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Abstract—For our previously proposed shape prediction based
tracking algorithm for non-rigid objects, the shape prediction
accuracy is critical for the tracking performance. Therefore,
we have presented a preliminary evaluation of second-order
shape prediction algorithm for tracking non-rigid objects. In
the proposed algorithm, the object shape was predicted from
the movement of feature points, which were approximated by
a second-order Taylor expansion. Approximate first-order move-
ments, the so-called optical flows, were simultaneously exploited
by chamfer matching of edgelets. Shape prediction accuracy was
evaluated by chamfer matching between the predicted object
shape and the actual object shape. While only one video sequence
was preliminary evaluated, three more video sequences were
evaluated. The new sequences are captured by fixed camera,
while our previous sequence was captured by Hand-held camera.
In this paper, the effect of second-order shape prediction is
quantitatively analyzed by more video sequences. The method
exhibits superior shape prediction performance compared to a
simple linear prediction method.

Keywords–Tracking non-rigid objects; Chamfer distance; Shape
prediction; Optical flow.

I. INTRODUCTION

Visual object tracking is one of the most popular techniques
in the field of computer vision. We have proposed a novel
algorithm for tracking non-rigid (deformable) objects based on
the second order shape prediction and presented a preliminary
evaluation of its performance against the linear (first-order)
prediction measured by the similarity between the predicted
and actual shapes of the tracked object [1].

Recently, tracking algorithms for non-rigid (deformable)
objects have been used in many application fields [2], [3].
In sports scenes, especially those of team sports such as
football, there are many objects in similar appearance, which
increase the difficulty of tracking. Therefore, we consider
both the movement and shape (form) of these objects to be
discriminative for tracking.

For the shape of the non-rigid object to change in every
video frame, next object shape have to be predicted from
preceeding video frames to identify the object. A number of
human pose estimation algorithm has been proposed, such
as 3D pose estimation of an articulated body using template
matching [4] and matching algorithm of pictorial structures [5].
However, they are not predicting the pose in the next video
frames.

The movement of the parts must be detected to predict the
object shape, and the smallest part must be a feature point.
When the object shape is represented by the collection of
feature points, the deformation of the object is predicted by ex-
ploiting the movement of the feature points. Sim and Sundaraj
proposed a motion tracking algorithm using optical flow [6],
and this can be considered as the first-order approximation of
the movement. For our tracking algorithm, we adopted a shape
prediction algorithm based on the second-order approximation
of the feature points’ movement [7].

In this paper, the evaluation was applied to three more
video sequences, which were captured by a fixed camera;
Tai chi chuan demonstration, a skier’s backshot, and a skier’s
frontshot. They were compared with the previously evaluated
sequence of a skier, which was captured by a hand-held
camera. Thereby, the effect of object movement and camera
ego-motion were examined from these results.

The remainder of this paper is organized as follows. In
Section II, we summarize the previous tracking algorithms. In
Section III, we describe our shape prediction algorithm and
the tracking procedure that uses the chamfer distance as a
similarity measure. The experimental results are presented in
Section IV. Finally, we present our conclusions and ideas for
future work in Section V.

II. PREVIOUS TRACKING ALGORITHMS

The primary function of an object tracking is to find a
moving object in an image. Therefore, detecting differences
between consecutive video frames adopted in the first ap-
proach, such as a background subtraction algorithm which was
employed by Koller [8]. However, the static background might
be required, and obviously object detection was difficult when
the movement of the objects was small,

A group of feature-based tracking algorithms [9], [10],
[11] is proposed as the second approach. Salient features such
as corner features are individually extracted and tracked are
grouped as belonging to the corresponding object. It can be
robust to illumination change. However, the precision of the
object location and dimension is affected by the difficulties
that arise in feature grouping. The mean-shift algorithm [12],
[13] is also included in the feature-based algorithms. In mean-
shift algorithm, the local features (such as color histograms)
of pixels belonging to the object are followed. The mean-shift
approach allows robust and high-speed object tracking, if a
local feature that successfully discriminates the object from
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the background exists. However, it is difficult to discriminate
objects that are close to each other and are similar in color, or
to adopt this method for gray-scale images.

