
Stochastic Models for Quantum Device Configuration and Self-Adaptation

Sandra König∗ and Stefan Rass†
∗Digital Safety & Security Department, Austrian Institute of Technology, Klagenfurt, Austria

Sandra.Koenig@ait.ac.at
†Department of Applied Informatics, System Security Group,

Universität Klagenfurt, Universitätsstrasse 65-67, 9020 Klagenfurt, Austria
stefan.rass@aau.at

Abstract—Quantum carriers of information are naturally fragile
and as such subject to influence by various environmental factors.
Cryptographic techniques that exploit the physical properties of
light particles to securely transmit information strongly hinge
on a proper calibration and parameterizations to correctly
distinguish natural distortions from artificial ones, the latter of
which would indicate the presence of an attacker. Consequently,
it is necessary and useful to know how environmental working
conditions influence a quantum device so as to optimize its
operational performance (say, the qubit transmission or error
rates, etc.). This work extends a previous copula-based modeling
approach to build a stochastic model of how different device
parameters depend on one another and how they influence the
device performance. We give a full detailed practical description
of how a model can be fit to the data, how the goodness of fit can
be tested, and how the quantities of interest for a self-calibration
can be obtained from the resulting stochastic models.

Keywords–stochastic modeling; copula; estimation; goodness of
fit; quantum network; quantum devices; statistics

I. INTRODUCTION

Quantum key distribution (QKD) is a technique that exploits
light (particles) as carrier of information. The natural fragility
of such a carrier naturally ties even passive eavesdropping
attempts to an unavoidable increase of errors that is detectable
for the user(s) of the quantum channel. To reliably indicate the
presence of an adversary by classifying some errors as being
artificial and distinguishing these from natural error rates,
several environmental factors have to be taken into account
to compute the expected channel characteristics (error rate,
noise, etc.) when the transmission is unimpeded. To this end,
[1] proposed the use of copula models to capture the influence
of environmental factors on the performance characteristic of
a QKD device, most importantly, the quantum bit error rate,
which indicates the presence or absence of an intruder.

Physically, the fact that any access to the channel induces
errors is implied by the impossibility of creating a perfect copy
of a single photon. This fundamental result of quantum physics
was obtained by [2].

Recent experimental findings on the quantum key distribu-
tion network demonstrated as the result of the EU project
SECOQC (summarized in [3]) raised the question of how
much environmental influences affect the “natural” quantum
bit (qubit) error rate (QBER) observed on a quantum line that
is not under eavesdropping attacks. A measurement sample

reported in [4] was used to gain first insights in the problem,
but the deeper mechanisms of dependency between QBER
and the device’s working conditions have not been modeled
comprehensively up to now.

The desire of having a model that explains how the QBER
depends on environmental parameters like temperature, humid-
ity, radiation, etc. is motivated by the problem of finding a good
calibration of QKD devices, so that the channel performance
is maximized. Unfortunately, with the QBER being known
to depend on non-cryptographic parameters, it is difficult to
give reasonable threshold figures that distinguish the natural
error level from that induced by a passive eavesdropping.
We spare the technical details on how a QBER threshold is
determined for a given QKD protocol here (that procedure is
specific for each known QKD protocol and implementation),
and focus our attention on a statistical approach to obtain a
model of interplay between the qubit error rate and various
environmental parameters. More precisely, our work addresses
the following problem: given the current working conditions
of a QKD device, what would the natural qubit error rate
be, whose transgression would indicate the presence of an
eavesdropper? The basic intention behind this research is
aiding practical implementations of QKD-enhanced networks,
where our models provide a statistically grounded help to react
on changing environmental conditions.

For that purpose, we utilize a general tool of probability
theory, a copula function, which is an interdependency model
as contrasted to the parameter model (probability distribution
of a single environment parameter). In that regard, we outline
in Section II the basics of copula theory to the extent required
here. This is to quickly get to the point where we can give
effective methods to infer an expected qubit error rate upon
known external influence parameters.

The remainder of this work is structured as follows: after
theoretical groundwork in Section II, we move on by showing
how to use empirical data (measurements) drawn from a given
device to construct an interdependency model that explains
how the QBER and other variables mutually depend on each
other. Section IV then describes how to single out the QBER
from this overall dependency structure towards computing
the expected error rate from the remaining variables. The
concluding Section V summarizes the procedure and provides
final remarks.

124

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Related Work

Surprisingly, there seem to be only a few publications
paying attention to statistical dependencies of cryptographic
parameters and the working conditions of a real device, such
as [4], [5]. While most experimental implementations of QKD,
such as [3], [6]–[9] give quite a number of details on device
parameters, optimizations of these are mostly out of focus. An
interesting direction of research is towards becoming “device-
independent” [10], [11], which to some extent may relieve
issues of hacking detection facilities, yet leaves the problem
of optimal device configuration nevertheless open. The idea of
self-adaptation is not new and has already seen applications
in the quantum world [12]–[14] including the concept of
copulas, applications of the latter to the end of self-adaption
remain a seemingly new field of research. Copulas have been
successfully applied to various problems of explaining and
exploiting dependencies among various risk factors (related to
general system security [15], [16]), and the goal of this work
is taking first steps in a study of their applicability in the yet
unexplored area of self-configuring quantum devices.

II. PRELIMINARIES AND NOTATION

We denote random variables by uppercase Latin letters
(X,Z, . . .), and let matrices be uppercase Greek or bold-
printed Latin letters (Σ,D, . . .). The symbol X ∼ F (x)
denotes the fact that the random variable X has the distribution
function F . For each such distribution, we let the correspond-
ing lower-case letter denote its density function, i.e., f in the
example case.

For self-containment of our presentation, we give a short
overview of the most essential facts about copulas that we are
going to use, as for a more detailed introduction we refer to
[17].

Definition II.1. A copula is a (n-dimensional) distribution
function C : [0, 1]n → [0, 1] with uniform marginal distri-
butions.

Especially, a copula satisfies the following properties:

Lemma II.1. 1) For every u1, . . . , un ∈ [0, 1],
C(u1, . . . , un) = 0 if at least one of the arguments is
zero and

2) C(u1, . . . , un) = ui if uj = 1 for all j 6= i.

A family of copulas that leads to handy models in higher
dimensions is known as the family of Archimedean copulas,
of which many extensions exist.

Definition II.2. An Archimedean copula is determined by the
so called generator function φ(x) via

C(u1, . . . , un) = φ−1(φ(u1) + . . .+ φ(un)). (1)

The generator function φ : [0, 1] → [0,∞] has to satisfy
φ(1) = 0 and φ(∞) = 0, furthermore, φ has to be n-
monotone, i.e., to be differentiable up to order n − 2 with
(−1)n−2φ(n−2)(t) being nondecreasing and convex and

(−1)iφ(i)(t) ≥ 0 for 0 ≤ i ≤ n− 2

for all t ∈ [0,∞).

As one of the cornerstones in copula theory, Sklårs theo-
rem connects these functions to the relationship between n
univariate distribution functions and their joint (multivariate)
distribution:

Proposition II.2. Let the random variables X1, . . . , Xn have
distribution functions F1, . . . , Fn respectively and let H be
their joint distribution function. Then there exists a copula C
such that

H(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)) (2)

for all xi, . . . , xn ∈ R. If all the Fis are continuous, then the
copula C is unique.

The usefulness of this result lies in the fact that the joint
distribution function of X1, . . . , Xn can be decomposed into n
univariate functions F1, . . . , Fn that describe the behaviour of
the individual variables and another component (namely the
function C) that describes the dependence structure, which
allows to model them independently.

Conversely, it is also possible to extract the dependence
structure from the marginal distributions Fi and the joint
distribution H via

C(u1, . . . , un) = H(F−11 (u1), . . . , F−1n (un)) (3)

where F−1i (u) denotes the pseudo-inverse of Fi(x), which is
given by F−1i (u) = sup{x|Fi(x) ≤ u}. A special case of this
connection between Copula and random variables leads to an
alternative characterization of independence, which is usually
written as H(x1, . . . , xn) = F1(x1) · . . . · Fn(xn).

