n−m)×m
and (n−m)× (n−m), respectively as

S =

(
S11 S12
S21 S22

)
. (20)

These submatrices have the properties

S†11 = S11, S†22 = S22, S†21 = S12, (21)

and also

S211 + S212 = I(m),

S222 + S221 = I(n−m),

S11S12 + S12S22 = 0. (22)

From these equations, we have the explicit expressions of T
in terms of Sij ;

T =
(
I(m) + S11

)−1
S12

= S†21
(
I(n−m) − S22

)−1
. (23)

It is easy to check that the forms (11) and (17) can be kept
under the index renumbering α ↔ β both for α, β ≤ m and
for α, β > m with the proper transformation for the elements
of T ; It is given by tαj ↔ tβj for the former and tiα ↔ tiβ

for the latter. For the case of α ≤ m and β > m, it is given
by tij → t′ij with

t′ij =
tijtαβ − tαjtiβ

tαβ
δ̄iαδ̄jβ

− tαjδiα−δαjtiα + δiαδjβ
tαβ

, (24)

where we define δ̄ij = 1 − δij . This implies that it is not
possible to exchnage the indices α and β whose tαβ is zero.
This corresponds to the index ordering for which both (I(m)+
S11) and (I(n−m)−S22) are singular and the T is undefined,
thus the boundary condition at the singular vertex does not
take the form (7).

III. FINITE APPROXIMATION

Finite tubes connected at a node generically tend, in their
small diameter limit, to a vertex with delta-like connections,
given by m = 1, and T =

(
1 · · · 1

)
, namely

1 1 · · · 1
0 0 · · · 0
...

...
0 0 · · · 0

Ψ′ =


v 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

Ψ, (25)

and very often to its strength zero limit, v = 0, a free vertex
[11]. We might also consider applying localized magnetic field
to achieve phase change. It is natural, therefore, to devise a
design principle to construct arbitrary connection condition out
of this elementary vertex. Once all elements of T = {tij}, i =
1, ...,m and j = m+ 1, .., n, are obtained, a finite graph with
internal lines and the δ-coupling vertices can be constructed
systematically, whose small-size limit reproduces the boundary
condition of Fulop-Tsutsui vertex, (7). The scheme developed
in [12] works as follows.

(i) Assemble the edges of n half lines which we assign the
numbers j = 1, 2, ..., n, and connect them in pairs (i, j) by
internal lines of length d/rij except when rij = 0, for which
case, the pairs are left unconnected. Apply vector potential Aij
on the line (i, j) to produce extra phase shift χij between the
edges when its value is nonzero. Place δ potential of strength
vi at each edge i.

(ii) The length ratio rij and the phase shift χij are deter-
mined from the non-diagonal elements of the matrix Q defined
by

Q =

(
T

I(n−m)

)(
−T † I(m)

)
=

(
−TT † T
−T † I(m)

)
, (26)

by the realation rije
iχij = Qij (i 6= j). This means that we

have

rije
iχij = −

∑
l>m

tilt
∗
jl (i, j ≤ m),

= tij (i ≤ m, j > m),

= 0 (i, j > m). (27)
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(iii) The strength vi is given by the diagonal elements of
the matrix V defined by

V =
1

d
(2I(n) − J (n))R, (28)

where R is the matrix whose elements are made from absolute
values of matrix elements of Q, i.e.

R = {rij} = {|Qij |}. (29)

The matrix J (n) is of size n × n with all elements given by
1. This means that we have

vi =
1

d
(1−

∑
l≤m

rli) (i > m),

=
1

d
(
∑
l>m

[r2il − ril]−
∑

l(6=i)≤m

ril) (i ≤ m). (30)

These fine tunings of length and strength are necessary to
counter the generic opaqueness brought in with every addition
of vertices and lines into a graph.