Avidan redefined the tracking problem as that of classifying
(or discriminating between) the objects and the background
[14]. This third approach can be categorized as a detect-
and-track approach. In this approach, features are extracted
from both the objects and the background; then, a classi-
fier is trained to classify (discriminate) the object from the
background. Grabner trained a classifier to discriminate an
image patch within an object in the correct position and
those with objects in the incorrect position [15], and thereby,
the position of the object could be estimated more precisely.
While this approach allows stable and robust object tracking,
a large number of computations are necessary. The approach
of Collins and Mahadevan is regarded as an approach of
this type, but they selected discriminative features instead
of training classifiers [16], [17]. Grabner introduced on-line
boosting to update feature weights to attain compatibility
between the adaptation and stability for the appearance change
(illumination change, deformation, etc.) of tracking classifiers
[18]. Woodley employed discriminative feature selection using
a local generative model to cope with appearance change
while maintaining the proximity to a static appearance model
[19]. The tracking algorithms are also applied to the non-rigid
(deforming) objects. Godec proposed Hough-based tracking
algorithm for non-rigid objects, which employed Hough voting
to determine the object’s position in the next frame [3].

In detect-and-track approaches, the estimated object po-
sition in the next video frame is determined based on the
similarity of the features to the object in the current video
frame, and a change in appearance, especially deformation,
may affect the similarity between the object in the current
and the next frame, and thereby, the accuracy of the tracking.
Therefore, the tracking accuracy can be improved by predicting
the deformation of the object to improve the similarity of the
object in the next video frame to that in the current video
frame. Sundaramoorthi proposed a new geometric metric for
the space of closed curves, and applied it to the tracking of
deforming objects [2]. In this algorithm, the deforming shapes
of the objects are predicted from the movement of the feature
points using first order approximation. However, the first-order
approximation is not sufficient to estimate the reciprocating
movement, which often human legs and arms do.

III. SHAPE-BASED PREDICT-AND-TRACK ALGORITHM

In this section, we describe an algorithm for tracking by
shape prediction [7]. The algorithm consists of two compo-
nents, shape prediction and tracking by shape similarity.

A. Notation
The following notation is used throughout this paper.

• X denotes the center of the object,
• O(X) denotes the object image centered at position X ,
• E(X) denotes the binary edge image for the object at

position X ,
• Ô and Ê denote the predicted image and edge image

of the object, respectively,
• x denotes the positions of the feature points for object

X ,

• x′ denotes the differential of x, i.e., x′ = dx
dt ,

• x′′ denotes d2x
dt2 ,

• x̃ denotes the subset of feature points in the object that
constitute the outline edge, x̃ ∈ E(X),

• x̂ denotes the predicted position at the next frame for
x̃,

• l(x) denotes the edgelet for position x.

B. Shape Prediction
The object shape is represented by the collection of feature

points x, and the deformation of the object is predicted by
exploiting the movement of the feature points.

Let xt be the 2-D position of the feature points that
constitute the object image O at time t. The position of the
points at t +1 can be estimated using a Taylor expansion. Up
to the second-order, this is

xt+1 = xt + x′t +
1
2

x′′t , (1)

where x′ is the so-called optical flow, which is practically
computed as the difference in the pixel position:

x′t = xt − xt−1. (2)

Similarly, x′′ denotes the second-order differential of x, which
is calculated as

x′′t = x′t − x′t−1

= xt − xt−1 − (xt−1 − xt−2)

= xt −2xt−1 + xt−2. (3)

Therefore, the appearance of the object at t + 1 can be
predicted based on the feature point movements computed
from three consecutive video frames. Suppose that the shape
of the object is determined by the outline edge image Es.
The algorithm for detecting the feature point movements is
described in Section II-D.