Example II.3. If the (unique) copula from (3) turns out to
be the product copula C(u1, . . . , un) = u1 · . . . · un, then the
random variables X1, . . . , Xn are independent.

III. A COPULA MODEL OF THE QKD NETWORK

A. Summary of the Data

A summary description of the measurement data obtained
from an implemented QKD network in Vienna [3] can be
found in [5]. The following quantities were measured and
are used here (abbreviation in brackets): qubit error rate in
percentage terms (QBER), air temperature (TEMP), relative
humidity (HUM), sunshine duration in seconds (DUR), global
radiation in watt/m2(RAD).

Since we are here focusing on the relationship between
QBER and environmental quantities, we only use data that
were measured on the same device to avoid getting biased
results. The quantiles of our sample of size n = 276 are
displayed in Table I.

Throughout the rest of the paper, let D denote the data
matrix that comprises the entirety of samples as a table with
headings corresponding to the row labels in Table I. Thus, the
matrix D is of shape (n×5) for our n = 276 samples, and has
entries (X1, . . . , X5) modeling the measurements of (QBER,
TEMP, HUM, DUR, RAD) as random variables.

125

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

TABLE I. Quantiles of measured quantities

min q0.25 median q0.75 max
QBER 0.98 1.33 1.47 1.63 2.12
TEMP 117.00 134.75 148.00 163.00 184.00
HUM 71.00 80.00 84.00 91.00 93.00
DUR 0.00 0.00 0.00 0.00 600.00
RAD 0.00 0.00 0.00 146.00 539.00

B. Building up a Model

Mainly interested in the dependence structure, we do not
make explicit assumptions about the distributions of the
quantities each, but rather use U(0, 1)-distributed pseudo-
observations U1, . . . , Un transformed from the empirical dis-
tributions of the quantities. A basic first choice is to consider
a multidimensional copula C that models the joint distribution
H of all the quantities via H(x1, . . . , xn) = C(U1, . . . , Un).
Fitting a copula is usually done by maximizing the log-
likelihood function

`(x1, . . . , xn) = log [c (u1, . . . , un)] ,

with c denoting the density of the copula C. In a general set-
ting, this can easily become infeasible in our five-dimensional
case, so we first choose a parametric family Cθ of copulas and
then seek the parameter θ that maximizes the one-dimensional
function

`(θ) = log [cθ (u1, . . . , un)] .

As for the parametric family, we first choose the Gumbel
copula, which is generated by φ(t) = (− ln(t))θ, yielding

C(u1, . . . , un) = exp
{
−[(− ln(u1))θ + . . .+ (− ln(un))θ]1/θ

}
.

A p-value of zero clearly shows that this model is not
describing the data properly.

The above model is simple to construct and to use but it
also has its weaknesses: firstly it describes the behaviour of
five random variables with just one number and secondly its
components are all exchangeable. Taking a closer look at the
pairwise correlations of the considered quantities (Figure 1),
we see that this exchangeability is not fulfilled in our case.

To take care of possibly different correlations among the
occurring variables, we consider a more flexible model called
nested copulas (sometimes also called hierarchical copulas),
which is often used in finance, see for example [15]. The basic
idea of a nested copula model is to use several copulas at
different levels to describe the relation between the variables.

For clarity of such a hierarchically constructed probability
distribution we use a graphical tree-notation like shown in
Figure 2 to “depict” the (otherwise complicated) distribution
function. To formally specify the latter, we introduce some
notational conventions: at each level ` ∈ 1, . . . , L (counting
bottom-up in the hierarchy tree) we have n` copulas, where
C`,j , j ∈ 1, . . . , n`, is the j−th copula at level `. Further,
every copula C`,j has dimension d`,j that gives the number of
arguments ui that directly or indirectly enter this copula.

