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Abstract—The feature interaction problem has been recognized
as a general problem of software engineering, whenever one
wants to reap the advantages of incremental development. In
this context, a feature is a unit of change to be integrated in a
new version of the system under development, and the problem
is that new features may interact with others in unexpected
ways. We introduce a common abstract model, to be built during
early requirement analysis in a feature oriented development.
The model is common, since all the features share it, and is
an abstraction of the behavioural model retaining only what is
needed to characterize the features with respect to their possible
interactions. The basic constituents are the abstract resources
that the features access in their operations, the access mode (read
or write), and the reason of each access. Given the model, the
interactions between the features are automatically detected, and
the goal oriented characterization of the features provides the
developers with valuable suggestions on how to qualify them
as synergies or conflicts (good and bad interactions), and on
how to resolve conflicts. We provide evidence of the feasibility
of the approach with an extended example from the Smart
Home domain. The main contribution is a lightweight state-based
technique to support the developers in the early detection and
resolution of the conflicts between features.

Keywords–Feature interactions; State-based interaction detec-
tion; Conflict resolution.

I. INTRODUCTION

This paper extends the approach to the early detec-
tion and resolution of feature interactions we introduced
in SOFTENG’15 [1]. The feature interaction problem has
been recognized as a general problem of software engineer-
ing [2] [3] [4] [5], whenever an incremental development
approach is taken. In this broader context, the term feature,
originally used to identify a call processing capability in
telecommunications systems, identifies a unit of change to be
integrated in a new version of the system under development.
The advantages of such an approach lay in the possibility of
frequent deliveries and parallel development, in the agile spirit.
The feature based development is now becoming more and
more popular in new important software domains, like auto-
motive and domotics. So, it is worthwhile to take a new look
at the main problem with feature based development: a newly
added feature may interact with the others in unexpected, most
often undesirable, ways. Indeed, the combination of features
may result in new behaviours, in general: the behaviours of the
combined features may differ from those of the two features
in isolation. This is not a negative fact, per se, since a new
behaviour may be good, from an opportunistic point of view;
however, most often the interaction is disruptive, as some

requirements are no longer fulfilled. For instance, consider the
following requirements, from the Smart Home domain:

Intruder alarm (IA) Send an alarm when the main
door is unlocked.

Main door opening (MDO) Allow the occupants to unlock
the main door by an interior
switch.

Danger prevention (DP) Unlock the main door when
smoke is sensed.

Assuming a feature per requirement, it is easily seen that
combining Intruder alarm and Danger prevention leads to an
interaction, since the latter changes the state so that the former
raises an alarm. However, an alarm in case of a fire is likely
to be seen as a desirable side effect, so that we can live with
such an interaction. Also, the combination of the first two
features leads to an interaction: an alarm is raised, whenever
the occupants decide to open the main door from inside.
However, this is likely to be seen as an undesirable behaviour,
since the occupants want to leave home quietly.

In general, the process of resolving conflicts in feature
driven development has the same cyclic nature: look for
interactions in the current specification, identify the conflicts,
resolve them updating the specification, cycle until satisfaction.

Many techniques have been proposed to automate (parts of)
this process. The search for interactions by manual inspection,
as we did above, is obviously unfeasible in practice, due to
the number of requirements in current practice. It is also the
step with the greatest opportunity for automation. The other
steps need human intervention since, at the current state of
the art, they cannot be automatized. However, as discussed in
Section XII, what is still lacking, in our opinion, is the ability
to detect the interactions, identify the conflicts and resolve
them by working on a simple model, as it may be available
at the beginning of requirements analysis, before any major
effort in the development of requirements.

We introduce a technique to support the detection and
resolution of feature interactions in the early phases of require-
ments analysis. The approach is based on a common abstract
model of the state of the system, which i) is simple enough
to induce a definition of interaction which can be checked by
a simple algorithm, and ii) can be modified, together with the
feature specification, taking care only of few, essential facets
of the system.