The wave function φ(x)= φi,j(x) on any internal line (i, j),
we have the relation(

φ′(0)
eiχφ′(dr )

)
= − r

d

(
F (dr ) −G(dr )
G(dr ) −F (dr )

)(
φ(0)

eiχφ(dr )

)
, (31)

with F (x) = x cotx and G(x) = x cosecx. Combining (31)
with the condition at the i-th endpoint,

ψ′i(0) +
∑
j 6=i

φ′ij(0) = viψi(0) (32)

where we have the δ-potential of strength vi, we obtain the
relations between the boundary values ψi = ψi(0) and ψ′i =
ψ′i(0) in the form

dψ′i =

vid+
∑
l 6=i

rilFil

ψi−
∑
l 6=i

eiχijrilGilψl, (33)

where the obvious notations Fij = d
ril

cot d
ril

and Gij =
d
ril

cosec d
ril

are adopted. Note that the equation (33) is exact
and does not involve any approximation. In the short range
limit d→ 0, we have Fij = 1 +O(d2) and Gij = 1 +O(d2).
We can then show, with a straightforward calculation in the
manner of [9], that the limit d → 0 gives the desired
connection condition for Fulop-Tsutsui vertex (7).

IV. REFLECTIONLESS AND EQUISCATTERING GRAPHS

With the solution of the inverse scattering fully formulated,
it is now possible to find a Fulop-Tsutsui vertex from a
given scattering matrix with specific requirement. Our previous
results detailed in [12] showing the reconstruction of “Free-
like” scattering is one such example, and could have been
achieved easier with current method. We now ask whether
there is fully reflectionless graph whose scattering matrix
has only zeros for its diagonal elements, Sii = 0. Vertices
yielding such scattering matrix is known to be useful in
developing semiclasical theory of quantum spectra [13]. If we

Ψ1

Ψ2

Ψ3

Ψ4

Ψ1

Ψ2

Ψ3

Ψ6

Ψ4

Ψ5

Fig. 2. Finite approximation to the reflectionless Fulop-Tsutsui vertices
corresponding to (35) (left) and (41) (right) constructed according to (26)-
(28). The relative length of internal lines rij and strength of the δ-potentials
vj for former are given by (40), while those for the latter are given by (43).
Double lines indicate the existence of non-zero phase shift χij .

limit ourselves to real S, it becomes symmetric matrix with
Sij = Sji.

We note a useful relation concerning the trace of the
scattering matrix. Taking the trace of (17) and utilizing
tr(AB) = tr(BA), we have

trS = trZm = 2m− n. (34)

Since S for reflectionless scattering is traceless, we can have
such scattering only for n = 2m.

Our first example is with n = 4 whose S is given by

S =


0 0 a

√
1− a2

0 0
√

1− a2 −a
a

√
1− a2 0 0√

1− a2 −a 0 0

 , (35)

and the and corresponding T , by

T =

(
a

√
1− a2√

1− a2 −a

)
. (36)

The finite approximation is characterized by

r12 = r34 = 0, r13 = r24 = a, r23 = r14 =
√

1− a2,

eiχ24 = −1, eiχij = 1 all others,

v1 = v2 = v3 = v4 =
1− a−

√
1− a2

d
, (37)

The finite graph approximation is schematically illustrated in
the left side of Figure 1.

We next turn to reflectionless scattering with uniform trans-
mission to all other lines. The smallest non-trivial example of
such matrix exists for n = 4, and given by

S =
1√
5


0 1 1 1
1 0 −i i
1 i 0 −i
1 −i i 0

 . (38)

The corresponding T is given by

T =

(
ω ω−1

ω−4 ω4

)
. (39)

37

International Journal on Advances in Systems and Measurements, vol 5 no 1 & 2, year 2012, http://www.iariajournals.org/systems_and_measurements/

2012, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



with ω = ei
π
6 . Our finite approximation is specified by

following numbers.

r13 = r14 = r23 = r =24= 1, r12 = r34 = 0,

eiχ13 = ei
π
6 , eiχ14 = e−i

π
6 , eiχ23 = e−4i

π
6 , eiχ24 = e4i

π
6 ,

v1 = v2 = v3 = v4 = −1

d
, (40)

The finite graph approximation is schematically illustrated in
the right side of Figure 1.