QBER

120 140 160 180

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●
●
●●

●

●●
●

●

●

●

●
●●
●●●●

●●
●

●●
●

●

●●●

●
●●●●●●●

●●
●●

●●

●●●

●

●

●●

●

●●●●
●●

●●

●●

●●

●●
●

● ●
●●

●
●

●●

●●

●

●
●

●

●

●
●●●

●●

●●
●●

●●

●●

●●●
●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●●
●

●

●●

●●
●
●●

●

●●
●

●

●

●

●

●●
●

●●

●●
●●●●
●●

●

●

●●●
●●

●

●●

●
●●●

●

●

●

●

●

●

●●

●●

●
●

●●
●
●●
●
●●●

●●●●●
●●●
●

●

●●
●●

●

●●

●

●

●●●●

●

●●●

●
●

●

●
●
●

●●

●●●
●

●

●

●

●
●

●●
●●

●●●
●●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
●
●●
●

●

●
●●

●

●
●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●
●
●●

●

●●
●

●

●

●

●
●●
●●●●

●●
●

●●
●

●

●●●

●
●●● ●●●●

●●
●●
●●

●●●

●

●

●●

●

●●●●
●●

●●

●●

●●

●●
●

●●
●●

●
●

●●

●●

●

●
●

●

●

●
●●●

●●

●●
●●

●●

●●

●●●
●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●●

●●
●

●

●●

●●
●
●●

●

●●
●

●

●

●

●

●●
●

●●

●●
●●●●

●●

●

●

●●●
●●

●

●●

●
●●●

●

●

●

●

●

●

●●

●●

●
●

●●
●
●●
●
●●●

●●●●●
●●●

●

●

●●
●●

●

●●

●

●

●●●●

●

●●●

●
●

●

●
●

●
●●

●●●
●

●

●

●

●
●

●●
●●

●●●
●●

●
●

● ●
●

●

●

●

●

●

●

●●

●

●

●
●
●●
●

●

●
●●

●

●

0 200 400 600

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●
●
●●

●

●●
●

●

●

●

●
●●
●●●●
●●
●

●●
●

●

●●●

●
●●●●●●●

●●
●●
●●

●●●

●

●

●●

●

●●●●
●●

●●

●●

●●

●●
●

●●
●●

●
●

●●

●●

●

●
●

●

●

●
●● ●

●●

●●
●●

●●

●●

● ●●
●
●
●

●

●●

●

●

●

●

●

●

●

●●●

●●

●●
●

●

●●

●●
●
●●

●

●●
●

●

●

●

●

●●
●

●●

●●
●●●●
●●

●

●

●●●
●●

●

●●

●
●●●

●

●

●

●

●

●

●●

●●

●
●

●●
●
●●

●
●●●
●●●●●
●●●

●

●

●●
●●

●

●●

●

●

●●●●

●

●●●

●
●

●

●
●
●
●●

●●●
●

●

●

●

●
●

●●
●●

●●●
●●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
●
●●
●
●

●
●●

●

●

1.
0

1.
4

1.
8

●

●

●
●●

●

●

●

●
●

●
●

●
●

●

●
●
●●

●

●●
●

●

●

●

●
●●
●●●●
●●
●

●●
●

●

●●●

●
●●●●●●●

●●
●●
●●

●●●

●

●

●●

●

●●●●
●●

●●

●●

● ●

● ●
●

●●
●●

●
●

●●

●●

●

●
●

●

●

●
●●●

●●

●●
●●

●●

●●

●●●
●

●
●

●

●●

●

●

●

●

●

●

●

●●●

●●

●●
●

●

●●

●●
●
●●

●

●●
●

●

●

●

●

●●
●

●●

●●
●●●●
●●

●

●

●●●
●●

●

●●

●
●●●

●

●

●

●

●

●

●●

●●

●
●

●●
●

●●
●
●●●

●●●●●
● ● ●

●

●

●●
●●

●

●●

●

●

●●●●

●

●●●

●
●

●

●
●
●

●●

●●●
●

●

●

●

●
●

●●
●●

●●●
●●

●
●

●●
●

●

●

●

●

●

●

●●

●

●

●
●
●●
●
●

●
●●

●

●

12
0

14
0

16
0

18
0

●
● ●●● ● ●

● ●●●●
●●● ●●●● ●●●●● ●● ●●●●●

●● ●●
● ●●●● ●●●●●●●

●●●● ●●
●●●● ●●

●● ●●●
●●●

●●●● ●●
●●

●●
●●● ●
●

●●
●● ●●

●●●● ●
● ●

● ●
●
●●● ●● ●●●● ●●

●●●
●●● ●●●● ●● ●● ●● ●●●●●

●●●●●●●● ●●● ● ●●
● ●●

●●
●●●●●

●●●●●●●● ●●●●●●● ● ●●●●●● ●● ●● ● ● ●●●●●● ●●●●●● ●●
●●●●●
●●●● ●●

●●●
● ●●●

●
●

●●●
● ●●●●

●●●●
●●●● ●

●●●
● ●● ●● ●●●●●●● ●●

●●
●
●●

●●
● ●●

●●●● ●● ●●●●
● ●●● ● ●

TEMP ●
●●●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●

●●●●●●●●●●●
●●
●●●

●●●
●●●●●

●●
●●●●

●●●●
●

●●
●●●●

●●●●●
●●

●●
●
●●

●●●●●●●●●
●●●

●●● ●●●●●●●●●●●●●●●
●●●●●●●●●●●●●

●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●

●●●●●
●●●●●●

●●●●●●

●●●
●●●●

●
●

●●●●●●●●
●● ●●

●●●●●
●●●●●●●●●● ●●●●●●●

●●
●

●●
●●

●●●
●●●●●●●●●●

●●●●●●

●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●
●●●
●●
●●●●●
●●
●●

●●●●
●
●●
●●●●
●●●

● ●
●●

● ●
●

●●
●●●●●●●●●

● ●●
●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●
●●
●●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●● ●●●
●●●●●
●●●● ●●

●●●
●●●
●
●
●

●●●●●●●●
●●●●
●●●●●

●●●
●● ●●●●●●●●●●●●

●●
●
●●
●●
●●●
●●●●●●●●●●
●●●●●●

●
●●●●●●
●●●●●
●●●●●●●●●●●●●●●●●●●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●
●●
●●●
●●●
●●●●●

●●
●●● ●

● ●●●
●
●●
●●●●

●●● ● ●
●●

● ●
●

●●
●●●●●●●●●

●●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●
●●
●●
●
●●
●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●● ●●●●●●●●

●● ● ●●●

●●●
●●●●

●
●

●●●●●●●●
●●●●

●●●●●
●●●

●●●●●●●●●●●●●●
●●
●
●●
●●
●●●
●●●●●●●●●●
●●●●●●

●
●

●
●● ● ●

● ●●●● ●●● ●●●●
●●●●● ●● ●●●●●

●● ●●●
●●●● ●●●●●●●

●●●● ●●
●●●● ●●●● ●●
● ●●●

●●●●
●●●

● ●
●

●●● ●
●

●●
●

●
●●

●
●

●
● ●
●

●
●

●●●●
●

●● ●
●

●● ●●

●
●
●●●

●

●●●● ●●
●● ●● ●●●

●●

●
●●

●●●●
● ●●●

● ●

●
●

●●
●●

●●●●●●●●
●
●●

●
● ●

●
●●●

●● ● ●
●●●

●● ●
● ●●

● ●

●●
●●

●● ●●●●●● ●
●●●●●●
●●●●

●●

●
●●
●

●●●

●
●

●

●
●●

●
●●●

●
●

●●●
●

●● ●●●● ● ●● ●● ●●

●●
●●
● ●●

●
●

●

●
●

●●
●

●●
●●

●●
●● ●●●●

● ●●● ● ●

●
●

●
●●●●

●●●●●●●●●●●●
●●●●●●●●●●●●

●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●

●●●●

●●●●
●●●

●●
●

●●●●
●

●●
●

●
●●
●
●

●
●●

●
●

●
●●●●

●
●●●
●
●●●●

●
●
●●●

●

●●●●●●
●●●●●●●

●●

●
●●

●●●●
●●●●
●●

●
●
●●

●●

●●●●●●●●
●
●●
●
●●

●
●●●

●●●●
●●●

●●●
●●●

●●

●●
●●

●●●●●●●●●
●●●●●●

●●●●
●●

●
●●

●
●●●

●
●

●

●
●●
●
●●●

●
●

●●●
●

●●●●●●●●●●●●●

●●
●●
●●●

●
●

●

●
●

●●
●
●●

●●
●●

●●●●●●
●●●●●●

HUM
●
●
●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●
●●●●

●●●●
●●●
●●
●

●●●●
●
●●
●
●
●●
●
●

●
● ●

●
●

●
●● ●●
●
●●●
●
●●●●

●
●
●●●

●

●●●●●●
●●●●●●●
●●

●
●●
●●●●
●●●●
●●

●
●
●●
●●

●●●●●●●●
●
●●
●
●●
●
●●●
●●●●
●●●
●●●
●●●
●●

●●
●●
●●●●●●● ●●
●●●●●●
●●●●

●●

●
●●
●
●●●

●
●

●

●
●●

●
●●●
●
●

●●●
●
●●●●●● ●● ●●●●●

●●
●●
●●●
●
●

●

●
●

●●
●
●●
●●
●●
●●●●●●
●●●●●●

75
80

85
90

●
●
●
●●●●
●●●●●●●●●●●●
●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●

●●●●●●
●●●●●●●●●●
●●●●

●●●●
●●●

●●
●

● ●●●
●
●●
●
●
●●

●
●

●
● ●

●
●
●

●●●●
●

●●●
●

●●●●

●
●

●●●
●

●●●●●●
●●●●●●●
●●

●
●●
●●●●
●●●●
●●

●
●
●●
●●

●●●●●●●●
●
●●
●
●●
●
●●●
●●●●
●●●
●●●
●●●
●●

●●
●●
●● ●●●●● ●●

●●●●●●
●● ● ●

●●

●
●●
●
●●●

●
●

●

●
●●
●

●●●
●

●

●●●
●

●●●●●●●●●●●●●

●●
●●
●●●
●
●

●

●
●

●●
●
●●
●●
●●
●●●●●●
●●●●●●

0
20

0
40

0
60

0

●● ●●● ● ●● ●●●● ●●● ●●●● ●●●●● ●● ●●●●●●● ●●● ●●●● ●●●●●●●●●●● ●●●●●● ●●●● ●●● ●●●●●●● ●●●● ●●

●

●● ●● ●●●● ●● ●●●

●

●● ●

●

●

●

●●● ●● ●●●● ●●

●

●●

●●● ●●●● ●● ●● ●● ●●●●● ●●●●●●●● ●●● ● ●●● ●● ●● ●●●●●●●●●●●●● ●●●●●●● ● ●●●●●● ●● ●● ● ● ●●●●●● ●●●●●

●

●●●●●●●●●●
●

●
●

●●●● ●●●● ●
●
●
●
● ●●●● ●●●●●●●● ●

●

●

●
●

●

●

●

● ●●●●●●● ●●●●●●● ●● ● ●● ●●●● ●● ●●●●● ●●● ● ● ●●●

●

●●● ●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●

●

●●

●●●

●

●●●●●●●●●●
●

●
●

●●●●●●● ●●
●
●
●
●●●●●●●●●●●●●●

●

●

●
●
●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●

●

●●

●●● ●●●●●●●●●●●●●●● ●● ●●●●●●●●●●●

●

●●●●●●●●●●
●

●
●

●●●●●●●●●
●

●
●
●●●●●●● ●●●●●●●

●

●

●
●
●

●

●

●●● ●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●●

DUR

●● ●

●

●●●●●●●●●●●●●

●

●●●

●

●

●

●●●●●●●●●●●

●

●●

●● ●●●●●

●

●●●●●●●●● ●
●

●
●

●●●●●●●●●
●

●
●
●●●●●●●●●●●●●●

●

●

●
●

●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1.0 1.4 1.8

●● ●●● ● ●● ●●●● ●●● ●●●● ●●●●● ●● ●●●●●●● ●●● ●●●● ●●●●●●●●●●● ●●●●●● ●●●● ●●● ●●●
●●●●