C. Estimation of Object Translation
The movement of the feature points comprises both the

object translation (global movement of the center of the object)
and the movement relative to the center of the object, which
is described by

x′t = X ′
t + r′t , (4)

where X denotes the position of the object’s center, and r
denotes the position of the pixels relative to X . Figure 1 shows
the movement of feature point x′, the movement of the object’s
center X ′, and the relative movement r′.

The relative movement r′ is derived from the object de-
formation, and thus makes a significant contribution to the
prediction of the object’s shape. Because relative movement
obeys the physical constraints of the body parts of the object,
its second-order prediction is effective. In contrast, the second-
order movement contributes less to the object translation X ,
because such global movement is considered to be smooth
(X ′ ≈ 0). Therefore, the purpose of our tracking algorithm
is to determine the next object position X t+1 based on the
similarity between the predicted and actual object shapes,
which is computed globally.

202

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



Figure 1. Edge image and object movement.
Green: Edge image for t −1, Red: Edge image for t

Figure 2. Chamfer system.

The similarity between the predicted edge image Êt+1 and
actual edge image Et+1 is measured using the chamfer system
[20]. This system measures the similarity of two edge images
using a distance transform (DT) methodology [21].

Let us consider the problem of measuring the similarity
between template edge image Et (Figure 2(b)) and a successive
edge image Et+1 (Figure 2(c)). We apply the DT to obtain
an image Dt+1 (Figure 2(d)), in which each pixel value dt+1
denotes the distance to the nearest feature pixel in Et+1. The
chamfer distance Dcham f er is defined as

Dcham f er(Et ,Et+1) =
1
|Et | ∑

e∈Et

dt+1(e), (5)

where |Et | denotes the number of feature points in Et and e
denotes a feature point of Et .

Figure 3. Tracking procedure.

Figure 4. Edgelet tracker.

The translation of the object can be estimated by finding
the position of the predicted edge image Êt+1 that minimizes
Dcham f er between Êt+1 and the actual edge image Et+1:

X t+1 = arg min
Et+1

Dcham f er(Êt+1,Et+1). (6)

Figure 3 illustrates the tracking procedure. First, the optical
flow x′t and its approximate derivative x′′t are computed from
preceding video frames at t −2, t −1, and t. The object shape
at t+1, denoted by Êt+1, is then predicted using x′ and x′′. The
object position is determined by locating Êt+1 at the position
of minimum chamfer distance to the actual shape at t + 1,
Et+1. Finally, the optical flow for the next video frame x′t+1 is
recomputed using actual edge images Et and Et+1.

D. Detection of Feature Point Movements
After the object translation X ′

t+1 has been determined, the
movement of the feature points x′t+1 is detected from the actual
object images O(X t) and O(X t+1).
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Figure 5. Tracking and shape prediction for Tai chi chuan.
Blue: Ground Truth; Green: Linear Prediction; Red: Second-order Prediction.

The feature point movements x′t+1 are directly computed
based on the actual edge image at t + 1 by tracking small
parts of the edge (edgelets). We also employed the chamfer
system to detect the movement of the edgelets. A template
edgelet image l(x̃t) extracted from Et is compared against the
candidate edgelet l(x̃t + x̂′t+1) in the next edge image Et+1. By
minimizing the chamfer distance between the two, we obtain
the feature point movement (Figure 4):

x̂′t+1 = arg min
x̂′t+1

Dcham f er(l(x̃t), l(x̃t + x̂′t+1)). (7)

As the detected movements x̂′t+1 may contain noise, we ap-
ply a smoothing process by averaging the relative movements
in the neighboring region:

x′t+1 =
1
N ∑

x̂′t+1∈δt+1

x̂′t+1, (8)

where N denotes the number of detected movements x̂′t+1 in
the neighborhood δ of x̃t .

