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Abstract—Current organizations need to be able to cope with
challenges such as increasing change and increasing complexity
in many or all of their aspects. Modularity has frequently been
suggested as a powerful means for reducing that complexity
and enabling flexibility. However, the proper use of modularity
to actually achieve those benefits cannot be considered trivial or
straightforward. Normalized Systems (NS) theory has proven
to introduce this evolvable and diagnosable modularity in
software systems. This paper discusses the generalization of
NS concepts to the analysis and design of modules in systems
and enterprise engineering as evolvability and diagnosability
are deemed to be appealing for most modular structures.
In order to do so, this paper highlights the importance of
distinguishing blackbox and whitebox views on systems and the
fact that a true blackbox requires fully and exhaustively defined
interfaces. We further discuss the functional/constructional
transformation and elaborate on how NS theory uses the
concepts of modularity, stability and entropy to optimize
certain properties of that transformation. We argue how some
aspects of organizational systems can be analyzed based on
the same reasoning, suggesting some viable approaches for
Enterprise Engineering. By means of a tentative reflection, we
provide a discussion regarding how the concepts of stability
and entropy might be interpreted as different manifestations
of coupling within modular structures.

Keywords-Normalized Systems; Systems Engineering; Enter-
prise Engineering; Modularity; Stability; Entropy.

I. INTRODUCTION

Current organizations need to be able to cope with in-
creasing change and increasing complexity in many or all
of their aspects. Not only organizations themselves need
to deal with this ‘changing complexity’ in terms of their
organizational structures, business processes, etcetera. Ad-
ditionally, also the products or services they deliver, and
even the software applications supporting these products and
business processes, are equally exposed to this changing
complexity. In many engineering disciplines, modularity
has previously been suggested as a powerful means for
reducing that complexity by decomposing a system into
several subsystems [2], [3]. Moreover, modifications at the
level of those subsystems instead of the system as a whole
are said to facilitate the overall evolvability of the system.

Hence, modularity can be claimed to have properties for
tackling both change and complexity in systems.

However, the proper use of modularity to actually achieve
those benefits cannot be considered trivial or straightforward.
Typical issues involved include the identification and delin-
eation of the modular building blocks (i.e., subsystems), the
communication between those modular building blocks (i.e.,
the interfaces), the assurance of providing compatibility of
new versions of a building block with the overall system,
etcetera.

In this regard, Normalized Systems (NS) theory has re-
cently proven to introduce this diagnosable and evolvable
modularity, primarily at the level of software systems [4],
[5]. Considering the transformation of basic functional re-
quirements into software primitives (such as data structures,
functions, methods, etcetera), which are considered as the
basic modular building blocks of software systems, the the-
ory proposes a set of formally proven theorems to design and
analyze software architectures. Besides using the concept of
modularity, the theory also heavily relies on other traditional
engineering concepts such as stability (based on systems
theory) [4] and entropy (based on thermodynamics) [6] to
optimize those modular structures according to certain crite-
ria. As this approach has proven its value in the past to obtain
more maintainable and diagnosable software architectures, it
seems appealing to investigate the extent to which we can
apply the same approach to other modular systems for which
these properties seem beneficial as well.

Indeed, we claim that many other systems could also be
regarded as modular structures. Both functional (i.e., re-
quirements) and constructional (i.e., primitives) perspectives
can frequently be discerned, modules can be identified and
thus the analysis of the functional/constructional transforma-
tion seems relevant. For instance, considering organizational
systems, Van Nuffel has recently shown the feasibility of
applying modularity and NS theory concepts at the business
process level [7], [8] while Huysmans did so at the level
of enterprise architectures [9]. However, the extension of
NS theory to these domains has not been fully formalized
yet in several aspects. Consequently, as NS theory proved
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to be successful in introducing evolvable and diagnosable
modularity in software systems, and as it is clearly desir-
able to extend such properties to other systems, this paper
focuses on applying NS theory concepts to the identification
and analysis of modular structures in systems engineering
(including Enterprise Engineering). This way, the paper can
be regarded as a first step towards the formal generalization
of NS theory concepts to modularity and system engineering
in general.

More specifically, we will focus in the present paper on
the illustration and discussion of the following aspects:

1) From an engineering perspective, arguably, many sys-
tems can be considered as modular structures, includ-
ing traditional engineering systems, software systems,
and organizational systems;

2) In order to profoundly study (and in a second phase,
optimize) the structure of such modular systems, it is
necessary to formulate complete and exhaustive inter-
faces for each of their constituting modular building
blocks as this gives a complete overview of the cou-
pling between them (and, possibly, external systems).
This is considered to be an essential part of each
systems engineering process;

3) As proposed by Normalized Systems theory, tradi-
tional engineering concepts such as stability (based on
systems theory) and entropy (based on thermodynam-
ics) might offer interesting viewpoints for the analysis
and optimization of modular systems, each from their
own perspective (i.e., evolvability and diagnosability
respectively);

4) One way of interpreting both the occurrence of insta-
bility and entropy in relation to modular structures,
is to consider coupling between modular components
as their common origin and ground. This further adds
to our discussion regarding the importance of fully
defined and complete interfaces, as argued under bullet
point 2.

This paper mainly further elaborates the reasoning pro-
posed in [1] regarding the need for complete and un-
ambiguous module interfaces (i.e., bullet points 1 and 2)
by explicitly relating them to the concepts of coupling,
stability and entropy (i.e., bullet points 3 and 4). Also,
additional examples (i.e., cases) regarding the consequences
of applying our reasoning to organizational systems, will be
provided.

The remainder of this paper is structured as follows.
Section II discusses the essence of NS theory and how it
leverages the concepts of stability and entropy to obtain
evolvable and diagnosable modular structures. Next, in Sec-
tion III, we present some extant literature on modularity
(without claiming to be exhaustive), emphasizing the work
of Baldwin and Clark. Here, some arguments will also be
offered to consider it reasonable to analyze both software

and organizational systems from a modularity point of view.
Afterwards, we differentiate between blackbox (functional)
and whitebox (constructional) views on systems, and offer
a more unambiguous definition of modularity by arguing
for the need of complete and exhaustively defined inter-
faces in Section IV. Some useful functional/constructional
transformation properties (including stability and entropy)
will be discussed in Section V. Emphasizing the usefulness
of our approach for Enterprise Engineering, the application
of NS stability and entropy reasoning to business processes
will be illustrated in Section VI, as well as some additional
interface dimensions, which could show up when consid-
ering organizational modules (ideally exhibiting a complete
interface). In Section VII, some additional examples (i.e.,
cases) regarding the consequences of applying our reasoning
to organizational systems, will be provided. We end this
paper by reflecting on the relatedness of the concepts of
stability and entropy in terms of modular coupling (Section
VIII) and some conclusions (Section IX).

II. NORMALIZED SYSTEMS THEORY

Normalized Systems theory (NS) is a theory about the
deterministic creation of evolvable modular structures based
on a limited set of proven and unambiguous design theo-
rems, primarily aimed at the design of evolvable software
architectures. In order to do so, the theory states that the
implementation of functional requirements into software
constructs can be regarded as a transformation of a set of
requirements R into a set of software primitives S [10], [4],
[5]:

{S} = I{R}

Next, the theory argues that the resulting set of primitives
can be considered to be a modular structure and that ideally
(1) the considered design-time transformation should exhibit
stability (i.e., evolvability), and (2) the run-time instantiation
of implemented primitives should exhibit isentropicity (i.e.,
diagnosability). For this purpose, a set of theorems is derived
based on insights from traditional engineering sciences such
as systems theory and thermodynamics. In this section, we
will briefly highlight both approaches. First, we will discuss
the essence of NS in its initial form, i.e., starting from
the stability point of view from systems theory. Next, the
recent association and indications towards conformance with
entropy concepts from thermodynamics will be highlighted.
A preliminary discussion of some real-life NS software
implementations can be found in [5].