●●
●
● ●

●

●
●

●

●
● ●●

●● ●

●
●
●

●

●

●●
●●

●
●
●●

●
●● ●

●
●
● ●

●
●●
●

●
●● ●●●● ●● ●● ●● ●●●●● ●●●●●●●● ●●● ● ●●● ●● ●● ●●●●●●●●●●●●● ●●●●●●● ● ●●●●●● ●● ●● ● ● ●●●●●●

●●
●

●●
● ●

●●
●●●●●●

●

● ●●

●●
●● ●

●●●
●

●
●
●● ●

●●●
●
●

●
●●●

●
●

●

●

●
● ●

●● ●● ●●●●●●● ●●●●●●● ●● ● ●● ●●●● ●● ●●●●● ●●● ● ● ●●●
●●●●

●●
●
●●

●

●
●

●

●
●●●●●●

●
●
●
●

●

●●
● ●

●
●

●●
●

●●●

●
●
●●

●
●●

●

●
●●●

●●
●
●●
●●●●

●●●●●●

●

●●●

●●
●●●

●● ●
●

●
●
●●●
●●●

●
●
●

●●●
●

●
●

●

●
●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

75 80 85 90

●●● ●●●●●●●●●●●●●●●●●●●●
●●●●

●●
●

●●

●

●
●

●

●
●●●
●●●

●
●

●
●

●

●●
●●

●
●
●●●
●●●

●
●
●●
●

●●
●

●
●● ●●●●●●●●●●●●●●● ●● ●●●●●●

●●
●
●●
●●●●

●●●●●●

●

●●●

●●
●●●

●●●
●

●
●

●●●
●●●

●
●

●
●●●
●
●
●

●

●
●●
●●●●●● ●●●●●●●●● ● ●● ●●●●●●●●●●●●●●●●●●●●● ●●

●●●
●●●●
●●
●
●●

●

●
●

●

●
●●●
●●●

●
●
●
●

●

●●
● ●

●
●

●●●
●●●

●
●
●●
●

● ●
●

●
●●●
●●
●
●●

●●
●●
●●●●●●

●

● ●●

●●
●●●
●●●
●

●
●

●●●
●●●
●
●
●
●●●
●
●
●

●

●
● ●
● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

0 200 400

0
20

0
40

0

RAD

Figure 1. Pairwise correlations among variables

θ = 31

θ = 21

θ = 11 u3

u2u1

u4

θ = 31

θ = 21 θ = 11

u1 u2 u3 u4

Figure 2. Fully nested vs. partially nested copula

For the sake of illustration only, two example cases of
nesting are shown in Figure 2 for the four-dimensional case:
the fully nested copula, which adds one dimension at each
step (left side) and a partially nested copula where the number
of copula decreases at each level (right side). Our task in the
following is finding out the particular structure of nesting of
the random variables, based on the empirical data available (on
which, e.g., Figure 1 is based on).

Formally, a fully nested copula is defined by

C(u1, . . . , un) =

φ−1n−1[φn−1(. . . [φ2(φ−11 [φ1(u1) + φ1(u2)] + φ2(u3)]

+ . . .+ φn−2(un−1)) + φn−1(un))],

(4)

where the occurring generator functions φ1, . . . , φn−1 may
come from different families of Archimedean copulas.

All in all, the dependence structure is determined by n− 1
parameters (instead of just one as in the model above) and
there are n(n−1)

2 different bivariate margins.

126

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

θ = 1.6

θ = 5.79 θ = 2.58

QBER HUM

TEMP

DURθ = 3.54

RAD

Figure 3. Dependence structure for HAC model

The partially nested copula may be defined similarly, for
reasons of clarity and comprehensibility we here give the
expression for n = 4, corresponding to the case shown in
the right side of Figure 2:

C(u1, u2, u3, u4) =φ−121 [φ21(φ−111 [φ11(u1) + φ11(u2)]

+ φ21(φ−112 [φ12(u3) + φ12(u4)])],
(5)

where the generator φij is from the jth copula on the ith level,
usually denoted by Cij .

Finding a suitable nested copula model may quickly become
laborious since one might have to check all possible subsets of
variables and compare the goodness of fit of the corresponding
estimated copula. Handling this problem in R, one may use
the package HAC, introduced in [18]. In our case, we find
that a suitable model consists of four two-dimensional Gumbel
copulas, which are defined as follows:

Definition III.1. A Gumbel copula is an Archimedean copula
that is generated by

φ(t) = (− ln(t))θ

for θ ≥ 1. In the two-dimensional case, the copula is explicitly
given by

C(u, v) = exp

[
−
(

(− ln(u))θ + (− ln(v))θ
) 1
θ

]
(6)

for u, v ∈ [0, 1].

The dependence structure between the considered quantities
is shown in Figure 3.

It is known that in a nested copula model with a Gumbel
generator the parameters have to decrease with the level (see
[15] for fully nested copulas and [19] for the general case).
Since in our case the parameters on the upper levels are rather
close, we consider a modification of this model by allowing to
aggregate Copulas whose parameters do not differ too much.

A justification for this approach is the close relation between
the parameter θ of the generator and Kendall’s tau τ , which is
connected to copulas via

τ = 4

∫
[0,1]2

C(u, v)dC(u, v)− 1. (7)

For Archimedean copulas with generator function φ(t), it was
shown in [17] that (7) simplifies to

τ = 1 + 4

∫ 1

0

φ(t)

φ′(t)
dt, (8)

which for the Gumbel copula leads to

τ = 1− 4

∫ 1

0

(− log(t))θ · t
θ(− log(t))θ−1

dt

= 1− 1

θ
.

Hence, if the parameters of two subsequent copulas are close,
so is their dependence when characterized through Kendall’s
τ and it might be beneficial to model the affected variables
with only one copula.

These calculations can conveniently be done with the help of
Rs function estimate.copula from the HAC package. This
function estimates both the structure of the hierarchical copula
as well as all corresponding parameters for several different
Archimedean copula families. The fitting is most commonly
done by Maximum Likelihood or quasi Maximum Likelihood.
A simple improvement of this estimation is given in appendix
A. Once a suitable model has been found the HAC package also
allows to compute the density or the cumulative distribution
function for a sample from the corresponding hierarchical
copula, which will be used to test the goodness of fit as
described below.

C. Goodness of fit test for Hierarchical Archimedian Copulas

In order to get an impression on how suitable each of the
above models is, we adapted the bootstrapping goodness of fit
test [20] that was used in the case of a one-parametric copula
to the estimation of nested copulas.

We leave the details of the testing algorithm to the literature
[20], and confine ourselves to a brief description here and an
implementation outline in appendix A, to make things at least
plausible: in general, we would consider a model Ffit as a
“good fit”, if its Cramer-van Mises statistic being the integrated
squared difference between Ffit and the true distribution is
“small”. The exact numeric magnitude (limit) for a value to
be “small” in that sense is unclear, however, and must be
fixed first. This is done by bootstrapping: to get an idea of
when a deviation is “small” (good fit) or “large” (bad fit),
we draw artificial data samples from the estimated model
Ffit, and re-fit another model Fre-fit to the so-obtained data.
Since the new model is based on data coming from Ffit, its
deviation from Ffit, i.e., its Cramer-van Mises statistics, must
be “small” in the sense we need (no matter of its particular
numerical magnitude). Given this bootstrapping threshold for

127

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

small deviations, we can then move on testing the real data
against the fitted model Ffit, computing another Cramer-van
Mises statistic. This final value is then compared to be larger
or smaller than the previously obtained bootstrapping threshold
(limit for small deviations) to obtain an empirical p-value of
the test.