IV. EVALUATION OF SHAPE PREDICTION PERFORMANCE

The algorithm described above was applied to three video
sequences (Tai chi chuan demonstration, a skier backshot, and
a skier frontshot) captured by fixed camera, and a sequence of
a skier captured by a hand-held camera. The effect of object
translation and camera ego-motion on the shape prediction
performance was examined.

Figure 6. Shape prediction accuracy for Tai chi chuen.

The proposed second-order shape prediction model was
compared with linear one, which is formulated by

xt+1 = xt + x′t . (9)

The prediction performance was evaluated by the chamfer
distance between the actual image Et+1 and the predicted
image Êt+1 using (5).

A. Video sequences captured by fixed camera
1) Tai chi chuan demonstration: Figure 7 shows the video

frames 3006–3009, when the linear prediction attained better
precision. The both prediction algorithm had large error in the
shape of right knee in the frame 3006, because of the quick
motion by the player. The error in the estimation of feature
point movements at the frame 3006 (circled with red) caused
the error in the estimation of the acceleration of the feature
points at the frame 3007. Thereby, the errors have larger effect
on the second-order prediction.

Tai chi chuan is one of the chinese martial arts and the
feature is in the slow movement, therefore, the movement and
the acceleration of the feature points can easily be detected.
Figure 5 shows the tracking result for Tai chi chuan demon-
stration. The blue pixels represents the predicted object shape
(ground truth), the green ones represent the translated predicted
shape to determine the object position using (6), and the red
ones represents the reconstructed object shape, as calculated by
(1). The result image is synthesized from these three shapes,
therefore, the white pixels indicate agreement of the both result
to the ground truth, the magenta pixels indicate the agreement
of the second-order prediction to the ground truth, the cyan
pixels indicate the agreement of the linear prediction to the
ground truth, and the yellow pixels indicate the agreement of
the second-order prediction to the linear prediction but contrary
to the ground truth.

Figure 6 shows the chamfer distance to the ground truth,
calculated over frames 2950–3050. The result shows that the
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Figure 7. Erroneous video frames for 2nd-order shape prediction of Tai chi
chuan.

second-order shape prediction attained better accuracy than the
linear one in most of the video frames except 3001 and 3008.

2) Skier 1: backshot: In the video sequence of Tai chi
chuan, the object translation is small compared to the object
deformation. However, in the sequence of skier captured by
a fixed camera, the object translation is much larger than
the object deformation. Therefore, the translation and the
acceleration of the object might affect the shape prediction
accuracy.

Figure 8 shows the tracking result and Figure 9 shows the
shape accuracy for the video sequence skier 1. The result in
Figure 8, the estimation error (the minimum chamfer distance)
tends be high when the object changed its moving direction,
such as the video frames around 400, 435, and 475. It also
shows that the second-order prediction attained better shape
prediction accuracy than linear prediction in most of the video
frames, though the second-order prediction produced larger
error against the linear method at video frames 478, 479, and

Figure 8. Tracking result for Skier 1 (Fixed camera).
Blue: Ground Truth; Green: Linear Prediction; Red: Second-order Prediction.

Sequence number
380 400 420 440 460 480 500

M
in

im
u

m
 c

h
a
m

fe
r
 d

is
ta

n
c
e

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

2nd-order prediction
Linear prediction

Figure 9. Shape accuracy for Skier 1.
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Figure 10. Erroneous video frames for 2nd-order shape prediction of Skier 1
backshot.

(a) Red: 2nd-order prediction; Green: linear prediction; Blue: ground truth.
(b) Red: frame 478; Green: frame 479; Blue: frame 480; Yellow arrow: local

movement

480. During video frames 478–480, the object translation was
very small and the local movements were also small (Figure
10), therefore the estimation error in local movement (optical
flow) must have affected the accuracy of the second-order
prediction.