A. Normalized Systems and Stability

Normalized Systems theory initially originated from the
well-known maintenance problems in software applications
and the phenomenon that software programs tend to become
ever more complex and badly structured as they are changed
over time, becoming more and more difficult to adapt and
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(a) Container A (b) Container B (c) Container C

Figure 1. Container example for illustrating the concept of entropy. The grey parts represent those spaces filled with gas, the white parts represent those
spaces, which are empty.

hence, less evolvable [11]. In order to obtain evolvable mod-
ularity, NS theory states that the functional/constructional
transformation should exhibit systems theoretic stability,
meaning that a bounded input function (i.e., bounded set
of requirement changes) should result in bounded output
values (i.e., a bounded impact or effort) even if an unlimited
systems evolution with time t → ∞ is considered. From
this perspective, Mannaert et al. [4] have formally proven
that this implies that the modular structure should strictly
adhere to the following principles:

• Separation of Concerns (SoC), enforcing each concern
(here: change driver) to be separated;

• Data Version Transparency (DvT), enforcing commu-
nication between data in a version transparant way;

• Action Version Transparency (AvT), requiring that ac-
tion components can be updated without impacting
calling components;

• Separation of States (SoS), enforcing each action of a
workflow to be separated from other actions in time by
keeping state after every action.

As the systematic application of these principles results
in very fine-grained modular structures, NS theory proposes
to build information systems based on the aggregation
of instantiations of five higher-level software patterns or
elements, i.e., action elements, data elements, workflow
elements, trigger elements and connector elements [10], [4],
[5]. Typical cross-cutting concerns (such as remote access,
persistence, access control, etcetera) are included in these
elements in such a way that it is consistent with the above-
mentioned theorems.

A more formal discussion of the stability principles and
reasoning as well as some initial case study findings can be
found in [4] and [5] respectively.

B. Normalized Systems and Entropy

Recently, efforts were made to explain the above-
mentioned findings in terms of entropy as defined in ther-
modynamics [6]. Entropy is a well-known and much debated
engineering concept, originating from thermodynamics and
referring to its Second Law. As we pointed out in [12],
some common interpretations associated with entropy in-
clude (1) complexity, perceived chaos or disorder [13], (2)
uncertainty or lack of information [14] and (3) the tendency
of constituent particles in a system to dissipate or spread

out [15]. In [6], it was proposed to primarily employ the
statistical thermodynamics perspective on entropy for the
extension of NS theory. As such, the definition of Boltzmann
[16] was adopted, considering entropy as the number of
microstates (i.e., the whole of microscopic properties of a
system) consistent with a certain macrostate (i.e., the whole
of externally observable and measurable properties of a
system).

Consider for example Figure 1, symbolizing a gas con-
tainer having a boundary in the middle, which is dividing the
container into two compartments. The boundary completely
isolates both parts of the container as a result of which the
gas is solely present in the right side of the container, leaving
the left part empty (see Panel (a)). While the macrostate of
the container (e.g., its temperature or pressure) is brought
about by one particular arrangement or configuration of the
gas molecules (i.e., its microstate: the union of the position,
velocity, and energy of all gas molecules in the container),
many different configurations of molecules (microstates)
might result in this same macrostate (hence illustrating the
amount of entropy). Now imagine that the shaft between the
two components is removed and both components become
one single space: the gas (and the energy of its molecules)
will expand, dissipate and spread out into the full space,
interacting with the second component of the container
(see Panel (b)). This interaction (and the removal of the
fragmentation, separation and structure between both spaces)
moreover increases the degree of entropy as now even a
larger set of microstates (configurations of the molecules)
can result in a single macrostate. The only way to avoid
an increase of entropy throughout time is by introducing
structure or effective boundaries between subsystems. Note
that such boundaries need to be complete and encompassing,
as in the case of partial fragmentation no entropy reduction
is obtained (see Panel (c)).

Applying this reasoning to software applications, mi-
crostates could be defined as binary values representing
the correct or erroneous execution of a construct of a
programming language. A macrostate can then be seen in
terms of loggings or database entries representing the correct
or erroneous processing of the considered software system.
From this perspective, Mannaert et al. [6] have proposed a
second set of principles that should be strictly adhered to in
order to achieve diagnosability in a modular structure. First,
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the above described principles of Separation of Concerns
(now in terms of information units) and Separation of States
could equally be derived from this entropy reasoning as well.
Next, a set of two additional principles were formulated:

• Data instance Traceability (DiT), enforcing the actual
version and the values of every instance of a data
structure serving as an argument, to be exported (e.g.,
logged) to an observable macrostate;

• Action instance Traceability (AiT), enforcing the actual
version of every instance of a processing function and
the thread it is embedded in, to be exported (e.g.,
logged) to an observable macrostate.

III. RELATED WORK ON MODULARITY

The use of the concept of modularity has been noticed to
be employed in several scientific domains such as computer
science, management, engineering, manufacturing, etcetera
[2], [3]. While no single generally accepted definition is
known, the concept is most commonly associated with the
process of subdividing a system into several subsystems
[19], [20]. This decomposition of complex systems is said
to result in a certain degree of complexity reduction [21]
and facilitate change by allowing modifications at the level
of a single subsystem instead of having to adapt the whole
system at once [22], [2], [3].

As such, Baldwin and Clark defined modularity as fol-
lows: “a unit whose structural elements are powerfully con-
nected among themselves and relatively weakly connected
to elements in other units” [3, p. 63]. They conceive each
system or artifact as being the result of specifying values
for a set of design parameters, such as the height and the
vessel diameter in case of a tea mug. The task of the
designer is then to choose the design parameter values in
such a way, that the ‘market value’ of the system as a whole
becomes maximized. Some of the design parameters might
be dependent on one another, as for example the value of
the vessel diameter should be attuned to the value of the
diameter of a mug. This reasoning is visualized in Figure 2
as well. Here, the use of Design Structure Matrices (DSM) is
proposed. Such matrices (as originally elaborated by Steward
[17] and Eppinger et al. [18]) typically depict the design
parameters in both the rows and columns of the matrix.
Each ‘x’ represents a dependency (hence, coupling) between
two design parameters. Additionally, the direction of the
dependency is indicated: for instance, in the situation as
depicted in Figure 2, the matrix implies that the choice of a
particular value for design parameter B (e.g., mug diameter)
determines the set of possible choices for the value of design
parameter A (e.g., vessel diameter). Obviously, a myriad of
types of Design Structures Matrices can appear, according
the system under consideration.

After drafting a Design Structure Matrix for the system
to be engineered (i.e., providing a detailed overview of the

dependencies among the different relevant design parame-
ters), modularization is conceived by Baldwin and Clark
as the process in which groups of design parameters —
highly interrelated internally, but loosely coupled externally
— are to be identified as modules and can be designed
rather independently from each other, such as for instance
the drive system, main board and LCD screen in case of
a simplified computer hardware design. In Figure 2, the
different modules are indicated by the light and dark grey
zones, respectively. As argued by Baldwin and Clark, the
modules should thus be ideally fully decoupled: this would
mean that, as is the case in Figure 2, there are only ‘x’s
placed within the light and dark grey zones and no ‘x’s
should be found in the white areas representing dependencies
between both modules. Nevertheless, as such a situation is
mostly only a theoretical ideal, in most realistic settings,
dependencies between the distinct modules do occur. In
such situations, a set of architectural or design rules (i.e.,
externally visible information) is typically used to secure the
compatibility between the subsystems in order to be assem-
bled into one working system later on, while the other design
parameters are only visible for a module itself. Finally, they
conclude that this modularity property allows for multiple
(parallel) experiments for each module separately, resulting
in a higher ‘option value’ of the system in its totality. Instead
of just accepting or declining one system as a whole, a
‘portfolio of options’ can be considered, as designers can
compose a system by purposefully selecting among a set of
alternative modules. Systems evolution is then believed to
be characterized by the following six modular operators [3]:

• Splitting a design (and its tasks) into modules;
• Substituting one module design for another;
• Augmenting, i.e., adding a new (extra) module to the

system;
• Excluding a module from the system;
• Inverting, i.e., isolating common functionality in a new

module, thus creating new design rules;
• Porting a module to another system.