In our first 200 trial tests, each of which with a sample size
of N = 1000 and a confidence level of 0.95, we never got a
positive p-value if the tolerance was set to zero. When copulas
are allowed to be aggregated, a p-value of 0.014 was found
once, which still leads to rejection of the null hypothesis that
the data at hand are drawn from a distribution given through
this copula. This indicates that some preconditioning of the
data matrix might be necessary to get a good fit. One solution
for such a preprocessing is described in the next section.

D. Preconditioning Towards Better Fits

As indicated by our quantum network data, it may oc-
casionally be the case that none of the tried copula-models
models the data satisfactorily. More precisely, existing software
packages for copula fitting (such as HAC in R) assume positive
correlations between all variables of interest. Unfortunately,
our experimental QKD prototype supplied data exhibiting
negative correlations amongst some of the observed variables.

In order to fix this, we can apply a linear transformation M
to the data matrix D in order to make all pairwise correlations
in the transformed data matrix M ·D strictly positive. To this
end, consider the Cholesky-decomposition of the covariance
matrix Σ of the data D, given as Σ = UT ·U = UT · I ·U.
By the linearity properties of covariance, it is easy to check that
the covariance matrix of D ·U−1 is the identity matrix, having
zero-correlations among all pairwise distinct variables. It is
then a simple matter of multiplication with another invertible
matrix (with low condition number to avoid numerical round-
off-errors in the inverse transform) with all strictly positive
entries to artificially introduce positive correlations, as required
in the copula fitting process. Given such a matrix A, the final
linear transformation takes the form

D′ := D · (U−1 ·A), (9)

thus our pre-conditioning transformation matrix is M := U−1 ·
A, where U comes out of the Cholesky decomposition of the
original covariance matrix Σ, and A can be chosen freely,
subject to only positive entries and a good condition number
(for numerically stable invertibility).

In our experiments, we used a bootstrap fitting with toler-
ance ε = 0.4. We constructed A as a 5 × 5-matrix having
Gamma-distributed entries (with shape-parameter 5 and scale-
parameter 1/2). In 5 out of 200 trials, the p-value after pre-
conditioning with M = U−1A was larger than 0.05. The best
fit giving p = 0.613 was obtained under the transformation

coefficients (rounded to three decimals after the comma)

A =


0.122 4.444 0.378 1.634 4.384
0.650 0.870 1.321 0.941 2.293
0.606 3.326 0.763 2.172 2.102
2.534 0.415 2.055 1.969 1.659
2.668 2.031 3.590 2.241 1.015

 ,

whose condition number is ‖A‖2 · ‖A−1‖2 ≈ 24.4945, and
determinant given as det(A) ≈ 29, thus indicating good
numerical stability for the inverse transformation.

In a second run of 200 experiments, we lowered the toler-
ance ε = 0, and did the preconditioning as before. This time,
we got 20 out of 200 trials with a positive p-value, although
only in three cases, our fit was accepted at p > 0.05. The best
fit was obtained at p = 0.536, showing that the preconditioning
works equally well with more complex hierarchical structures
due to lower tolerance levels.

This transformation is applied before the copula fit, and
must be carried through the derivation of predictive densities
when obtaining a fit. More specifically, with the preconditioned
random vector being Y = M · X to which we could fit a
density function (copula model) fY , then the original data X
is distributed with density function

fX(x) = fY (M · x) · |det(M)| , (10)

where the determinant is a constant, and not even the inversion
of the transformation matrix M is actually required.

The preconditioning does come at the drawback of loosing
the copula-representation of the joint density, which simplifies
the subsequent construction of conditional (predictive) densi-
ties. Without this representation, i.e., when one is forced to
work with a model of the form (10), computing conditional
and predictive densities works via the definition, i.e.,

f(x1|x2, . . . , xn) = f(x1,...,xn)
f(x2,...,xn)

= f(x1,...,xn)∫
R
f(x1,...,xn)dx1

, (11)

where f(x1, . . . , xn) is the joint density obtained through (10)
and the marginal density can be computed by (numerical)
integration (e.g., Monte-Carlo algorithms; cf. [21]), which can
be complex. To ease matters, we thus assume the model of the
joint variables to take the form (2) as in proposition (II.2).

As an open issue, moreover, it remains interesting to find
better ways than simple try-and-error to find a preconditioning
matrix A that gives better fits than the plain data would do.
Moreover, we believe that this trick may be of independent
interest and use in other applications of copula theory, not
limited to statistical descriptions of quantum key distribution
devices.

IV. PREDICTION OF QBER RATES

Based on a model that describes the relationship between
QBER and the environmental quantities, we look for a pre-
diction of the QBER when all the other quantities are known.
Having an idea of what values are to be expected, one might

128

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

suspect an adversary to be present if these values are clearly
exceeded. An essential ingredient to find a prediction is the
conditional density, as it shows which values are likely in
a given situation, that is, we seek the density of QBER
conditional on all the other environmental parameters, i.e., the
function

f(QBER|TEMP,HUM,DUR,RAD).

Section IV-A describes the general technique to compute the
sought density, taking QBER as the n-th variable xn in the
upcoming descriptions. We stress that, however, the method
is equivalently applicable to predict any other variable than
QBER, too.

A. Computing Conditional Densities via Copulas

In the case where all the marginals and the copula are con-
tinuous, it holds for the transformed variables ui = F−1i (xi)
by the independence of copula and margins that

f(x1, . . . , xn) = f1(x1) · . . . · fn(xn) · cn(u1, . . . , un),

where cn(u1, . . . , un) denotes the density of the n-dimensional
copula Cn(u1, . . . , un) and fi denotes the density of the
marginal distribution Fi.

Example IV.1. In the case of independent random variables,
the above formula yields cn(u1, . . . , un) = 1, which is the
derivative of the independence copula Cn(u1, . . . , un) =
u1 · · ·un from Example II.3.

With this decomposition, the conditional density is obtained
as

f(xn|x1, . . . , xn−1) = fn(xn)
cn(u1, . . . , un)

cn−1(u1, . . . , un−1)
(12)

for ui = Fi(xi). Using (12) to compute the condi-
tional density requires the lower-dimensional copula density
cn−1(u1, . . . , un−1), excluding the variable un (corresponding
to the variable xn of interest). So, computing the conditional
density (12) from our full n-dimensional copula model pro-
ceeds as follows: let the variable xi range within [xi, xi], then
the (n− 1)-dimensional marginal density is

f(x1, . . . , xn−1) =

∫ xn

xn

f(x1, . . . , xn)dxn

=

∫ xn

xn

n∏
j=1

fj(xj)cn(F1(x1), . . . , Fn(xn))dxn

= [∆(xn)−∆(xn)] ·
n−1∏
j=1

fj(xj)

with

∆(x) :=
∂n−1

∂x1 · · · ∂xn−1
Cn(F1(x1), . . . , Fn−1(xn−1), Fn(x))

From this, the sought conditional distribution is immediately
found as

f(xn|x1, . . . , xn−1) = fn(xn)
cn(F1(x1), . . . , Fn(xn))

∆(xn)−∆(xn)
(13)

Note that the density fn of the variable of interest can be
estimated both parametrically or non-parametrically (e.g., via
kernel estimators), while in practice the distribution functions
are estimated empirically to avoid additional assumptions.

In a general setting, we first compute the copula density (if
the copula at hand is differentiable), the tedious technicalities
of which may conveniently be handled by a computer algebra
system like MATHEMATICA or MAPLE. Again, this procedure
simplifies within a smaller family of copulas.

For a n-dimensional Archimedean copula, the density turns
out to be

c(u1, . . . , un) = (φ−1)(n)(φ(u1) + . . .+ φ(un))

n∏
i=1

φ′(ui)

where (φ−1)(n)(t) denotes the n-th derivative of the inverse
function φ−1(t). This can be computed for Gumbel, Frank
and Ali-Mikhael-Haq copulas, as for example done in [22],
but becomes infeasible for the Gaussian copula considered at
the beginning.