3) Skier 2: frontshot: Figure 11 shows the tracking result
and Figure 12 prediction accuracy for skier 2 frontshot. The
shape accuracy (Figure 12) shows the same tendency as Figure
8. The estimation error tends be high when the object changed
its moving direction, such as the video frames around 240 and
280. In this video sequence, only at the three frames 240,
262 and 288, our second-order method could not outperform
the linear method. We considered that the un-eliminated back-
ground might affect the prediction accuracy (Figure 13).

Figure 11. Tracking result for Skier 2 (Fixed camera).
Blue: Ground Truth; Green: Linear Prediction; Red: Second-order Prediction.
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Figure 12. Shape accuracy for Skier 2 by Fixed camera.
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Figure 13. Frame with low shape accuracy for Skier 2.
Un-eliminated background feature points (circles with red) affected the

shape and tracking accuracy.

Figure 14. Tracking result for Skier 2 (Hand-held camera.
Blue: Ground Truth; Green: Linear Prediction; Red: Second-order Prediction.

B. Video Sequence captured by Hand-Held Camera (Skier 2)
In the skiing sequence captured by a hand-held camera,

the skier was manually “tracked” so as to be shown close
to the center of the image frame. Thus, the object tends to
exhibit only a small translation in the image frame. However,
the object sometimes suffers from a large degree of translation
due to manual mis-tracking of the camera. Figure 14 shows
the tracking results.

Figure 15 shows the chamfer distance to the ground truth,
calculated over frames 230–300. The results show that the
second-order prediction attained better accuracy than the linear
prediction in 40 out of 70 frames. The second-order prediction
is superior during frames 244–249, whereas the linear predic-
tion is preferable from frames 238–240.

Figure 16(a) shows the object translation from frames 244–
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Figure 15. Shape accuracy for Skier 2 by hand-held camera.

248, indicating the direction change at around frame 246.
Figure 16(b) shows the object translation from frames 238–
240, when the translation direction did not change.

These results indicate that the second-order shape predic-
tion method works well when the direction in which the object
must be translated changes.

V. CONCLUSIONS

We have evaluated the performance of a second-order shape
prediction algorithm. Though the performance is generally
higher to that of a linear model, our method outperformed the
linear approach in most cases especially when the direction of
object movement changed. However, our approach could not
outperform the linear approach when the acceleration of the
feature points are too high against the frame rate of the video
to capture. This evaluation result indicates that the proposed
second-order model is robust to objects under acceleration with
adequate frame rate.
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Figure 16. The effect of object translation for prediction accuracy
(a) Blue: frame 244; Green: frame 246; Red: frame 248; Yellow arrow:

object translation.
(b) Blue: frame 238; Green: frame 239; Red: frame 240; Yellow arrow:

object translation.

208

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



REFERENCES
[1] K. Nishida, T. Kobayashi, and J. Fujiki, “The Effect of 2nd-Order

Shape Prediction on Tracking Non-Rigid Objects,” in Proc. of the 7th
international Conference on Pervasive patterns and Applications, pp. 60-
63, 2015.

[2] G. Sundaramoorthi, A. Mennucci, S. Soatto, and A. Yezzi, “A New
Geometric Metric in the Space of Curves, and Applications to Tracking
Deforming Objects by Prediction and Filtering,” in SIAM J. of Imaging
Science, Vol. 4, No. 1, pp. 109-145, 2010.

[3] M. Godec, P. M. Roth, and H. Bischof, “Hough-based Tracking on Non-
rigid Objects,” in J. of Computer Vision and Image Understanding, Vol.
117, No. 10, pp. 1245-1256, 2013.

[4] K. Hara, “Real-time Inference of 3D Human Poses by Assembling Local
Patches,” in Proc. of IEEE Winter Vision Meeting 2009, pp. 137-144, 2009.

[5] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient matching of pictorial
structures,” in Proc. of IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) 2000, Vol. 2, pp. 66-73, 2000.

[6] K. F. Sim and K. Sundaraj, “Human Motion Tracking of Athlete Using
Optical Flow & Artificial Markers,” in Proc. of International Comference
on Intelligent and Advanced Systems (ICIAS) 2010, pp. 1-4, 2010.