Typically, besides traditional physical products, many
other types of systems are claimed to be able to be regarded
as modular structures as well. First, all different program-
ming and software paradigms can be considered as using
modularity as a main concept to build software applications
[10]. Whether they are using classes, objects, structures,
functions, procedures, etcetera, they all are basically al-
lowing a programmer to compose a software system by
aggregating a set of instances from a collection of primitives
(available in the concerning programming paradigm) in a
modular way. Furthermore, while Baldwin and Clark primar-
ily illustrate their discussion by means of several evolutions
in the computer industry, they also explicitly refer to the
impact of product modularity on the (modular) organization
of workgroups both within one or multiple organizations,
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Figure 2. Modularity reasoning as proposed by Baldwin and Clark [3], based on Design Structure Matrices (DSM) from Steward [17] and Eppinger et
al. [18].

and even whole industry clusters [3]. Also, Campagnolo and
Camuffo [20] investigated the use of modularity concepts
within management science and identified 125 studies in
which modularity concepts arose as a design principle of
complex organizational systems, suggesting that principles
based on the concept of modularity offer powerful means to
be applied at the organizational level.

Within the field of Enterprise Engineering, trying to
give prescriptive guidelines on how to design organizations
according to certain (desirable) characteristics, modularity
equally proved to be a powerful concept. For instance, Op’t
Land used modularity related criteria (including coupling
and cohesion) to analyze and predict the merging and split-
ting of organizations [23]. Van Nuffel proposed a framework
to deterministically identify and delimit business processes
based on a modular and NS theory viewpoint [7], [8],
and Huysmans demonstrated the usefulness of modularity
with regard to the study of (the evolvability) of enterprise
architectures [9].

IV. TOWARDS A COMPLETE AND UNAMBIGUOUS
DEFINITION OF MODULES

While we are obviously grateful for the valuable contri-
butions of the above mentioned authors, we will argue in
this section that the definition of modularity, as for example
coined by Baldwin and Clark [3], already describes an ideal
form of modularity (e.g., loosely coupled and independent).
As such, before starting our generalization efforts of NS
theory to modularity issues in general, we need to clarify a
few elements regarding our conceptualization of modularity.
First, we will discuss the need to distinguish both functional
and constructional perspectives of systems. Next, we will
propose to introduce the formulation of an exhaustive mod-
ular interface as an intermediate stage, being a necessary
and sufficient condition in order to claim ‘modularity’. The

resulting modules can then be optimized later on, based on
particular criteria, which will be our focus of Section V.

A. Blackbox (Functional) versus Whitebox (Constructional)
Perspectives on Modularity

When considering systems in general — software sys-
tems, organizational systems, etcetera — both a functional
and constructional perspective should be taken into account
[24]. The functional perspective focuses on describing what
a particular system or unit does or what its function is
[25]. While describing the external behavior of the sys-
tem, this perspective defines input variables (what does
the system need in order to perform its functionality?),
transfer functions (what does the system do with its input?)
and output variables (what does the system deliver after
performing its functionality?). As such, a set of general
requirements, applicable for the system as a whole, are
listed. The constructional perspective on the other hand,
concentrates on the composition and structure of the system
(i.e., which subsystems are part of the system?) and the
relation of each of those subsystems (i.e., how do they work
together to perform the general function and adhere to the
predefined requirements?) [26].

Equivalently, one could regard the functional system view
as a blackbox representation, and the constructional system
view as a whitebox representation. By blackbox view we
mean that only the input and output of a system is revealed
by means of an interface, describing the way how the system
interacts with its environment. As such, the user of the
system does not need to know any details about the content
or the inner way of working of the system. The way in
which the module performs its tasks is thus easily allowed
to change and can evolve independently without affecting
the user of the system, as long as the final interface of
the system remains unchanged. The complexity of the inner
working can also be said to be hided (i.e., information
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(a) Blackbox (functional) representation of SysA. R1, R2, etc.
represent the requirements imposed to SysA as a whole.

(b) Whitebox (constructional) representation of SysA. Requirements
R1, R2, etc. are ‘realised’ through the collaboration of a set of
instances of primitives P1, P2, etc. in SysB, SysC, etc. At their
turn, SysB, SysC, etc. are represented here in a blackbox way.

Figure 3. Blackbox (functional) and whitebox (constructional) representations of system SysA.

hiding), resulting in some degree of complexity reduction.
The whitebox view does reveal the inner way of working of
a system: it depicts the different parts of which the system
consists in terms of primitives, and the way these parts
work together in order to achieve the set of requirements
as listed in the blackbox view. However, each of these parts
or subsystems is a ‘system’ on its own and can thus again be
regarded in both a functional (blackbox) and constructional
(whitebox) way.

The above reasoning is also depicted in Figure 3: both
panels represent the same system SysA, but from a con-
ceptually different viewpoint. Panel (a), depicting the func-
tional (blackbox) view, lists the requirements (boundary
conditions) R1, R2, . . . imposed to the system. These are
proposed as ‘surrounding’ the system in the sense that they
do not say anything about how the system performs its tasks,
but rather discuss what it should perform by means of an
interface in terms of inputs and outputs. Panel (b) depicts the
constructional (whitebox) view of the same system: the way
of working of an aggregation of instantiations of primitives
P1, P2, . . . (building blocks), collaborating to achieve the
behavior described in Panel (a). Each of the primitives in
Panel (b) is again depicted in a blackbox way and could,
at their turn, each also be analyzed in a constructional
(whitebox) way.

B. Avoiding Hidden Coupling by Strictly Defining Modular
Interfaces

Before analyzing and optimizing the transformation be-
tween both perspectives, the designer should be fully con-
fident that the available primitives can really be considered
as ‘fully fledged, blackbox modules’. By this, we mean that
the user of a particular module should be able to implement
it (i.e., in design-time), exclusively relying on the available
interface, thus without having any knowledge about the inner
way of working of the concerned module. Stated otherwise,
while other authors previously already elaborated on the
importance of interfaces for allowing a workable modular
design (see e.g., [27]), we primarily stress the importance
that the interface of a module should describe any possible
dependency regarding the module, needed to perform its
functionality. As long as the interface or boundary is not
fully articulated, undocumented interaction with other sys-
tems can and will occur. In such situation, the study of the
functional/constructional transformation or any optimization
effort may become worthless. To a certain extent, our reason-
ing is also somewhat parallel to the motivation of Dijkstra in
his argument to abolish ‘goto instructions’ in programming
languages [28]: an incomplete or underspecified interface
makes it very difficult if not impossible for an engineer to
mentally mimic the actual ‘way of working’ of the modules
(i.e., at run-time) as no clear overview is available on how
they affect one another. The importance of a full interface
can finally be illustrated by Figure 1(c): only in case the
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boundary (i.e., interface) is complete, a subsystem (here:
gas container compartment) can be properly studied in an
isolated way.

Consequently, every interaction of a system with its
environment should be properly and exhaustively defined
in the interface of a module. While this may seem rather
straightforward at first sight, real-life interfaces are rarely
described in such a way. Indeed, typical non-functional
aspects such as technological frameworks, infrastructure,
knowledge, etcetera are consequently also to be taken into
account (see Section VI-B). Not formulating these ‘tacit
assumptions’ in an explicit way results in hidden coupling:
while the system is claimed to be a module, it actually
still needs whitebox inspection in order to be implemented
in reality, diminishing the pretended complexity reduction
benefits.