In the case of a nested copula, there is no simple closed
expression available. One has to compute the derivative of the
top level copula that describes the behaviour of all variables
together, which invokes the chain rule. While this may get
complex in the general case, it is still practicable in our case.

In models that involve more levels of sub-copulas than
the one considered here, one might use the derivative of
CL,1(CL−1,1, . . . , CL−1,nL−1

) that evaluates to

∂dCL,1
∂u1 · · · ∂ud

=

d−nL−1∑
i=0

∑
k1,...,knL−1

{
∂d−iCL,1

∂Ck1L−1,1 · · · ∂C
knL−1

L−1,nL−1

×
nL−1∏
r=1

∑
v1,...,vkr

∂|v1|CL−1,r
∂v1

· · · ∂
|vkr |CL−1,r
∂vkr

}
where the outer sum is taken over all integers k1, . . . , knL−1

that sum up to d− i and satisfy kj ≤ dL−1,j while the inner
sum is over partitions v1, . . . , vkr of those ui showing up in
the r-th copula at level L − 1. For more details about this
specific case, see [19].

B. Self-Adaptation to Environmental Conditions

For a general description, we relabel the variables and
let Xn be the device or performance parameter that we
wish to predict based on the known environmental conditions
x1, . . . , xn−1. Section IV-C illustrates this for Xn = QBER
and (X1, X2, X3, X4) = (DUR,RAD,TEMP,HUM).

A prediction of Xn, e.g., the QBER rate given the current
environmental conditions, is then given by the conditional
expectation or, alternatively, by any value xn that maximizes

129

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

expression (13) for f(xn|x1, . . . , xn−1) for the given values
x1, . . . , xn−1. This maximization can be done using standard
numerical techniques, whose details are outside our scope here.

Since the indication of an adversary’s presence hinges
on known performance characteristics, most importantly the
QBER rate, it is easy to adapt the respective thresholds to the
expected values under the current environmental conditions.
Adapting to different conditions then amounts to doing the
optimization again under the new configuration.

C. A Worked Example

The density c(u1, . . . , u5) of the top level copula CL,1 can
be calculated by applying the chin rule. To avoid errors in
potentially messy calculations like the following, a computer
algebra system may come in handy.

The copula C describing our network was found to be

exp


−


(

(− lnu1)θ2 + (− lnu2)θ2
) θ1
θ2

+((− lnu3)θ4 + (− lnu4)θ4
) θ3
θ4

+

(− lnu5)θ3


θ1
θ3



1/θ1

(14)

Generally, it holds

∂5C3,1

∂u1 · · · ∂u5
=

∂5C3,1

∂2C2,1∂3C2,2
· ∂

2C2,1

∂u1∂u2
· ∂3C2,2

∂2C1,1∂u5
· ∂

2C1,1

∂u3∂u4
,

where the two most inner derivatives compute as

∂2C

∂u1∂u2
=

1

u1 · u2
(log(u1) · log(u2))θ−1

· exp

[
−
(

(− log(u1))θ + (− log(u2))θ
) 1
θ

]

·
(

(− log(u1))θ + (− log(u2))θ
) 1
θ−2

·
((

(− log(u1))θ + (− log(u2))θ
) 1
θ + θ − 1

)
(15)

for any two-dimensional Gumbel copula C. Alternatively to
this straightforward calculation, the two-dimensional density
(15) can be computed directly from the generator function
using the chain rule

c(u1, u2) =
∂2

∂u1∂u2
φ−1(φ(u1) + φ(u2))

= −φ
′′(C(u1, u2))φ′(u1)φ′(u2)

[φ′(C(u1, u2))]3

(16)

if both derivatives exist (see also [17]).
To find the expression for ∆(x) we analogously compute

∂4C3,1

∂1C2,1∂3C2,2
· ∂

1C2,1

∂u2
· ∂3C2,2

∂2C1,1∂u5
· ∂

2C1,1

∂u3∂u4
(17)

1.0 1.2 1.4 1.6 1.8 2.0

0
5

10
15

QBER in a given environment

QBER

co
nd

iti
on

al
 d

en
si

ty

Figure 4. Density of QBER in a known environment

with the third order derivative of a Gumbel copula

∂3C

∂u1∂u2∂u3
=

(− log(u1) · log(u2) · log(u3))θ−1

u1 · u2 · u3
· exp

[
−z 1

θ

]
·
(
z3/θ−3 + 3(θ − 1) · z2/θ−3 + (θ − 1)(2θ − 1)z1/θ−3

)
(18)

where z = (− log(u1))θ+(− log(u2))θ+(− log(u3))θ. Again,
this density can be computed from the generator function
directly if all necessary derivatives exist, yielding

∂3

∂u1∂u2∂u3
φ−1 (φ(u1) + φ(u2) + φ(u3))

= φ′(u1)φ′(u2)φ′(u3)
3[φ′′(C)]2 − φ′′′(C) · φ′(C)

[φ′(C)]5

(19)

with the abbreviation φ(C) = φ(C(u1, u2, u3)).
For the quantum network considered here, the conditional

density of the QBER displayed in Figure 4 displays a unique
maximum of the conditional density around QBER = 1.61%,
given typical environmental conditions that represent the cur-
rent situation: sunshine duration DUR = 0s, global radiation
RAD = 0W/m2, relative humidity HUM = 88%, and air
temperature TEMP = 14.4◦C. This means that QBER-values
lower than 1.14% or higher then 2.07% are unlikely (i.e., these
regions have a probability mass of 5% together) and probably
arising from the presence of an eavesdropper. Our analysis
has been performed for typical values of the environmental
variables, i.e., we set the variable DUR to zero as the sun did
typically not shine during the measurement process.

Variation of these values does not fundamentally affect our
findings but the actual shape of the conditional density turned
out to be quite sensitive to small changes.

For example, if we chose TEMP = 14.5◦C and HUM =
90%, higher values of QBER are more likely and the condi-
tional density becomes even more narrow than before. Figure
5 displays the effect of this change. Despite these differences

130

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

1.0 1.2 1.4 1.6 1.8 2.0

0
20

0
40

0
60

0
80

0
10

00
12

00

QBER in a different environment

QBER

co
nd

iti
on

al
 d

en
si

ty

Figure 5. Density of QBER in a slightly different environment

1.0 1.2 1.4 1.6 1.8 2.0

0
2

4
6

8

QBER in given environment (extended model)

QBER

co
nd

iti
on

al
 d

en
si

ty

Figure 6. Density of QBER in a given environment based on the extended
model

the conditional density still exhibits a single maximum and
thus allows again to determine unlikely values.

In appendix A we explain how this estimation procedure can
be improved. Figure 6 shows the conditional density based on
this modified model. The density exhibits a similar behavior,
i.e. there is a narrow peak corresponding to the most plausible
values of the QBER in the given environment.

A more detailed documentation of our experiments is found

in appendix A, where we give a step-by-step description of
the calculations, augmented by R-code to help the reader in
applying our method in other scenarios.

V. CONCLUSION

Now, we come back to the initial problem that motivated
this entire study. Recall that in a QKD setting, an unnaturally
high qubit error rate indicates the presence of an adversary.
Conversely, we need an idea about the “natural” rate of qubit
errors. Given the conditional density (12) and according to
the previous remarks, we can thus obtain a threshold for
the qubit error rate that is tailored to the implementation,
environment and device, and which can be adapted to changing
environmental conditions. The steps are the following, and
graphically summarized in Figure 7:

1) We run the device in a setting where there is no
eavesdropper on the line to draw a series of measure-
ments under clean conditions. In particular, we elicit all
environmental variables of interest, especially the qubit
error rate.

2) We fit a copula model to the so-obtained data D, pos-
sibly doing a pre-conditioning (as described in Section
III-D) for a statistically and numerically good fit. The
fitting can be done using standard statistical software
like R, using copula-specific libraries like HAC [18].
The derivation of the conditional distribution is easy by
virtue of computer algebra systems like MATHEMAT-
ICA.