[7] K. Nishida, T. Kobayashi, and J. Fujiki, “Tracking by Shape with
Deforming Prediction for Non-Rigid Objects,” in Proc. of International
Conference on Pattern Recognition Applications and Methods (ICPRAM),
pp. 581-587, 2014.

[8] D. Koller, J. Weber, and J.Malik, “Robust Multiple Car Tracking with
Occlusion Reasoning,” in Proc. of European Conference on Computer
Vision (ECCV), Vol. A, pp. 189-196, 1994.

[9] D. Beymer, P. McLauchlan, B. Coifman, and J. Malik, “A Real-Time
Computer Vision System for Measuring Traffic Parameters,” in Proc. of
IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
1997, pp. 495-501, 1997.

[10] B. Coifman, D. Beymer, P. McLauchlan, and J. Malik, “A Real-time
Computer Vision System for Vehicle Tracking and Traffic surveillance,”
in Transportation Research Part C: Emerging Technologies, Vol. 6, No.
4, pp. 271-288, 1998.

[11] Z. W. Kim and J. Malik, “Fast Vehicle Detection with Probabilistic
Feature Grouping and its Application ot Vehicle Tracking,” in Proc. of
9th International Conference on Computer Vision (ICCV), pp. 524-531
2003.

[12] D. Comaniciu and P. Meer, “MeanShift: A Robust Approach Toward
Feature Space Analysis,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 24, No. 5, pp. 603-619, May, 2002.

[13] D. Comaniciu, V. Ramesh, and P. Meer, “Real-Time Tracking of
Non-Rigid Objects using Mean Shift,” in Proc. of IEEE Conference on
Computer Vision and Pattern Recognition (CVPR) 2000, pp. 142-149,
2000.

[14] S. Avidan, “Ensemble Tracking,” in IEEE Transactions on Pattern
Analysis and Machine Intelligence, Vol. 29, No. 2, pp. 261-271, 2007.

[15] H. Grabner, M. Grabner, and H. Bischof, “Real-Time Tracking via On-
line Boosting,” in Proc. of British Machine Vision Conference (BMVC),
pp. 47-56, 2006.

[16] R.T. Collins, Y. Liu, and M. Leordeanu, “Online Selection of Discrim-
inative Tracking Features,” in IEEE Transactions on Pattern Analysis and
Machine Intelligence, Vol. 27, No. 10, pp. 1631-1643, 2005.

[17] V. Mahadevan and N. Vasconcelos, “Salliency-based Discriminant
Tracking,” in Proc. of IEEE Conference on Computer Vision and Pattern
Recognitio (CVPR) 2009, pp. 1007-1013, 2009.

[18] H. Grabner, C. Leistner, and H. Bischof, “Semi-Supervised On-Line
Boosting for Robust Tracking,” in Proc. European Conference on Com-
puter Vision (ECCV) 2008, pp. 234-247, 2008.

[19] T. Woodley, B. Stenger, and R. Chipolla, “Tracking using Online
Feature Selection and a Local Generative Model,” in Proc. of British
Machine Vision Conference (BMVC) 2007, pp. 86.1-86.10, 2007.

[20] D. M. Gavrila, “Pedestrian Detection from a Moving Vehicle,” in Proc.
European Conference on Computer Vision (ECCV), 2009, pp. 37-49.

[21] D. Huttenlocher, G. Klanderman, and W. J. Rucklidge, “Comparing
Images using the Hausdorff Distance,” in IEEE Trans. on Pattern Analysis
and Machine Intelligence, Vol. 15, No. 9, pp. 850-863, 1993.

209

International Journal on Advances in Systems and Measurements, vol 8 no 3 & 4, year 2015, http://www.iariajournals.org/systems_and_measurements/

2015, © Copyright by authors, Published under agreement with IARIA - www.iaria.org