Consider for instance a multiplexer for use in a typical
processor, selecting and forwarding one out of several input
signals. Here, one might conceptually think at a device
having for example 8 input signals, 3 select lines and 1
output signal. While this is conceptually certainly correct, a
real implementation on a real processor might for example
(hypothetically) require 120µ by 90µ CMOS (i.e., material)
to make the multiplexer physically operational on the proces-
sor, while this is not explicitly mentioned in its conceptual
interface. As such, this ‘resource dimension’ should be made
explicit in order to consider a multiplexer as a real blackbox
in the sense that the module can be unambiguously and
fully described by its interface. A person wanting to use a
multiplexer in real-life in a blackbox way, should indeed be
aware of this prerequisite prior to his ability of successfully
implementing the artifact.

A more advanced example of hidden coupling includes the
use of a ‘method’ in typical object-oriented programming
languages, frequently suggested as a typical example of
a ‘module’ in software. Indeed, in previous work, it was
argued to consider the multidimensional variability when
analyzing the evolvability of programming constructs (such
as data structures and processing functions) and that in
typical object-oriented programming environments these di-
mensions of variability increase even further as they make it
possible to combine processing actions and data entities into
one primitive (i.e., a single class) [4]. Hence, it was argued
to start the analysis of object-oriented modular structures
already at the level of methods instead of only considering
a class as a possible ‘module’. However, while it is usually
said that such a method in object orientation has an interface,
this interface is not necessarily completely, exhaustively and
fully defined and thus such a method cannot automatically
be considered as a ‘real module’ according to our con-
ceptualization. Consider for example the constructor of the
class in which the method has been defined. Typically, the
constructor has to perform certain actions (e.g., making an
instantiation (object) of the concerned class) before one can

execute the concerned method. Also member variables of
the class might introduce hidden coupling: first, they can be
manipulated by other methods as well, outside control of the
considered method. Second, they have to be created (‘exist’)
before the module can perform its functionality. Finally,
employing external libraries in case a method wants to be
deemed a genuine module, would imply that ór the library
should be incorporated into the module (each time) ór the ex-
ternal library should be explicitly mentioned in the interface.
Analogously, a method having a clear interface regarding
how to call the method and how the returned values should
be captured, can still call (at its turn) another (third) method
or rely on a certain external service or technology (e.g.,
a connection to the financial network of SWIFT, the use
of an interface module to an external system, etcetera). As
these extra methods, services or technologies are necessary
to successfully complete the method, they should actually
be included in such a complete and exhaustive interface in
addition to the typical parameters and instructions needed to
make the method call.

Hence, in our view, one has a genuine module as soon
as one is able to define a complete interface, which clearly
describes the boundaries and interactions of the subsystem
and allows it to be used in a blackbox way. Modulariza-
tion is then the process of meticulously identifying each
dependency of a subsystem, transforming an ambiguously
defined ‘chunk’ of a system into a clearly defined module
(of which the borders, dependencies, etcetera are precisely
and ex-ante known). Compared to the definition of Baldwin
and Clark cited previously, we thus do not require for a mod-
ule to exhibit already high intramodular cohesion and low
intermodular coupling at this stage. Modules having these
characteristics are nevertheless obviously highly desirable.
However, we are convinced that defining in a first phase such
a complete interface, allows to ‘encapsulate’ the module in
an appropriate way and avoid any sort of hidden coupling.
Indeed, at least four out of the six mentioned modular
operators in Section III require real blackbox (re)usable
modules as a conditio sine qua non. More specifically,
in order to use the operators Substituting, Augmenting,
Excluding and Porting in their intended way, complete and
exhaustively defined interfaces are a prerequisite. On the
other hand, the modular operators Splitting and Inverting
concern the definition of new modules and design rules.
Hence, they are precisely focused on the process of defining
new modular interfaces themselves, thus usually involving
some form of whitebox inspection.

Finally, while defining modules with such a strict interface
will not directly solve any interdependency, evolvability, . . .
issues, it will at least offer the possibility to profoundly study
and optimize the ‘quality’ of the modules (e.g., with regard
to coupling and cohesion) in a next stage.
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V. TOWARDS GENERALIZING NORMALIZED SYSTEMS
TO THE FUNCTION/CONSTRUCTION TRANSFORMATION

In the same way as the implementation of software is
considered as a transformation I of a set of functional
requirements into a set of software primitives (constructs) in
[4], the design or engineering of systems in general could
be considered as a transformation D of a set of functional
requirements Rj into a set of subsystems or primitives Pi:

{Pi} = D{Rj}

This transformation D can then be studied and/or opti-
mized in terms of various desirable system properties. In
this section, we present a very preliminary discussion on
the meaning of several important system properties in this
respect.

First, it seems highly desirable to have a linear design
transformation that can be normalized. This would imply
that the transformation matrix becomes diagonal or in the
Jordan form, leading to a one-to-one mapping of functional
requirements to (a set of) constructional primitives. Such a
normalized transformation is explored in [10], [4] for the
implementation of elementary functional requirements into
software primitives.

Moreover, this approach to systems design or engineering
also seems to imply that we should avoid to perform
functional decomposition over many hierarchical levels, be-
fore starting the composition or aggregation process [29].
Studying and/or optimizing the functional to constructional
transformation is a very delicate activity that can only be
performed on one or two levels at a time. Therefore, the
approach seems to imply a preference for a bottom-up or
meet-in-the-middle approach, trying to devise the required
system (i.e., the set of functional requirements Rj) in terms
instantiations of a set of predefined primitives (i.e., Pi), over
a top-down approach.

Next, some other appealing transformation properties
might include stability, scalability and isentropicity as we
will discuss in the following subsections.

A. Stability

As discussed in [4] and Section II-A for the software im-
plementation transformation, any design transformation can
be studied in terms of stability. This means that a bounded
set of additional functional requirements results only in a
bounded set of additional primitives and/or new versions of
primitives. As elaborated by Mannaert et al. [4], this would
require the absence of so-called combinatorial effects, which
result in an impact of additional functional requirements
that is proportional to the size of the system. An example
of an unstable requirement is for instance a small software
application for some recreational sports club that needs to
become highly secure and reliable, requiring a completely
new and different implementation. In a more traditional

engineering context, one could consider the extension of an
existing building with additional rooms, which could result
in many modifications or even the complete replacement
of the plumbing, central heating system, etcetera, of the
building.

B. Scalability

The concept of scalability is at least related, and could
even be considered to be a special case of stability in this
context. Scalability would mean that the increase in value
of an existing functional requirement has a clearly defined
and limited impact on the constructional view. An example
of such a scalable requirement is the amount of concurrent
users of a website, which can normally be achieved by
adding one or more additional servers. An obvious example
of an unscalable requirement in a traditional engineering
design is the increase in the number of passengers for an
airplane, as this would currently lead to the design of a
completely new airplane. In a similar way, an increase of
the target velocity or payload capacity of a rocket, generally
leads to the design of a completely new and different rocket.
One could note here that new rocket manufacturers are
indeed trying to scale up existing rocket designs, using more
engines or even complete stages in parallel for larger rockets.

C. Isentropicity

With regard to the diagnosability, the concept of isen-
tropicity from statistical thermodynamics can be applied,
meaning that an externally observable system state (i.e., a
systems macrostate) should completely and unambiguously
determine the states of each of the various constituting
subsystems (i.e., the systems microstate).

In our view, an isentropic design would therefore imply
that the externally observable state of SysA completely
and unambiguously determines the states of the various
subsystems. An example of such an isentropic design is a
finite state machine where the various registers can be read.
Indeed, the inputs and register values that are externally
observable completely define the internal state of the finite
state machine.

VI. TOWARDS THE APPLICATION OF NORMALIZED
SYSTEMS TO ENTERPRISE ENGINEERING

In Sections I and III we argued that not only software
applications can be regarded as modular systems, but also
many other types of artifacts, such as (for example) organi-
zations. Hence, Sections IV and V focused on a first attempt
to extend NS theory concepts to modularity and the systems
engineering process in general. In this section, by means
of example, we will illustrate some of the implications
of our proposed engineering approach when applied to
organizational systems. Indeed, several authors have argued
for the need of the emergence of an Enterprise Engineering
discipline, considering organizations as (modular) systems,
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which can be ‘designed’ and ‘engineered’ towards specific
criteria [30], [31], such as (for example) evolvability. More
specifically, we will first focus our efforts here at illustrat-
ing how the concepts of stability and entropy might offer
interesting perspectives to analyze the modular structure of
business processes. Next, we will elaborate on the complete
and unambiguous definition of organizational modules, as
this is in our view a necessary condition to be able to study
and optimize the functional/constructional transformation at
a later stage.