The model is abstract, since it is an abstraction of the
behavioural model retaining only what is needed to charac-
terize each feature with respect to the possible interactions:
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the constituents of the model are resources, that is, pieces of
the state of the system that the features access during their
operations. To keep the model, and the analysis, simple, the
operations on the resources are abstracted to consider only
their access mode, namely read or write. This way, however,
we do not loose in generality since the essential cause of an
interaction is a pair of conflicting accesses to a shared resource.
In this respect we were inspired by notion of conflict between
build tasks introduced by the CBN software build model [6].

The work required to build the abstract model can be
amortized in two ways. The shared state models can be defined
in a reusable and generic manner so that, for a given domain,
they can be exploited in many different development efforts,
as it happens in Software Product Lines; moreover, the model
can be taken as a skeleton to be fleshed out with details as
requirements analysis proceeds.

The main concepts and ideas of the approach have been
first introduced in [1]. Here, we formalize the proposed detec-
tion technique and extend it to deal with indirect interactions,
i.e., those that depend on the relations among the resources.
We also add a feature model to state relations between features
such as priorities and mutual exclusions.

The next section summarizes the approach. Subsequent
sections describe it in detail: Sections III, IV, and V deal
with the definition of the abstract model. Sections VI and VII
illustrate the automatic process to derive the interactions from
the abstract model. Section VIII discusses synergies and con-
flicts, and Section IX illustrates some resolution techniques.
Section X discusses briefly the complexity of the analysis.
Section XI assesses the correctness and completeness of the
approach, and Section XII discusses related work. Finally, we
draw some conclusions and discuss future work.

In the paper, we use the Smart Home domain described
in [7] as a running example. The features are intended to
automate the control of a house, managing the home entertain-
ments, providing surveillance and access control, regulating
heating, air conditioning, lighting, etc.

II. SUMMARY OF THE APPROACH

The lightweight approach to the detection and resolution
of feature interaction requires the following activities:

1) Definition of the abstract model. This is obtained by
the cooperation of three activities:
• Domain model building, in terms of the re-

sources accessed by the features.
• Feature specification. Each feature is de-

scribed in terms of: its goal; its accesses (r/w)
to the resources in the domain model; the goal
of each access.

• Feature model definition, to state mutual ex-
clusion and priority relations among the fea-
tures.

2) Interaction detection is based on the construction and
analysis of an interaction detection matrix, which is
automatically built in two steps from the abstract
model.
• A basic interaction detection matrix is first de-

rived, where the (direct) accesses mentioned
in the features specification are considered.

Figure 1. Activities of the lightweight approach.

• The matrix is filled with indirect resource
accesses, which take care of the relations
between resources captured in the domain
model.

• Automatic interaction detection: the complete
matrix is analyzed to single out possible in-
teractions.

3) Conflict and synergy identification:
• The interactions identified in the previous step

are classified as conflicts or synergies: only
conflicts will need to be dealt with in the
resolution step.

4) Conflict resolution, that modify the abstract model
using various strategies:
• Restriction
• Priority
• Integration
• Refinement

Figure 1 models the whole process. Note that, from the
point of view of the development process, there is no constraint
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on how the abstract model is built: in other words, domain
model building, feature specification, and feature model def-
inition can be performed in sequence, as well as arm in arm
as suggested in Figure 1. All the other activities are each
dependent on the outcomes of the previous one in the list.
We describe in detail each of them in the next sections.

III. DOMAIN MODEL BUILDING

The description of the domain is an integral part of the
abstract model. Its purpose is to provide a definition of the
accessible resources, i.e., of the shared state that the features
access and modify, detailed enough to allow describing the
features precisely. There are no special requirements on the
notation to express the model. In this paper, we use UML2.0
class diagrams for their wide acceptance.

Given the Smart Home example, so far limited to the
features in the Introduction, Figure 2 shows the class diagram
modelling the domain. The shared state is made up of the states
of the all the resources, which may structured, like Main Door,
which owns a Lock.

The structure shown is not final, as new resources can be
added by the analyst if he needs them, not only to introduce
new features, but also to resolve conflicts, as it happens, for
instance, with refinement (Section IX-4).