If we limit ourselves to real scattering matrix, such matrix,
called symmetric conference matrix, is known to exist for n =
6, 10, 14, 18, 26, 30, 38, .... We look at the example of n = 6
whose S is given by

S =
1√
5


0 −1 −1 −1 1 1
−1 0 −1 1 −1 1
−1 −1 0 1 1 −1
−1 1 1 0 1 1
1 −1 1 1 0 1
1 1 −1 1 1 0

 . (41)

The corresponding T is given by

T =

 1 1 + γ 1 + γ
1 + γ 1 1 + γ
1 + γ 1 + γ 1

 . (42)

where γ = (
√

5 − 1)/2 is the golden mean. Our finite
approximation is specified by following numbers.

r12 = r23 = r13 = 4 + 3γ, r14 = r25 = r36 = 1,

r15 = r16 = r26 = r24 = r31 = r32 = 1 + γ,

r45 = r46 = r56 = 0,

eiχ12 = eiχ23 = eiχ13 = −1, eiχij = 1 all others,

v1 = v2 = v3 = −6
γ + 1

d
, v4 = v5 = v6 = −2

γ + 1

d
. (43)

The finite graph approximation is schematically illustrated in
the right side of Figure 1.

Our next example is the reflectionless equitransmitting
graph with n = 10, that corresponds to the S matrix given
by n = 10 conference matrix

S =
1

3



0 −1 1 1 −1 −1 1 1 1 1
−1 0 −1 1 1 1 −1 1 1 1
1 −1 0 −1 1 1 1 −1 1 1
1 1 −1 0 −1 1 1 1 −1 1
−1 1 1 −1 0 1 1 1 1 −1
−1 1 1 1 1 0 1 −1 −1 1
1 −1 1 1 1 1 0 1 −1 −1
1 1 −1 1 1 −1 1 0 1 −1
1 1 1 −1 1 −1 −1 1 0 1
1 1 1 1 −1 1 −1 −1 1 0


(44)

The trace of S is zero again, and we have m = n
2 = 5. The

matrix T specifying the vertex is given by

T =


−1 0 1 1 0
0 −1 0 1 1
1 0 −1 0 1
1 1 0 −1 0
0 1 1 0 −1

 , (45)

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ8
Ψ9

Ψ10

Ψ1

Ψ2

Ψ3

Ψ4

Ψ5

Ψ6

Ψ7

Ψ8

Fig. 3. Finite approximation to the equal-scattering Fulop-Tsutsui vertex
corresponding to n = 10 conference matrix, (44) (left) and n = 8 Hadamard
matrix, (47) (right) constructed according to to (26)-(28). The relative length
of internal lines rij and strength of the δ-potentials vj for former are given
by (46), while those for the latter are given by (49). Double lines indicate the
existence of non-zero phase shift χij .

where σ =
√

2−1 is the silver mean. Our finite approximation
is specified by following numbers for verteces;

r12 = r23 = r34 = r45 = r15 = 1,

r16 = r27 = r38 = r49 = r5a = 1,

r18 = r29 = r3a = r46 = r57 = 1,

r19 = r2a = r36 = r47 = r58 = 1,

r13 = r14 = r24 = r25 = r35 = 2,

r17 = r28 = r39 = r4a = r56 = 0,

r1a = r26 = r37 = r48 = r59 = 0,

r67 = r78 = r89 = r9a = r6a = 0,

r68 = r79 = r8a = r69 = r7a = 0,

eiχ12 = eiχ23 = eiχ34 = eiχ45 = eiχ15 = −1

eiχ16 = eiχ27 = eiχ38 = eiχ49 = eiχ5a = −1

eiχij = 1 all others,

v1 = v2 = v3 = v4 = v5 = −6

d
,

v6 = v7 = v8 = v9 = va = −2

d
. (46)

Here, a in subscript stands for the index for 10th edge.
The finite graph approximation for this case is schematically
illustrated in the left side of Figure 2.