3) Having the copula-model, we obtain the conditional
distribution (13) of the QBER under all environmental
influences. Its maximization gives the currently valid
threshold under the present environmental conditions.
Speaking differently, this process tells us which values
of the QBER are not likely enough to occur for a given
value of the keyrate.

The respective details of each step have been described in
previous sections, giving examples along the way to illustrate
the particular tasks. Nevertheless, the above process remains
of generic nature and calls for appropriate instantiation (e.g.,
different environmental influences such as noisy source and
detectors or turbulence structure of the air could be consid-
ered).

Once the probability density of the QBER conditional on
current working conditions is obtained, it is a simple matter
to equip a QKD device with sensory to keep the expected
natural QBER rate continuously updated. We stress that this
updating is unaffected by the presence of an attacker, unless
the intruder manages to steer the environmental conditions in
a way s/he likes. Assuming the absence of such an ability,
the copula dependency model and its implied predictive dis-
tributions are an effective mean to let the devices re-calibrate
themselves under the changing working conditions. Next steps
in this research direction comprise practical experiments under
variable lab conditions to test the quality of QBER adaption in
terms of a performance gain over statically configured devices.
As an important side-effect, this would also reveal possibilities

131

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

data

fit copula

model

(sect. III.B)

samples from a

random vector

(X1, …, Xn)

goodness-of-

fit-test

do preconditioning

(sect. III.D)

good fit

bad

fit

was a preconditioning

required?

inverse trans-

formation (eq. (9))

yes

compute

(numerically) via

eq. (10)

compute directly

(sect. IV.A, eq.

(12))

model (predictive

density, eq. (10))

no

current environmental

conditions

compute

expected channel

characteristics

numerical

optimization

re-calibrate the

device
collect new data

(re-)initiate process

upon initial or

changed working

condition

Figure 7. Building up and using the stochastic models for device calibration

to attack a QKD line by changing environmental factors. Such
an attack has seemingly not been considered in the literature
so far.

REFERENCES

[1] S. König and S. Rass, “Self-adaption of quantum key distribution
devices to changing working conditions,” in Proc. of the Interna-
tional Conference on Quanum-, Nano- and Microtechnology (ICQNM).
IARIA XPS Press, 2014, pp. 1–7.

[2] W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,”
Nature, vol. 299, no. 802, 1982, pp. 802–803.

[3] Peev et al., “The SECOQC quantum key distribution network in
Vienna,” New Journal of Physics, vol. 11, no. 7, 2009, p. 075001.

[4] K. Lessiak, C. Kollmitzer, S. Schauer, J. Pilz, and S. Rass, “Statistical
analysis of QKD networks in real-life environments,” in Proceedings
of the Third International Conference on Quantum, Nano and Micro
Technologies. IEEE Computer Society, February 2009, pp. 109–114.

[5] K. Lessiak, “Application of generalized linear (mixed) models and
nonparametric regression models for the analysis of QKD networks,”
Master’s thesis, Universität Klagenfurt, 2010.

[6] T. Schmitt-Manderbach, “Long distance free-space quantum key distri-
bution,” Ph.D. dissertation, Ludwig–Maximilians–University Munich,
Faculty of Physics, 2007.

[7] H. Xu, L. Ma, A. Mink, B. Hershman, and X. Tang, “1310-nm quantum
key distribution system with up-conversion pump wavelength at 1550
nm,” Optics Express, vol. 15, Jun. 2007, pp. 7247–7260.

[8] M. Li et al., “Measurement-device-independent quantum key distribu-
tion with modified coherent state,” Opt. Lett., vol. 39, no. 4, Feb 2014,
pp. 880–883.

[9] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier,
and E. Diamanti, “Experimental demonstration of long-
distance continuous-variable quantum key distribution,” Nature
Photonics, no. 5, 2013, pp. 378–381. [Online]. Available:
http://www.nature.com/nphoton/journal/v7/n5/full/nphoton.2013.63.html
[retrieved: September, 2014]

[10] A. Acı́n, N. Brunner, N. Gisin, S. Massar, S. Pironio, and V. Scarani,
“Device-independent security of quantum cryptography against collec-
tive attacks,” Physical Review Letters, vol. PRL 98, 230501, no. 1–4,
2007.

[11] Y. Liu et al., “Experimental measurement-device-independent quantum
key distribution,” Phys. Rev. Lett., vol. 111, no. 13, 2013, p. 130502.
[Online]. Available: http://www.biomedsearch.com/nih/Experimental-
Measurement-Device-Independent-Quantum/24116758.html [retrieved:
September 2014]

[12] C. Ruican, M. Udrescu, L. Prodan, and M. Vladutiu, “Adaptive vs.
self-adaptive parameters for evolving quantum circuits,” in Evolvable
Systems: From Biology to Hardware, ser. Lecture Notes in Computer
Science, G. Tempesti, A. Tyrrell, and J. Miller, Eds. Springer Berlin
Heidelberg, 2010, vol. 6274, pp. 348–359.

[13] C.-J. Lin, C.-H. Chen, and C.-Y. Lee, “A self-adaptive quantum radial
basis function network for classification applications,” in Proc. of
International Joint Conference on Neural Networks, Vol. 4. IEEE,
July 2004, pp. 3263–3268.

[14] A. M. Al-Adilee and O. Nánásiová, “Copula and s-map on a quantum
logic.” Inf. Sci., vol. 179, no. 24, 2009, pp. 4199–4207.

[15] P. Embrechts, F. Lindskog, and A. McNeil, Modelling Dependence with
Copulas and Applications to Risk Management, Handbook of Heavy
Tailed Distributions in Finance, Elsevier, 2001.

[16] D. Kelly, “Using copulas to model dependence in simulation risk assess-
ment,” in Proc. of 2007 ASME International Mechanical Engineering
Congress and Exposition. American Society of Mechanical Engineers,
2007, pp. 81–89.

[17] R. Nelsen, An Introuction to Copulas. Springer, 2006.
[18] O. Okhrin and A. Ristig, “Hierarchical archimedean copulae:

The HAC package,” Journal of Statistical Software, vol. 58,
no. 4, 2014, pp. 1–20. [Online]. Available: http://sfb649.wiwi.hu-
berlin.de/papers/pdf/SFB649DP2012-036.pdf [retrieved: September,
2014]

[19] C. Savu and M. Trede, “Hierarchies of Archimedean copulas,” Quanti-
tative Finance, vol. 10, no. 3, February 2010, pp. 295–304.

[20] C. Genest and B. Rémillard, “Validity of the parametric bootstrap for
goodness-of-fit testing in semiparametric models,” Annales de l’institut
Henri Poincaré (B) Probabilités et Statistiques, vol. 44, no. 6, 2008, pp.
1096–1127. [Online]. Available: http://eudml.org/doc/78005 [retrieved:
September, 2014]

[21] C. P. Robert, The Bayesian choice. New York: Springer, 2001.
[22] C. Savu and M. Trede, “Goodness-of-fit tests parametric families of

Archimedean copulas,” Quantitative Finance, vol. 8, no. 2, March 2008,
pp. 109–116.

[23] J.-D. Fermanian, D. Radulovic, and M. Wegkamp, “Weak convergence
of empirical copula processes,” Bernoulli, vol. 10, no. 5, 10 2004, pp.
847–860. [Online]. Available: http://dx.doi.org/10.3150/bj/1099579158

APPENDIX

To ease reproducing our computations in practical appli-
cations, we attach our R-implementation of the procedures
sketched in the previous paragraphs here. Inline, we comment

132

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

on the code where necessary to extend the description in the
body of the paper.

The libraries that we used were copula, HAC and MASS.
The original data has been loaded into a data frame X.

The following code decorrelates the data and leaves a data
frame Y whose covariance structure is the identity matrix:

U <- chol(cov(X)) # Cholesky decomposition
Uinv <- solve(U) # inversion of U
X <- as.matrix(X) # coerce X into a matrix
Y <- X%*%Uinv # do the decorrelation

This data frame is then (positively) recorrelated by the matrix
A as described in Section III-D.