IV. FEATURE SPECIFICATION

We model a feature defining: its goal; the resources in the
domain model it accesses (r/w); the reason for each access. The
feature goal and the resource access reason are used during
conflict identification (vs synergies) and resolution.

We introduce a template (Table I), which lists the feature
name, its goal, and the involved resources, grouped in two
sets (read or written) together with the reason for reading or
writing each resource. To make references short, we provide an
acronym to each feature. Each access to a resource is identified
by its goal.

The three features introduced in the previous section are
represented in Table II following the template.

Figure 2. Smart Home Domain.

TABLE I. FEATURE SPECIFICATION TEMPLATE.

〈name〉 〈acronym〉 read write
〈feature goal〉 〈resource〉 〈resource〉

↪→ 〈access reason〉 ↪→ 〈access reason〉

V. FEATURE MODEL DEFINITION

A Feature Model is a compact representation of the con-
straints among the features that can be present in a system [8].
In our approach, the feature model records mutual exclusions
and priorities between features: in the detection phase this
structure is used to disregard the pairs that might interact but
will not, since incompatibilities have already been solved by
the introduced relations.

Definition (Feature Model) Let F be the set of features in the
abstract model. A Feature Model is a pair

FM = 〈P,X〉

where:
P ⊆ F × F and (F, F ′) ∈ P when F has priority on F ′

X ⊆ 2F and X ∈ X when the features in X are mutually
exclusive.

There is no constraint among IA, DP, and MDO in the
initial model, i.e., initially FM = 〈∅, ∅〉. We will fill it when
adding new features, and after the resolution stage.

To focus on the essence of the approach, in the next
section we deal with automatic interaction detection on the
matrix including only the basic interactions and delay indirect
interaction identification to the subsequent one.

VI. AUTOMATIC INTERACTION DETECTION

Our definition of feature interaction is based on the access
mode (read or write) to the resources that make up the shared
state of the system. The features access the resources in read
mode to assess the state of the system, and in write mode to
update it.

Any time two features F and F ′ access a resource, and
at least one of the accesses updates it, there is an interaction:
if F updates a resource which is read by F ′, the new value
can change the behaviour of F ′, hence there is an interaction;

TABLE II. FEATURE SPECIFICATION: IA, MDO, DP.

Intruder Alarm (IA) read write
To raise an alarm
when the main
door is unlocked.

main door lock alarm
↪→ To know
when to raise
an alarm

↪→ To raise the
alarm

Main door open-
ing
(MDO)

read write

To manually un-
lock the door.

InteriorSwitch Lock
↪→ To receive
the command

↪→ To unlock

Danger
prevention
(DP)

read write

To automatically
unlock the door in
case of danger

SmokeSensor Lock
↪→ To know when
there is an alert

↪→ To unlock
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TABLE III. INTERACTION DETECTION MATRIX FOR IA, MDO, DP. HERE
AND LATER MDOOR STAYS FOR MAINDOOR.

M Lock MDoor Alarm Interior
Switch

Smoke
Sensor

IA r w
MDO w r
DP w r

if F anf F ′ both modify the resource, the final value of the
resource depends on the feature application order, and there
is an interaction too. On the contrary, there is no interaction
when F and F ′ both read a shared resource, since they do
not interfere (still, F and F ′ can interfere if they access, and
modify, another resource).

Definition (Interaction)
There is an interaction whenever two features are composed

in the same system, and one of them accesses in write mode
a resource accessed also by the other, in any mode.

Let us reconsider the features defined in the Introduction
and the discussion in the previous section that led to detect
some interactions. We can rephrase it in term of resource
accesses. For instance, consider the main door lock: accessing
it in read mode allows knowing its current state, that is, if the
door is locked or unlocked; accessing it in write mode allows
locking or unlocking the door. Both IA and MDO access the
door lock, in read and write mode, respectively. By definition,
we have an interaction. Similarly, also IA and DP interact,
since they access the same resource in the same way.