The last example is the equal-scattering graph, in which
in the scattering is uniform in all lines including the line of
incoming particle. Such matrix, called symmetric Hadamard
matrix, is known to exist for n = 2k, k = 0, 1, .... An example
of such S for n = 8 is given by

S =
1√
8



1 −1 −1 −1 −1 1 1 1
−1 1 −1 −1 1 −1 1 1
−1 −1 1 −1 1 1 −1 1
−1 −1 −1 1 1 1 1 −1
−1 1 1 1 −1 1 1 1
1 −1 1 1 1 −1 1 1
1 1 −1 1 1 1 −1 1
1 1 1 −1 1 1 1 −1


. (47)

The trace of S is again zero, and we have m = n
2 = 4. The
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|Sj1|2
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 S41
 S51

C6
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|Sj4|2

1.51.00.50.0 k

 S14
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Fig. 4. Scattering probabilities as functions of incoming momentum k (in
the unit of 1/d) of finite quantum graph approximating the equal-transmitting
reflectionless vertex with n = 6 edges represented in Figure 1, right.

matrix T specifying the Fulop-Tsutsui the vertex is given by

T =
1

σ + 1


σ 1 1 1
1 σ 1 1
1 1 σ 1
1 1 1 σ

 . (48)

where σ =
√

2−1 is the silver mean. Our finite approximation
is specified by following numbers for verteces;

r12 = r13 = r14 = r23 = r24 = r34 = 1 + σ,

r15 = r26 = r37 = r48 =
σ

1 + σ
,

r16 = r17 = r18 = r27 = r28 = r38 =
1

1 + σ
,

r25 = r35 = r36 = r45 = r46 = r47 =
1

1 + σ
,

r56 = r57 = r58 = r67 = r68 = r78 = 0,

eiχ12 = eiχ13 = eiχ14 = eiχ23

= eiφ24 = eiχ34 = −1, eiχij = 1 all others,

v1 = v2 = v3 = v4 = −5σ − 3

d
,

v5 = v6 = v7 = v8 = −σ + 1

d
. (49)

The finite graph approximation is schematically illustrated in
the right side of Figure 2.

We now take a look at the convergence of the finite size
graph approximation by numerical calculations. In Figure
3, we display the scattering matrix of the finite graph that
is constructed to approximate equal-scattering reflectionless
matrix, (41). These are calculated directly from (33). The value
of the wave length k is in the unit of 1/d. The convergence
can be seen as quite good below kd . 0.2. Numerical analysis
of other examples of different graphs give essentially the
same conclusion that the construction does represent physical
realization of singular Fulop-Tsutsui vertex.

V. SCATTERING MATRIX FOR GRAPH WITH POTENTIALS

We are interested in controlling the scattering properties of
a quantum star graph with n lines through the addition of
potentials on the lines. Suppose that constant potential Ui is
applied to the i-th line. The Schrödinger equation now reads

− d2

dx2i
ψi(xi) = (k2 − Ui)ψi(xi) (i = 1, ..., n). (50)

Suppose a quantum particle with mechanical energy E comes
in the vertex from the j-th line, and scattered into all the lines
through the vertex. The i-th component of the wave function
is given by

ψ
(j)
i (x) = e−ikix + Sjjeikix (i = j)

=

√
kj
ki
Sijeikix (i 6= j), (51)

where k` is the local momentum on the `-th line, defined by

k` =
√
E − U`, (52)

where U` is the potential on the `-th line. The coefficients√
kj/ki is there to impose proper normalization to guarantee

that the flux conservation is given by Ψ†Ψ′ − Ψ′†Ψ = 0 as
before. The scattering matrix S = {Sij} now depends, besides
the internal properties of the vertex, on E and U1, U2, . . . , Un.

1

j

n

√(k1/kj)Sj1e ikjxj

e-ik1x1

2

S11 eik1x1

Fig. 5. Schematic representation of scattering of a quantum particle on a
star graph of degree n with potentials Ui on the line i.