A. Normalized Systems and Business Process Analysis

When applying the concept of stability as considered
in NS to business topics, one could consider both busi-
ness process flows and enterprise architectures. Focusing
on business processes, one way to interpret a business
process combinatorial effect is the situation in which a single
(business process) requirement change leads to N changes
in the design of the considered business processes in the
business process repository [8].

Consider for instance the handling of a payment incor-
porating several distinct tasks such as the receiving of an
invoice, balance checking, payment execution at the correct
date and in the requested format, while taking care of the
required accounting and security procedures, etcetera. Sup-
pose that this business process is not separately contained
into a single and distinct business process, but instead all
kinds of variants are incorporated in all business processes
needing to perform payments to (for example) employees,
suppliers, moneylenders, and so on. Now further suppose
that, for example, a change in legislation would enforce an
additional check to be performed for each payment, or a
new available payment method would arise. These kind of
functional changes would imply an impact of N construc-
tional changes all over the business process repository (i.e.,
depending on the size of the repository and the number
of business processes in which the payment functionality
was incorporated). In addition, the precise locations of those
modifications within the process repository are unknown up-
front and whitebox inspection of each and every process is
required to perform the change in a consistent way.

When applying the concept of entropy to the level of
business process analysis, as we discussed in [12], a first
effort should be directed towards interpreting macro- and mi-
crostates in such context. Hence, regarding the macrostate,
typical externally observable properties of a business pro-
cess, in our view, might include:

• throughput or cycle time (how long did the process take
to be executed?);

• quality and other output related measures (e.g., suc-
cesful or non-succesful completion of the process as
a whole or the number of defects detected after the
execution of the process);

• costs involved in the process;

• other resources consumed by the process (such as raw
materials, electricity, human resources, etcetera).

A typical microstate, related to the above sketched
macrostate, might then comprise the throughput time of a
single task in the process, the correct or erroneous outcome
of a single task, the costs related to one activity or the
resources consumed by one particular task of the considered
business process. Analyzing instantiated business processes
in terms of these defined macro- and microstates would then
come down to management questions such as:

• which task or tasks in the business process was (were)
reponsible for the extremely slow (fast) completion of
(this particular instance of) the business process? ;

• which task or tasks in the business process was (were)
responsible for the failure of the considered instantiated
business process? ;

• which activities contributed substantially or only
marginally to the overall cost or resource consumption
of the considered business process (cf. cost-accounting
and management approaches like Activity Based Cost-
ing)?

In case the answer to these questions is unambiguous
and clear, the entropy in the system (here: business process
repository) is low (or ideally zero) as a particular macrostate
(e.g., the extremely long throughput time) can be related
to only one or a few microstates (e.g., activity X took
three times the normal duration to be carried out, whereas
all other activities finished in their regular time span). On
the other hand, when no direct answer to these questions
can be found, entropy increases: multiple microstates (e.g.,
prolonged execution of activities X and/or Y and/or Z)
could have resulted in the observed and possibly problem-
atic macrostate (e.g., the lengthy execution of the overall
process). While we are definitively not the first aiming to
relate business processes to entropy (see e.g., [32], [33],
[34]), our approach differs in the sense that we consider
entropy from the thermodynamics perspective in a run-time
environment. An important implication thereof is the fact
that entropy in business processes seems to be related to
the unstructured aggregation of information and data [12],
which could offer interesting research opportunities in (for
instance) the accounting domain [35], [36].

B. Towards a Complete and Unambiguous Definition of
Organizational Modules

When also considering modules at the organizational
level, a considerable effort should equally be aimed at
exhaustively listing the interface, incorporating each of its
interactions with the environment. This because not in-
cluding certain dimensions in the interface might evaporate
optimization efforts based on stability or entropy reasoning
(see Section IV-B and Figure 1(c)).

For instance, when focusing on a payment module, not
only the typical ‘functional’ or ‘operational’ interface such
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as the account number of the payer and the payee, the
amount and date due, etcetera (typical ‘arguments’), but
also the more ‘configuration’ or ‘administration’ directed
interface including the network connection, the personnel
needed, etcetera (typical ‘parameters’) should be included.
As such, we might distinguish two kinds of interfaces:

• a usage interface: addressing the typical functional
and operational (business-oriented) arguments needed
to work with the module;

• a deployment interface: addressing the typical non-
functional, meta-transaction, configuration, administra-
tion, . . . aspects of an interface.

Although some might argue that this distinction may
seem rather artificial and not completely mutually exclusive,
we believe that the differences between them illustrate our
rationale for a completely defined interface clearly.

While the work of Van Nuffel [8] has resulted in a signif-
icant contribution regarding the identification and separation
of distinct business processes, the mentioned interfaces still
have the tendency to remain underspecified in the sense that
they only define the functional ‘business-meaning’ content
of the module but not the other dimensions of the interface,
required to fully use a module in blackbox fashion. Such
typical other (additional) dimensions — each illustrated by
means of an imaginary organizational payment module —
might include:

1) Supporting technologies: Modules performing certain
functionality might need or use particular external technolo-
gies or frameworks. For example, electronical payments in
businesses are frequently performed by employing external
technologies such as a SWIFT connection or Isabel. In such
a case, a payment module should not only be able to interact
with these technologies, but the organization should equally
have a valid subscription to these services (if necessary)
and might even need access to other external technologies
to support the services (e.g., the Internet). An organization
wanting to implement a module in a blackbox way should
thus be aware of any needed technologies for that module,
preferably by means of its interface and without whitebox
inspection. Suppose that one day, the technology a module
is relying on, undergoes some (significant) changes resulting
in a different API (application programming interface). Most
likely, this would imply that the module itself has to adapt in
order to remain working properly. In case the organization
has maintained clear and precise interfaces for each of its
modules, it is rather easy to track down each of the modules
affected by this technological change, as every module
mentioning the particular technology in its interface will
be impacted. In case the organization has no exhaustively
formulated interfaces, the impact of technological changes
is simply not known: in order to perform a confident impact
analysis, the organization will have to inspect each of the
implemented modules with regard to the affected technol-
ogy in a whitebox way. Hence, technological dependencies

should be mentioned explicitly in a module’s interface to
allow true blackbox (re)use.

2) Knowledge, skills and competences: Focusing on or-
ganizations, human actors clearly have to be taken into
account, as people can bring important knowledge into an
organization and use it to perform certain tasks (i.e., skills
and competences). As such, when trying to describe the
interface of an organizational module in an exhaustive way,
the required knowledge and skills needed for instantiating
the module should be made explicit. Imagine a payment
module incorporating the decision of what to do when the
account of the payer turns out to be insolvent. Besides
the specific authority to take the decision, the responsible
person should be able (i.e., have the required knowledge
and skills) to perform the necessary tasks in order to make
a qualitative judgment. Hence, when an organization wishes
to implement a certain module in a blackbox way, it should
be knowledgeable (by its interface) about the knowledge
and skills required for the module to be operational. Al-
ternatively, when a person with certain knowledge or skills
leaves the company, the organization would be able to note
immediately the impact of this knowledge-gap on the well-
functioning of certain modules and could take appropriate
actions if needed.

3) Money and financial resources: Certain modules might
impose certain financial requirements. For example, in case
an organization wants to perform payments by means of a
particular payment service (e.g., SWIFT or Isabel), a fixed
fee for each payment transaction might be charged by the
service company. If the goal is to really map an exhaustive
interface of a module, it might be useful to mention any
specific costs involved in the execution of a module. That
way, if an organization wants to deploy a certain module
in a blackbox way, it may be informed about the costs
involved with the module ex-ante. Also, when the financial
situation of an organization becomes for instance too tight,
it might conclude that it is not able any longer to perform
the functions of this module as is and some modifications
are required.