To automate the interaction detection, an interaction detec-
tion matrix (M) is built, with a row per feature and a column
per resource. This is a sparse matrix where each entry is a
set that contains information only if the feature in the row
accesses the resource in the column, and is empty otherwise:

m ∈MF,R iff F accesses R in mode m

As an example, Table III shows the interaction detection matrix
for IA, MDO, and DP.

In the interaction detection matrix, it is possible to identify
all the pairs of interacting features.

Statement F and F ′ interact on resource R if and only if

• w ∈MF,R and MF ′,R is not empty.
• (F, F ′) 6∈ FM, i.e., formally:

◦ (F, F ′) 6∈ P
◦ (F ′, F ) 6∈ P
◦ 6 ∃X ∈ X with {F, F ′} ⊆ X

In other words, any pair of non empty entries in the same
column with at least a w denotes an interaction of the features
in the selected rows, provided the feature model does not
prohibit their coexistence in the same system. In the example,
we have that all pairs of features, (IA, MDO), (IA, DP), and
(MDO, DP) interact on resource Lock, and FM = 〈∅, ∅〉.

Not all of these interactions are bad ones (conflicts): these
have to be identiefied with a subsequent analysis (see Section
VIII).

In this view, it is possible that a feature interacts with itself.
An example is the following.

Silence at night (SAN) At night, turn off the alarm after
three minutes since it started beep-
ing.

The feature specification is in Table IV and matrix is in
Table V. The matrix shows an interaction, but it is evident
that this is a desired behaviour, that is, a synergy. In other
cases, the analysis may discover that the feature is ill-defined
and has to be rewritten.

VII. INDIRECT INTERACTIONS IDENTIFICATION

There are other kinds of interactions, that we call indirect
since they are due to accesses to different, but related, re-
sources. Indeed, the domain model is not made of independent
resources: they may be related in such a way that the access
to one may entail an access to the other. We consider the
following relations that cause derived accesses, inducing a
state change in a resource as a consequence of a state change
in another (related) one:

affects when two resources are associated in
such a way that a change in one affects
the other;

composition when a resource is a part of another
one. This relation, due to its importance
in structuring the domain, needs to be
considered explicitely but can be reduced
to instances of the previous one;

subclass/superclass when a resource belongs to a sub/super-
class of another one.

Then, we define how to complete the interaction detection
matrix to take into account also these indirect interactions.

A. Affects
Consider the following example dealing with air condition-

ing (AC):

Natural AC (NAC) If the air temperature in the room is
above 27 degrees and the temperature

TABLE IV. FEATURE SPECIFICATION: SAN.

Silence at night
(SAN)

read write

To turn off the
alarm at night

Alarm Alarm
↪→ To know when
it starts beeping

↪→ To turn it off

TABLE V. INTERACTION DETECTION MATRIX FOR SAN.

M Lock MDoor Alarm Interior
Switch

Smoke
Sensor

SAN r
w
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TABLE VI. FEATURE SPECIFICATION: NAC AND ACS.

Natural AC
(NAC)

read write

To naturally
change air.

Room Temp Sensor Window
↪→ To know if
room has to be
cooled

↪→ To open

Outside Temp Sens
↪→ To know if
outside it is cold
enought

AC switch-on
(ACS))

read write

To cool the
room with AC.

Room Temp Sensor AirCond
↪→ To know if
room has to be
cooled

↪→ To switch-on

TABLE VII. INTERACTION DETECTION MATRIX FOR IA AND DP2.

M Lock MDoor Alarm Interior
Switch

Smoke
Sensor

IA r w
DP2 w r

outside is below 25, open the win-
dows.

AC switch-on (ACS) If the air temperature in the room is
above 27 degrees switch-on the air
conditioner.

This is specified in Table VI.
The point here is that in both case there is an effect on the

room air. Indeed, a change of state of the windows or the air
conditioner affects the air in the room. We want this indirect
interaction to be captured as a derived access.

Note that NAC and ACS are applied under the same
condition. However, this read coincidence is not relevant for
the interaction detection, since no interaction is caused by two
read accesses to a resource.