As before, we define matrices M = {ψij(0)} and M ′ =
{ψ′ij(0)}. This time, from (51), we have

M = I(n) +K−1SK,
M ′ = iK2(−I(n) +K−1SK), (53)

where the matrix K is defined by its elements

Kij =
√
kiδij . (54)

The boundary condition AM +BM ′ = 0, together with (53)
leads to [14]

S = −(AK−1 + iBK)−1(AK−1 − iBK) , (55)

which is the desired equation.
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VI. THRESHOLD RESONANCE IN STAR GRAPH WITH
EXTERNAL POTENTIAL

Let us consider an n = 3 star graph with a Fulop-Tsutsui
coupling with

T =
(
a b

)
, (56)

which gives the explicit equation for the boundary condition
BΨ′ = −AΨ in the form1 a b

0 0 0
0 0 0

Ψ′ =

 0 0 0
−a 1 0
−b 0 1

Ψ. (57)

The scattering matrix in the absence of potentials Ui = 0 is
given by

S =
1

1+a2+b2

1−a2−b2 2a 2b
2a −1+a2−b2 2ab
2b 2ab −1−a2+b2

 . (58)

In order to make the system controllable with external field
of macroscopic scale, we add a constant potential to one of
the lines [14]. We choose the third line for this purpose, while
leaving the other two lines free. The graph is schematically
illustrated in Fig. 6. The system is conceived as a model of the
quantum device that is controlled through the variation of the
potential strength. The roles of individual lines are identified
as follows:

• Line 1 is the input. Particles of various energies are
coming in the vertex along this line.

• Line 2 is the output. Particles passed through the vertex
are gathered on this line.

• Line 3 is the controling line. We assume that this line is
subjected to an adjustable constant external potential U .

1 2

3
U

FT: (a b)

e-ikx1 S21 e ikx2

Fig. 6. Schematic depiction of the n = 3 star graph with an external potential
U on the line 3.

A quantum particle with energy E = k2 coming in the vertex
from the input line 1 is scattered at the vertex into all the lines.
The scattering amplitudes can be calculated by substituting
the matrices A,B from the boundary condition (57) into
equation (55), together with the local momenta

k1 = k2 = k, k3 =
√
k2 − U. (59)

For the incoming particles from the line 1, we obtain:

S21(k;U) =
2a

1 + a2 + b2
√

1− U
k2

, (60)

S11(k;U) =
1− a2 − b2

√
1− U

k2

1 + a2 + b2
√

1− U
k2

, (61)

S31(k;U) =
2b
(
1− U

k2

) 1
4 Θ(k −

√
U)

1 + a2 + b2
√

1− U
k2

. (62)

The Heaviside step function Θ(k −
√
U) in (62) is there to

make the expression valid for all energies k2, including k2 <
U . It represents the absence of the transmission to the line 3
below the threshold momentum

kth =
√
U. (63)

We look at the probability of transmission from the input
line 1 into the output line 2, which we denote by P(k;U),
which is given by

P(k;U) = |S21(k;U)|2. (64)

We are nterested in its k-dependence, in particular. We have,
from (60),

P(k;U) =
4a2(

1 + a2 + b2
√

1− U
k2

)2 (k ≥
√
U),

=
4a2

(1 + a2)2 + b4( Uk2 − 1)
(k ≤

√
U). (65)

We observe that for a given constant potential on the line 3,
P(k;U) as a function of k grows in the interval (0,

√
U),

attains its maximum at k = kth, and decreases in the interval
(kth,∞). In particular, we have

P(0;U) = 0 ,

P(kth;U) =

(
2a

1 + a2

)2

,

P(∞;U) =

(
2a

1 + a2 + b2

)2

. (66)