4) Human resources, personnel and time: Certain pro-
cesses require the time and dedication of a certain amount
of people, possibly concurrently. For example, in case of an
organizational payment module, a full time person might be
required to enter all payment transactions in the information
system and to do regular manual follow-ups and checking
of the transactions. As such, an exhaustive interface should
incorporate the personnel requirements of a module. That
way, before implementing a certain module, the organization
is aware of the amount of human resources needed (e.g.,
in terms of full time equivalents) to employ the module.
Equivalently, when the organization experiences a significant
decline or turnover in personnel, it might come to the
conclusion that it is no longer able to maintain (a) certain
module(s) in the current way. Obviously, this dimension is
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tightly intertwined with the previously discussed knowledge
and skills dimension.

5) Infrastructure: Certain modules might require some
sort of infrastructure (e.g., offices, materials, machines) in
order to function properly. Again, this should be taken
into account in an exhaustive interface. While doing so,
an organization adopting a particular module knows upfront
which infrastructure is needed and when a certain infras-
tructural facility is changed or removed, the organization
might immediately evaluate whether this event impacts the
concerning module and vice versa.

6) Other modules or information: Certain modules might
use other modules in order to perform their function. For
example, when an organization decides to perform the
procurement of a certain good, it will probably receive an
invoice later on with a request for payment. While the
follow-up of a procurement order might be designed into
one module, it is reasonable to assume that the payment is
designed in a distinct module, as this functionality might also
return in other business functions (e.g., the regular payment
of a loan). As such, when an organization is planning to
implement the procurement module, it should be aware that
also a payment module has to be present in the organization
to finalize procurements properly. Hence, all linkages and
interactions with other modules should be made explicit in
the module’s interface. When a module (including its inter-
face), used by other modules, is changed at a certain point
in time, the adopting organization then immediately knows
the location of impact in terms of implemented modules and
hence where remedial actions might be required.

In terms of entropy reasoning, the lacking of one or
multiple of these above-mentioned dimensions in the or-
ganizational module interface can hamper traceability (and
hence, diagnosability) regarding the eventually produced
outcomes of the organization. For instance, a prolonged
throughput time of the payment process can be due to a
delay in the communication with one of its external modules
or due to the lack of extra knowledge required for the
incorporation of an additional legally required check. In case
these dimensions are not listed in the module interface, they
would typically not be considered as possible causes for the
observed result. However, it seems reasonable to assume that
an enterprise engineer or dianostician dóes want to be aware
of all these possibly problem causing dimensions.

Obviously, it is clear that exhaustively defining the tech-
nology, knowledge, financial resources, etc. on which a
module depends, will not suffice to solve any of the existing
coupling or dependencies among modules. Also, one should
always take into consideration that a certain amount of
‘coupling’ will always be needed in order to realistically
perform business functions. However, when the interface of
each module is clearly defined, the user or designer is at
least aware of the existing dependencies and instances of
coupling, knows that ripple-effects will occur if changes

affect some of the module’s interfaces (i.e., impact anal-
ysis) and can perform his or her design decisions in a
more informed way, i.e., by taking the interface with its
formulated dependencies into account. Consequently, once
all forms of hidden coupling are revealed, finetuning and
genuine engineering of the concerned modules (e.g., towards
low intermodular coupling) seems both more realistic and
feasible in a following phase. Indeed, one might deduct that
Baldwin and Clark, while defining a module as consisting of
powerfully connected structural elements, actually implicitly
assumed the existence of an exhaustive set of formulated
dependencies before modularization can occur, witness the
fact for example that they elaborately discuss Design Struc-
ture Matrices [3, chapters 2 & 3]. Our conceptualization is
then not to be interpreted as being in contradiction with that
of Baldwin and Clark, rather we emphasize more explicitly
that the mapping of intermodular dependencies is not to be
deemed negligible or self-evident.

VII. ON THE FEASIBILITY OF APPLYING NS
ENTERPRISE ENGINEERING: SOME ILLUSTRATING CASE

STUDIES

In the previous sections, our arguments were mainly
illustrated by referring to conceptual examples, such as
a tea mug design or imaginary payment module. In this
section, we will discuss two short real-life cases further
demonstrating the feasibility of how our discussed concepts
and reasoning can be applied for analyzing and optimizing
realistic organizational problems. Both cases are based on
data collected at the administrative department of the au-
thors’ research institution and university.

A. Case 1

Our first case analyzes the procedures for the registration
of the examination marks of professors and teaching assis-
tants at the end of each semester. In the initial situation,
professors and teaching assistants (the ‘examiners’) were
asked to send their grades for each course to the administra-
tive department in one of two possible ways: (1) manually
handing in a list of students and their corresponding marks
at the secretariat, or (2) sending a mail with a similar list,
usually by means of a spreadsheet document. In a next stage,
this information would be manually processed by people at
the administrative department into the corresponding soft-
ware applications, generating the student reports afterwards.
From the personnel in the administrative department, this
processing step required a considerable amount of effort,
which kept increasing due to the rising number of students.
Hence, an initiative was launched to optimize the way in
which the grade administration was performed, aiming to
lower the workload on the administrative department. A
license for a new software application was bought for this
purpose, which was deemed to allow professors and teaching
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assistants to enter their marks autonomously into the overar-
ching information system by means of a web interface. This
way, no direct intervention of the administrative personnel
would be required any longer and the students reports would
be able to be generated automatically.

Based on our modularity and (NS) enterprise engineer-
ing reasoning as discussed above, several remarks can be
made. First, as the task ‘reporting on the course grades’
was embedded in the responsibility of each ‘examiner’,
a necessary ‘instability’ was noticeable in the form of a
combinatorial effect. Indeed, the new organizational way of
working required all ‘examiners’ to adapt their individual
way of working: no hard-copy forms or direct mails to
the secretariat were allowed any longer to register their
marks. Instead, as an additional effort compared to the
initial situation, each ‘examiner’ was required to install
the correct Internet browser, familiarize himself with the
electronic platform, understand the new GUI of the software
application, etcetera. One can identify this phenomenon
as a combinatorial effect as the considered change (here:
the transition to the new application allowing for the web
interface) has an impact related to size of the system to
which the change has been applied (here: the university
having N examining professors and teaching assistants).
Such combinatorial effects also have their baleful influence
at the organizational performance, such as an increased
implementation time of the process optimization directive
(i.e., the operation could only succeed after all ‘examiners’
performed the necessary changes), or an increased risk
regarding the incorrect implementation of the directive (i.e.,
during the implementation efforts of each examiner, errors
or inconsistencies might occur).

Second, the new way of working implied a significantly
more complex interface for all ‘examiners’ to complete their
reporting duties towards the administrative department. In
the initial situation, the task ‘reporting on the course grades’
had an interface, which simply consisted of a plain list
with student names and their corresponding grades. In the
new situation, this interface became much more complex.
Indeed, for successfully handling the task ‘reporting on the
course grades’, the ‘examiners’ were not only required to
provide a list with student results. Instead, ‘examiners’ were
forced to deal with additional concerns on four levels. First,
as a ‘one-time set-up’, the ‘examiners’ needed to be able
to install the correct Internet browser (version) on their
computer to be able to access the web interface of the new
software application and correctly set-up a VPN client to
allow for a secured connection with the university’s network.
Next, as a ‘pre-operation set-up’, the ‘examiners’ needed to
perform the correct log-in procedures each time they wanted
to report on some course grades, to actually establish the
secure network. Third, some ‘general competences’ were
required from the ‘examiners’ to be able to interact with
the browser, the web application (including the new and

rather complex GUI) and VPN application, understand the
web application’s specific coding scheme (e.g., to indicate
that a student was legitimately absent), etcetera. Fourth,
in case problems arose regarding any of these issues, the
‘examiners’ were implicitly believed to be able to provide
the correct fault and ‘exception handling’ for all these is-
sues (e.g., dealing with validation errors, anomalies, strange
menus, . . . ). Consequently, to correctly comply with the new
interface, ‘examiners’ were essentially forced to deal with
concerns regarding the (sometimes technical) complexity of
the new software application, whereas in the initial situation,
people from the administrative personnel were the only ones
required to interface with such software application. Hence,
in the initial situation, only people from the administrative
department needed to have knowledge of these specificities.
However, given the more complex interface in the new way
of working, many professors and teaching assistants were
required to ask for assistance from the administrative person-
nel due to many problems of often different origins, as they
had insufficient knowledge to resolve them independently
(i.e., the knowledge implicitly deemed to be present, was
not always available).