A <- matrix(c(...)) # matrix values
Z <- Y%*%A # re-correlation

In the paper this whole process is described by equation (9).
Given the positively recorrelated data, the fitting method

from the HAC package applies, giving us a copula model and
the θ-values (cf. Figure 3). We used full maximum likelihood
estimation (ML) here.

UZ <- pobs(Z) # pseudo observations
estim.full <- estimate.copula(

UZ,
method = 2, # = full ML
hac = estim,
margins = NULL,
epsilon = 0.4)

theta.full <- get.params(estim.full)

At this stage, we ought to check the goodness of fit for
the copula model. Here, we enter the bootstrapping stage as
sketched in Section III-C. An empirical d-dimensional copula
based on n data records in a matrix V ∈ Rn×d is defined by
CV(u) = 1

n

∑n
i=1 I(V

i
1 ≤ u1, . . . , V

i
d ≤ ud), where I is an

indicator function. (The estimate Ĉ(u) = CV(u) is known to
converge uniformly to the underlying true copula, at least in
the case of independent marginal distributions [23].)

empCop <-function(V, u){
1/n * length(which(V[,1] <= u[1] &

V[,2] <= u[2] &
V[,3] <= u[3] &
V[,4] <= u[4] &
V[,5] <= u[5]))

}

Next comes the bootstrapping procedure, which takes N iter-
ations (N = 1000 in our experiments). A single test for the
goodness of fit can be implemented as follows:

estimatedCopula <- estimate.copula(UZ,
method = 1, margins = NULL,
epsilon = 0.4)

This estimate can be improved in the following way:

quasi ML estimation as before (method = 1)
qMLCopulaEst <- estimate.copula(UZ,

method = 1, margins = NULL,
epsilon = 0.4)

update (method = 1 -> full ML)
estimatedCopula <- estimate.copula(UZ,

method = 2,
hac = qMLCopulaEst,
margins = NULL, epsilon=0.4)

Notice however that this increases the runtime significantly.

For the bootstrap (as prescribed by [20]), we need to cast the
observations into uniformly distributed values by applying the
empirical copula function based on the pseudo-observations
UZ from above. This gives the data matrix C1. The estimated
copula should, by construction, resemble this data quite well,
and thus perform equally good as the empirical copula function
in casting the observations into uniformly distributed values.
Hence, we should almost obtain the same results by applying
the fitted copula (distribution function pHAC) to UZ, giving the
observation data C2. The difference between the two tells the
numeric magnitude of a “small deviation” between the data
and the model (cf. Section III-C).

C1 <- apply(UZ, 1,
function(x)(empCop(UZ,x)))

C2 <- pHAC(UZ,
estimatedCopula,
margins=NULL)

Sn <- sum((C1 - C2)ˆ2) # bootstrap value

The actual bootstrap is done by drawing random values from
the copula model (function rHAC), turning it into pseudo-
observations and estimating the copula in the same way as
before, but based on the random observations now. Over N
repetitions (we took N = 1000), the k-th such fit is “accepted”,
if its deviation Snk is less than Sn, as computed above, i.e.,
the p-value of the test is defined as [20] p = 1

N

∑n
k=1 I(Snk >

Sn), with Sn being Sn from above. To save space in the listing
below, the ellipsis (. . .) in the parameter list is to be replaced
by the same parameters in the identical calls as in previous
listings.

pValueEst <- 0
for(k in 1:N) {

Xk <- rHAC(n, estimatedCopula)
Uk<-pobs(Xk)
bootstrapQML <- estimate.copula(Uk,

method = 1, ...)
bootstrapEst <- estimate.copula(Uk,

method = 2,
hac = bootstrapQML, ...)

C1 <- apply(Uk, 1,
function(x)(empCop(Uk,x)))

C2 <- pHAC(Uk, bootstrapEst, ...)
Snk <- sum((C1 - C2)ˆ2)

if (Snk > Sn) {

133

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

pValueEst <- pValueEst + 1
}

}
pValueEst <- pValueEst / N

Our experiments revealed that a single trial usually yields
not a good fit, so the above iteration can be repeated until
a sufficiently large p-value is obtained (in our setting, we took
200 rounds to come up with a few good fits).

Given that the fit has a p-value > 0.05, we accept it and step
towards estimating the predictive density; equation (13): First,
we need the unconditional density of QBER, which in our case
is the first variable in the (still re-correlated) data frame Z. We
fitted a gamma-distribution by maximum likelihood:

f <- fitdistr(Z[,1], "gamma")
fn <- function(x) {
dgamma(x, shape = f$estimate[1],

rate = f$estimate[2])
}

The conditional density is then directly computed from formula
(13), by first transforming the input data into uniformly dis-
tributed values (by applying the empirical marginal distribution
functions obtained from a call to ecdf) and implementing the
expression for ∆ as a function delta (omitted here for space
reasons):

get the empirical distribution functions
F1<-ecdf(Z[,1]) # QBER
F2<-ecdf(Z[,3]); # HUM
F3<-ecdf(Z[,2]); # TEMP
F4<-ecdf(Z[,5]); # RAD
F5<-ecdf(Z[,4]); # DUR
range of QBER
qbermin<-min(X[,1])
qbermax<-max(X[,1])

conditional density function
conddens<-function(DUR,RAD,TEMP,HUM,QBER){
transform data into uniformly distr.
u1<-F1(QBER); u2<-F2(HUM);

u3<-F3(TEMP); u4<-F4(RAD);
u5<-F5(DUR)

conditional density formula (13)
fn(QBER) * cn(u1,u2,u3,u4,u5) /

(delta(F1(qbermaxz),u2,u3,u4,u5) -
delta(F1(qberminz),u2,u3,u4,u5))

}

The conddens function is now ready to be used for con-
figuring the device, for example, by determining its maxi-
mum w.r.t. QBER (maximum likelihood estimation), given
the current environmental conditions DUR, RAD, TEMP and
HUM. We stress, however, that care has to be taken since all
this construction works on the transformed data Z rather than
the actual (physical) measurements X. In order to properly
apply the function, we therefore must transform the current
environmental data in much the same way as the data has

been transformed to find a suitable model. That is, we apply
the transformation matrix M to the physical input data and use
the results as the arguments in the conddens function: calling
xdat the real environmental conditions (values as given in
Section IV-C), then the transformed zdat is the input to
conddens as described above.

Zdat<-matrix(rep(0,l*5),nrow=l)
relabel the variables to fit notation
of the derivatives cn and delta
colnames(Zdat) <- c("QBER", "HUM",

"TEMP", "RAD", "DUR")
transform QBER-values in given environment
for (i in 1:l){
xdat<-c(x[i],148,90,0,0)
zdat<-t(xdat)%*%Uinv%*%A
zdat<-t(zdat)
DUR<-zdat[4]; RAD<-zdat[5];
HUM<-zdat[3]; TEMP<-zdat[2]; QBER<-zdat[1]
Zdat[i,]<-c(QBER,HUM,TEMP,RAD,DUR)
}
determine range of transformed data
(input to function delta)
minz<-min(Zdat[,1])
maxz<-max(Zdat[,1])

The density is then visualized by plotting QBER-values x
against the corresponding output of the conddens function
y for each of those values.

range of QBER
qbermin<-min(X[,1]) # 0.98
qbermax<-max(X[,1]) # 2.12
x<-seq(qbermin,qbermax,0.01)
l<-length(x)
corresponding values of density
y<-rep(0,l)
for (i in 1:l){
y[i]<-conddens(Zdat[i,1],Zdat[i,2],

Zdat[i,3],Zdat[i,4],Zdat[i,5])
}
plot(x, y,

type=’l’,
main="QBER in a given environment",
xlab=’QBER’,ylab=’conditional density’)

134

International Journal on Advances in Systems and Measurements, vol 8 no 1 & 2, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