If the parameters a, b satisfy

b� a ≥ 1, (67)

the function P(k;U) displays a sharp peak at the threshold
momentum kth. Equation (66) implies that the peak attains
the highest possible value 1 for a = 1. We conclude that,
with the choice b � a = 1, the system has high input to
output transmission probability for particles having momenta
k ≈ kth, and that the transmission is perfect for k = kth, while
the transmission probability for other values of k is strongly
suppressed. The situation is numerically illustrated in Fig. 7.
The quantum graph schematically depicted in Fig. 6 can be
therefore used as an adjustable spectral filter, controllable by
the potential put on the controlling line 3. We remark that the
resonance at the threshold momentum kth is related to the pole
of the scattering matrix which is located on the positive real
axis at

kpol =
b2√

b4 − (1 + a2)2

√
U (68)
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Fig. 7. Scattering characteristics of the graph from Fig. 6 with parameters
a = 1, b = 3. The transmission probability P(k;U) as a function of k
with the value of the potential set to U = 1 is plotted in the top figure. The
lower figure shows reflection probability |S11(k;U)|2 and the probability of
transmission to the controlling line |S31(k;U)|2.

on the unphysical Riemann surface, which is connected to
the physical Riemann surface at the cut that runs between
k = ±kth.

VII. FLUX CONTROL AND QUANTUM SLUICE-GATE

Let us consider an n = 4 star graph, in search of another
model of the quantum device, which is schematically illus-
trated in Fig. 8. The roles of individual lines are identified as
follows:

• Line 1 is the input. Particles of various energies are
coming in the vertex along this line.

• Line 2 is the output. Particles passed through the vertex
are gathered on this line.

• Line 3 is the controling line. We assume that this line is
subjected to an adjustable constant external potential U .

• Line 4 is the drain Our analysis has shown that this
seemingly redundant line is needed for the device we
wish to construct.

The vertex coupling is again assumed to be of a Fulop-Tsutsui
type, specified by the coupling matrix

T =

(
a a
a −a

)
, (69)

which gives the explicit equation for the boundary condition
in the form

1 0 a a
0 1 a −a
0 0 0 0
0 0 0 0

Ψ′ =


0 0 0 0
0 0 0 0
−a −a 1 0
−a a 0 1

Ψ (70)

with a ∈ R. The scattering matrix in the absence of potentials
U = 0 is given by

S =
1

1+2a2


1−2a2 0 2a 2a

0 1−2a2 2a −2a
2a 2a −1+2a2 0
2a −2a 0 −1+2a2

 . (71)

For a particle with energy E = k2 coming in the vertex from

1 2

3
U

4

S21 e ikx2e-ikx1

FT: (    )a  a
a -a

Fig. 8. Schematic depiction of the n = 4 star graph with an external potential
U on the line No. 3.

the input line 1, we have

k1 = k2 = k, k3 =
√
k2 − U, k4 = k. (72)

The scattering amplitudes for particles entering from the line
1 can be calculated as

S21(k;U) =
2a2

(
1−

√
1− U

k2

)
(1 + 2a2)

(
1 + 2a2

√
1− U

k2

) , (73)

and

S11(k;U) =
1− 4a4

√
1− U

k2

(1 + 2a2)
(

1 + 2a2
√

1− U
k2

) , (74)

S31(k;U) =
2a
(
1− U

k2

) 1
4 Θ(k −

√
U)

1 + 2a2
√

1− U
k2

, (75)

S41(k;U) =
2a

1 + 2a2
. (76)

We again denote the transmission probability from input to
output lines by P(k;U) = |S21(k;U)|2. We obtain, for the
transmission below the threshold,

P(k;U) =
4a4U/k2

(1+2a2)2
(
1−4a4+4a4 Uk2

) (k ≤
√
U), (77)

and above the threshold,

P(k;U) =
4a4

(
1−

√
1− U

k2

)2
(1+2a2)2

(
1+2a2

√
1− U

k2

)2 (k ≥
√
U). (78)

Hence we have

P(0;U) =
1

(1 + 2a2)2
,

P(
√
U ;U) =

4a4

(1 + 2a2)2
,

P(∞;U) = 0 . (79)
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When U is fixed, P(k;U) as a function of k quickly falls
off to zero at k >