As a consequence, it was strikingly to note that some
people at the administrative department reported that the
time and effort required to assist these people, was perceived
as exceeding the original effort to manually process all
examination results themselves (as was the case in the initial
situation). Again, unanticipated baleful consequences for
the organizational performance were noticeable. This was
clearly not the desired result, as the initial goal was precisely
to reduce the overall administrative efforts significantly.
Obviously, we do not want to claim in this analysis that
automatization efforts are to be deemed counterproductive
per se. Rather, we want to illustrate how some ways of
working might result in instability issues or problems related
to an underspecified or complicated modular interface. For
instance, it was noticed that other kinds of ‘self-service’
automatization efforts (e.g., a new web application allowing
students to subscribe themselves and choose their individual
course program for each academic year) resulted in very
similar problems. In essence, a similar situation arose in
which many concerns (deemed to be trivial to deal with for
all people) were exported from a centralized department to
all people involved in the self-service. In case these concerns
however turn out to be non-trivial later on, many problems
occur as their complexities are pushed to all involved people
via the new interface.

B. Case 2

Our second case focuses on the consequences of a change
in the communication policy, such as an adapted company
logo and style. Historically, the considered case organization
originated from the merge of three existing universities into
one larger university. One implication of this organizational
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merge was the need to ‘market’ the new university by
(amongst others) introducing a new company logo and style
(together with the new and correct contact details, VAT-
numbers, etcetera), incorporated on (for instance) all official
letters (i.e., by means of the printings on ‘stationery’ or
university paper). The traditional routine for sending letters
within the organization allowed each of the more than 4000
university members (the ‘senders’) to autonomously print
and send letters by using the ‘old’ letter style (i.e., on
university paper). Analyzing the considered change in the
communication policy, we find again a rather large and
complex impact of such a (seemingly) small organizational
change.

First, as each ‘sender’ is responsible for taking care
of the concern of applying the correct letter lay-out, a
change regarding this company logo and style results in a
combinatorial effect. Indeed, to correctly implement the new
company style, each ‘sender’ should adapt his own way of
working, by using and applying the new company logo and
style (i.e., confirming to and printing on the new university
papers), and hold back from using the old stationery. Hence,
the impact of the applied change (here: introducing the new
company logo) is dependent on the size of the target system
(here: the N ‘sending’ employees). Also here we could
identify additional baleful effects regarding the performance
of the organization. One aspect involves again the increased
implementation time of the change and the increased risk
regarding the correct implementation of the directive (i.e.,
each and every ‘sender’ has to adapt his individual way
of working and do so in a correct way). Another aspect
concerns the tendency of individual university members
to ‘pile up’ an individual ‘stock’ of stationery on his or
her desk due to perceived efficiency reasons. Clearly, this
causes a significant loss of stock, proportional to the number
of university members, from the moment the change in
communication policy has been announced, as the old stock
of stationery becomes obsolete.

Additionally, in entropy reasoning, some findings (i.e.,
a macrostate) may suggest that some people seem not to
apply the new ‘rules’ regarding the company logo and
lay-out (e.g., given the fact that some clients still employ
old VAT-numbers based on recently sent letters printed on
and old version of the university paper). However, as no
control or logging is kept on who is sending letters on
which moment, no clear diagnosis can be made as to who
(i.e., which ‘sender’) is still reluctant to applying the new
directive. Indeed, each person sending letters after the new
directive was valid, could have sent letters with a wrong
letter lay-out and contact details (i.e., multiple microstates)
and uncertainty arises.

A possible optimization in the organizational design could
for example consist of a situation wherein each person who
wants to send a letter, only drafts the letter in terms of its
content and afterwards sends this ‘e-letter’ to the admin-

istrative department, which prints the letter on the correct
version of the stationery, having the appropriate header and
contact details. In such case, the combinatorial effect would
be eliminated. Changes regarding the lay-out, logo or general
contact information on letters would have an impact limited
to the personnel of the administrative department, while
the tasks carried out by people who ‘send’ letters remains
unchanged (i.e., only having responsibility regarding the
content of letters) and are change independent regarding this
concern. Also, in case an error would nevertheless occur,
less uncertainty would be present regarding who might
have applied the wrong lay-out, as only people from the
administrative department are entitled to print-out letters.
Finally, also improvement on the organization’s performance
could be expected: changes in the communication policy
would be applied in a more easy, fast and correct way, and
no individual stocks of the stationery would be present any
longer.

Consequently, the applications of our NS Enterprise En-
gineering approach to these cases, might show how our
reasoning may lead to real-life and relevant organizational
problem solving and decision making.

VIII. INTERPRETING ENTROPY AND INSTABILITY AS
COUPLING WITHIN MODULAR STRUCTURES

In the previous sections, we elaborated on how NS uses
the concepts of stability and entropy to design and optimize
the modular structure of software applications and how
this reasoning can be generalized to modular systems in
general, such as for example organizational systems. In this
section, we will take a more broad perspective, reflecting
on the essential meaning of stability and entropy in this
modularity approach. While in essence, both stability (cf.
systems theory) and entropy (cf. thermodynamics) have their
origin in distinct theories, we will argue that one way to
interpret both concepts is to consider them as pinpointing
to other ‘symptoms’ of the same underlying ‘cause’ or
phenomenon, being the coupling (or interaction) between
particles and subsystems of a larger system. In advance, it
should be emphasized that the following discussion has a
rather explorative, reflective and tentative goal, rather than
fully formalizing each aspect. However, given the earlier
elaborate discussion and reasoning regarding modularity,
coupling, stability and entropy, the authors believe that
the given interpretation might clarify some of the claims
presented above.

A. Stability and coupling

In fact, the concept of stability from systems theory might
be interpreted as referring to coupling regarding the design
parameters or dimensions of modular structures. Consider
for instance a standard example of dynamic (in)stability
analysis in traditional engineering: the construction of a
bridge. Typically, such buildings or construction ‘systems’
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have a natural frequency of vibration (a so-called ‘eigenfre-
quency’). In case the frequency of the oscillation to which
the system is exposed matches this eigenfrequency (e.g.,
due to gusts of wind), the system absorbs more energy
than it does in case of any other frequency: the bridge
may be forced into violent swaying motions, leading to
mechanical damages and ultimately sometimes even leading
to its destruction. In such a case, the system absorbs and
aggregates or accumulates the energy throughout its whole
structure causing an extreme ‘output’ instead of the gradual
reduction of the wave as it occurs at all other frequencies.
Hence, this transformation process can be considered to
be instable as a bounded input causes an unbounded and
uncontrolled output.

Consequently, engineers of such buildings have to be
aware of this coupling in terms of design parameters (e.g.,
between the buildings eigenfrequency and the frequency
of frequently occurring gusts of wind) when devising the
system in order to avoid such instability effects. In terms
of our modularity approach discussed above, we would
require to incorporate this dependency of the ‘building
system’ on the external environment into its ‘interface’.
Only then could one be able to regard the building as a
genuine ‘module’ as the dependency reveals one type of
interaction between the considered system (i.e., the building)
and the environment it operates in (i.e., the meteorological
conditions). Typically, engineers will try to decouple (i.e.,
fragment) both aspects by incorporating for example shock
mounts to absorb the resonant frequency and compensate
(i.e., cancel) the resonance and absorbed energy. Alterna-
tively, the engineers might choose to design the construction
in such a way that the building only resonates at certain
frequencies not typically occurring. In reality, a combination
of both practices will most likely be opted for. Consequently,
these remedial measures can be regarded as corresponding
to the optimization of the modular arrangements and their
interfaces towards a specific criterion (here: the avoidance
or reduction of mechanical resonance).