√
U . A typical behaviour is illustrated

in a numerical example in Fig. 9. The peak at the threshold
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Fig. 9. Scattering characteristics of the graph from Fig. 8 with parameter a =
1. The transmission probability P(k;U) as a function of k with the value of
the potential set to U = 1 is plotted in the top figure. The lower figure shows
the reflection probability |S11(k;U)|2 and the probabilities of transmission
to the controlling line |S31(k;U)|2 and to the drain line |S41(k;U)|2.

momentum kth =
√
U , appearing for a > 1/

√
2, is again

related to the pole in the unphysical Riemann plane at

kpol =
2a2√

(4a4 − 1)

√
U. (80)

There is a value of the parameter a that deserves a particular
attention, namely a = 1/

√
2. For this choice of a, the peak

disappears and the function P(k;U) becomes constant in the
whole interval (0,

√
U);

P(k;U) =
1

4
(k ≤

√
U)

=
1

4

1−
√

1− U
k2

1 +
√

1− U
k2

2

(k >
√
U). (81)

The situation is evident in Fig. 10. This can be also regarded
as the a = 1/

√
2 case of (35) considered in the section IV.

Our device behaves as a spectral filter with a flat passband that
transmits one fourth of quantum particles with momenta k ∈
[0,
√
U ] to the output, whereas particles with higher momenta

are diverted to other lines, mainly to 3 and 4. The process is
directly controlled by the external potential U . Note that, at
this parameter value a = 1/

√
2, the scattering matrix without

the external potential has the form

S =
1√
2


0 0 1 1
0 0 1 −1
1 1 0 0
1 −1 0 0

 . (82)
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Fig. 10. Characteristics of the flat spectral filter obtained from the graph on
Fig. 8 for a = 1/

√
2. The transmission probability P(k;U) as a function

of k with the value of the potential set to U = 1 is plotted in the top
figure. The lower figure shows the reflection probability |S11(k;U)|2 and
the probabilities of transmission to the controlling line |S31(k;U)|2 and to
the drain line |S41(k;U)|2.

Since increasing U opens the channel 1→2 for more par-
ticles, the device can be regarded as a quantum sluice-gate,
applicable as a quantum flux controller (Fig. 11). When there
are many particles described by the momentum distribution
ρ(k) on the line 1, the flux J to the line 2 is given by

J(U) =

∫
dkρ(k)kP(k;U) . (83)

Assuming the Fermi distribution with Fermi momentum kF
larger than our range of operation of

√
U , we can set ρ(k) =

ρ = const. With the approximation P(k;U) ≈ 1
4Θ(
√
U − k),

we obtain

J(U) =
1

8
ρU, (84)

which indicates the linear flux control.
The sluice-gate built from an n = 4 star graph has another

possible mode of operation. We can apply another external
field V which we assume to be in the range 0 < V < U to
the line No. 4. The local momenta on lines 1 to 4 are given
by

k1 = k2 = k, k3 =
√
k2 − U, k4 =

√
k2 − V . (85)

The system now has two threshold momenta given by

kth1 =
√
U, kth2 =

√
V . (86)

For the incoming particles from the line 1, we obtain the
scattering matrix in the form

S21(k;U) =
−2a2

(√
1− U

k2 −
√

1− V
k2

)
(

1 + 2a2
√

1− U
k2

)(
1 + 2a2

√
1− V

k2

) , (87)
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Fig. 11. The graph showing the sluice-gate operation of the quantum graph
depicted in Fig. 8. The transmission spectra P(k) is plotted with various
values of the control potential U .

S11(k;U) =
1− 4a4

√
1− U

k2

√
1− V

k2(
1 + 2a2

√
1− U

k2

)(
1 + 2a2

√
1− V

k2

) , (88)

S31(k;U) =
2a
(
1− U

k2

) 1
4 Θ(k −

√
U)

1 + 2a2
√

1− U
k2

, (89)

S41(k;U) =
2a
(
1− V

k2

) 1
4 Θ(k −

√
V )

1 + 2a2
√

1− V
k2

. (90)

The channel 1→2 opens for particles with k ∈ [kth2, kth1]
and mostly closes for particles with k outside this interval
(Fig. 12). The gate then works as a fully tunable band spectral
filter. However, in contrast to the standard V = 0 operation
mode, the filter with V > 0 does not have a flat passband.