One thing the engineer should definitely avoid at all times
is hidden coupling in this respect: the case in which one
is not aware of this interaction (i.e., coupling) in terms
of design parameters. In the discussed example, not being
aware of the eigenfrequency and the danger it implies in
terms of instable reactions, might obviously be disastrous.
Hence, the coupling of the subsystem with regard to the
overall system it operates in, should be mentioned in the
interface to safely regard the module as a blackbox. If not
all kinds of coupling are documented, whitebox inspection
will still be needed to assess the impact of external changes
(in our example: a gust of wind).

Another example for illustrating our interpretation of
instability in terms of coupling can be found by considering
violations towards NS theorems. Consider for instance the
Action version Transparency theorem. Imagine an action

entity A not exhibiting version transparency and being
confronted with a mandatory version upgrade: each action
entity calling this (new version) of action entity A would
then be required to be adapted in terms of its call towards
A. As such, employing the assumption of unlimited systems
evolution, the impact of this external change can become
unbounded or unstable. Also here, it can be clearly seen
that the instability is caused by means of coupling within
the modular structure in terms of its design parameters. As
each action entity calling action entity A has a piece of
implemented software code depending on the specificities of
action entity A, action entity A is coupled (and interacting)
with all of its calling entities through its technical design.
Here again, the software engineer would preferably opt for,
first, recognizing this dependency (i.e., including it in its
interface) and, in a second stage, introducing fragmentation
in order to control the coupling. This can for instance
be done by employing action entities, which do allow for
Action version Transparency, hence isolating each of the
considered concerns for this dimension.

More generally, each of the NS theorems from the sta-
bility point of view (i.e., SoC, AvT, DvT and SoS) can be
interpreted as theorems enforcing the decoupling of aspects
causing instabilities in the modular design in case they would
not be separated. Indeed, Separation of Concerns enforces
all change drivers to be separated in the design of a software
architecture in order to have modules dependent on only one
independent concern, not coupled to other change drivers.
Separation of States decouples various modules in the sense
that new (error) states do not get escalated in the design
towards other modules. Action version Transparency and
Data version Transparency even precisely aim at the more
‘traditional’ interface between modules, when demanding
that new versions should have an interface not impacting
already existing data and action entities.

B. Entropy and coupling

When considering entropy as defined in (statistical) ther-
modynamics, this concept might be interpreted as referring
to coupling between subparts or particles of a modular
system in terms of their run-time execution. In fact, one way
to understand entropy is the natural tendency of particles in
a system to interact (see [12] and Section II-B). Indeed, the
fact that an increased amount of entropy is associated with
an increasing number of possible microstate configurations
consistent with one macrostate, can essentially be traced
back to the uncontrolled interaction between these particles.
Consider for instance again the gas containment illustration
as depicted in Figure 1. We know that if the gas is contained
in only one out of the two components in the container,
entropy will increase as soon as the shaft between the
two components is removed: both components become one
single space, and the gas will dissipate and spread out
into the full space, interacting with the parts in the second
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component of the container throughout time. Due to the
removal of the shaft, both components become ‘coupled’
in their run-time dimension and will be subject to their
natural tendency to interact with each other throughout time.
This interaction (and the removal of the fragmentation or
structure within the space) increases the degree of entropy
as now a higher number of microstates (configurations of
the molecules) can result in a single macrostate.

The only way to avoid such entropy increase, is by intro-
ducing structure or fragmentation in this run-time dimension
of the modular structure. In our container example, this
might be done by maintaining the shaft in the container and
hence avoiding additional interaction between the molecules.
As repeatedly mentioned before, it is important to note that
this additional structure (such as an interface) needs to be
complete and exhaustive. This can again be nicely illustrated
by Figure 1, Panel (c). While a part of the shaft is still
in place and possibly aimed at avoiding interaction, the
interaction between both compartments still takes place as
the decoupling or fragmentation is incomplete, and entropy
increase will occur.

More generally, each of the NS theorems from the entropy
point of view (i.e., SoC, AiT, DiT and SoS) can be interpreted
as theorems enforcing the decoupling of aspects causing
entropy generation in their run-time dimension in case they
would not be separated. Indeed, Separation of States de-
couples various modules during the run-time execution of a
software application in the sense that the statefull calling will
generate a persistent state after completion of each action
(and hence, information about the microstate is retained
and externalized). Separation of Concerns enforces concerns
(here: information units) to be separated so that each concern
of which independent information should be traceable, is
contained in a separate module (and hence, state). Action
instance Transparency and Data instance Transparency even
specifically aim at the fact that the versions, values and
threads of actions and data need to be logged during each
instantiation for traceability or diagnosability purposes.

In conclusion, as we have claimed in this section that
one way to interpret both the occurrence of instability and
entropy in modular structures is their relation to the exis-
tence of uncontrolled coupling, the need for completely and
exhaustively defined interfaces becomes even more pertinent
if one’s goal is to obtain a stable modular structure ex-
hibiting isentropicity. Moreover, structures allowing ‘hidden
coupling’ (i.e., still leaving room for certain forms of leakage
in the design or run-time dimension) should be considered
harmful or ‘misleading’ in the sense that the designer might
be convinced of the stability or isentropicity of his designed
structure, while in reality the resulting module boundaries
or states do not reflect an isolated part of the system, fully
decoupled from the rest of the system.

IX. CONCLUSION AND FUTURE WORK

This paper focused on the further exploration and gener-
alization of NS systems engineering concepts to the analysis
and design of modules in systems in general, and orga-
nizational systems in particular. The current state-of-the-
art regarding NS and modularity was reviewed, primarily
focusing on the seminal work of Baldwin and Clark. Subse-
quently, we argued that, first, a distinction should be made
between blackbox (functional) and whitebox (constructional)
perspectives of systems. As the practical blackbox (re)use
of modules requires the absence of any hidden coupling,
the need for complete and exhaustively defined interfaces
was argued for. Next, a discussion of some properties of the
functional/constructional transformation was proposed. As
we believe that this systems engineering approach might be
useful for optimizing other modular structures (including or-
ganizations) as well, we discussed some of the implications
of this reasoning when applied to Enterprise Engineering
(such as stability, entropy and complete interfaces) and
provided two short real-life cases for illustrative purposes.
We concluded that our conceptualization of is not in contra-
diction with that of Baldwin and Clark, but rather empha-
sizes an additional intermediate design stage when devising
(organizational) modules. Also, from a broader modularity
viewpoint, we provided an interpretation of the traditional
engineering concepts of instability and entropy as being
manifestations of coupling in modular structures (regarding
their design or run-time dimensions, respectively).

Regarding our applications towards Enterprise Engineer-
ing, a limitation of this paper can be seen in the fact that no
guarantee is offered that the identified additional interface
dimensions will reveal all kinds of hidden coupling in every
organization. Therefore, additional research (e.g., extra case
studies) with regard to possible missing dimensions seems
to be required. In addition, our application of modularity
and NS concepts to the organizational level was limited to
the definition of completely defined organizational modules
and the illustration of the existence of instability and entropy
generation at a business process level. A completely defined
stable and isentropic functional/constructional transforma-
tion on the organizational level (as it exists on the software
level) was still out of scope in this paper. Furthermore, future
research at our research group will be aimed at identifying
and validating organizational blackbox reusable modules,
exhibiting exhaustively defined interfaces and enabling the
bottom-up functional/constructional transformation.

Regarding the discussion of our interpretation of entropy
and stability as different manifestations of coupling, it
should be noted that it is to be considered as a mainly
exploratory effort, needing further formalization in future
research.
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