We emphasize that the controllable filter using the threshold
resonance is possible only with “exotic” Fulop-Tsutsui-type
couplings in the vertices. Standard vertex couplings, namely
the free and the δ-coupling, fail to work in this manner. It
is essential, for the proposed designs to be experimentally
realizable, that the required Fulop-Tsutsui vertices can be
created using standard couplings, which themselves have a
simple physical interpretation [15]. This problem has been
addressed in [9] and [12], where it was proved that any
Fulop-Tsutsui coupling given by b. c. with real matrices A,B
can be approximately constructed by assembling a few δ-
couplings. The solution for our case is shown in Fig. 13:
For the n = 3 case (top), the δ-coupling strengths are given
by v1 = [a(a − 1) + b(b − 1)]/d, v2 = (1 − a)/d and
v3 = (1−b)/d. For the n = 4 case (bottom), the strengths are
v1 = v2 = 2a(a − 1)/d, v3 = v4 = (1 − 2a)/d. The double
line represents a line with a “magnetic” vector potential, which
can be alternatively replaced by a line carrying the δ-coupling
of strength v5 = −8a/d in its center, together with changing
v2 and v4 to v2 = 2a(a− 2)/d, v4 = (1− 4a)/d.

1.0

0.5

0.0

P      

2.01.51.00.50.0
k

a =1/√2kth2 = √ V

kth1 = √ U

0.5

0.0

¦S31¦
2

kth1 = √ U

1.0

0.5

0.0

¦S11¦
2 a =1/√2kth2 = √ V

0.5

0.0

¦S41¦
2

2.01.51.00.50.0
k

Fig. 12. Characteristics of the flat spectral filter obtained from the graph
on Fig. 8 for a = 1/

√
2 and added second potential V on the 4th line. The

transmission probability P(k;U) as a function of k with the value of the
potentials set to U = 1 and V = 0.1 is plotted in the top figure. The lower
figure shows the reflection probability |S11(k;U)|2 and the probabilities of
transmission to the two controlling lines |S31(k;U)|2 and |S41(k;U)|2.

FT: (a b)
≈

d/a

d/b

 v 1  v 2

 v 3

 v 2

 v 4

≈
d/a d/a

 v 1

 v 3

d/a d/aFT: (    )a  a
a -a

Fig. 13. Finite constructions of the Fülöp-Tsutsui couplings used. The design,
based on [12], utilizes the δ-couplings connected by short lines. The small size
limit d→ 0 with the δ-coupling strengths scaled with d effectively produces
the required F-T vertex coupling.

VIII. CONCLUSION AND PROSPECTS

It has been shown, in this article, that the task of finding
desired property of Flulop-Tsutsui graph can be turned into
mathematical problem of identifying proper Hermitian unitary
matrix. Naturally, the search of system with S having other
interesting specifications should follow. Several questions arise
along the line. One is the question whether we always have
trS = 0 for systems with “exchange symmetric” |Sij |. The
generalization to complex S is also an interesting problem
[16]. Other open questions include the generalization to non-
Fulop-Tsutsui connection which yields general unitary S not
limited to Hermitian ones. The study of the bound state spectra
is one thing we have completely neglected in this work.
Application to non-quantum waves, including electro-magnetic
wave and water wave should be another interesting subject.

Through the finite construction of star graph with no internal
lines, what we have shown, in fact, amounts to the study of
the low energy properties of graphs with internal lines, all of
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whose edges are connected to external lines. The examination
of more complicated graphs, having purely internal lines, is
the natural future direction.

The full solution to the inverse scattering problem and its
use as a basis for filtering device, which we have shown in
this article, amount to the partial fulfillment of the hope, that
quantum graph could be a solvable model and useful design
tool at the same time. The application of the quantum graphs
we have considered here obviously is just a starting attempt,
to which many follow-ups in the future should be expected.
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