B. Composition
Consider the main door, which is composed of a lock

(Figure 3): a write access to the door may result in a write
on the lock too, hence we add an affects relation between
the two resources. For instance, consider a different version
of DP, where, rather than simply unlock the door, the home
automation system opens it, to facilitate escape and air change:

Danger prevention 2 (DP2) Open the main door when
smoke is sensed.

Possibly, DP2 interferes with IA, since to open the door it
may be needed to unlock it. However, with the basic matrix
of the previous section, this interaction cannot be detected:
the features access different resources, and no column in the
matrix has more than an element (see Table VII).

In general, changing a resource may change also its parts
and cause an interaction with the features accessing one of the

Figure 3. Smart Home Domain, extended.

parts. On the other side, often, the specifiers forget to mention
these derived accesses (e.g., by stating explicitly: Unlock the
main door and open it when smoke is sensed), and interactions
are hardly identified. The domain structure can help in coming
up with all interactions automatically.

C. Subclass or Superclass
Let us continue on the same example, with a third version

of danger prevention:

Danger prevention 3 (DP3) Open all openings when smoke
is sensed.

To cope with this new feature, the domain model needs to
include also a new resource, Opening, superclass of Door and
Window (Figure 3).

Here again, there is an interaction with IA, since a door is
an opening (and the door is composed of a lock).

With inheritance we can have a derived access in both
directions: a write on a Door may interfere with a feature
accessing resource Opening, and hence we derive the write
access from Door to Opening. Viceversa, a feature that speci-
fies a change for Opening applies to both Door and Window.

However, there is no derived access between siblings: we
must not derive an access to Window from an access to Door
or vice-versa.

D. Extending the interaction detection matrix
From now on, to consider the extension just given, we

interpret the definition of interaction given in Section VI to
include derived accesses. The interaction detection matrix is
completed accordingly.

We define a triple of write mode, resource, and relation

w relation
resource

as entry of matrix M, telling that resource is indirectly
accessed in write mode, through relation.

We only derive the write accesses, and not the read ac-
cesses, to avoid filling the matrix with redundant information.
Indeed, assume a write access on A and a read access on B,
with A and B related with one of the aforementioned relations:
once we derive a write on B, we can detect the interaction, and
there is no need to derive a read on A.
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TABLE VIII. EXTENDED INTERACTION DETECTION MATRIX FOR IA AND
DP2.

M Lock MDoor Alarm Interior
Switch

Smoke
Sensor

IA r w

DP2 wcomp
MDoor w r

Definition (MF,R extended) Matrix M is recursively built
according to the following rule

MF,R 3



m iff F accesses R in mode m

waff
R′ iff (w or wrel

res ) ∈ MF,R′ and
R′ affects R

wsub
R′ iff (w or wrel

res ) ∈MF,R′ , R is
a subclass of R′, and rel 6=
sup

wsup
R′ iff (w or wrel

res ) ∈ MF,R′ , R
is a superclass of R′, and
rel 6= sub

Specifically, we derive a write access on a resource R if there is
a write on R′ and the affects relation in the domain model tells
that a change to R′ can lead to a change to R. The derivation
is unidirectional, respecting to the direction of the relation.

With inheritance, we derive accesses in both directions.
However, derivation paths do not go up and down to avoid
deriving an access to a window from an access to the main
door (we require rel 6= sup). The constraint rel 6= sub applies
in the case of multiple inheritance.

Example An example of extended interaction detection matrix
is in Table VIII, where waff

MDoor inMDP2,Lock is added since
in the model The Main Door affects the Lock. This triple
permits to detect the indirect interaction between IA and DP2.

Example A larger example is Table XI. DP, DP2, and DP3 are
alternative versions of danger prevention. They are mutually
exclusive, since we want a system to include at most one of
them:

FM = 〈∅, {{DP, DP2, DP3}}〉
This constraint simplifies the analysis since we can discard

some pairs of features from the interference analysis. Namely,
(DP,DP2), (DP, DP3) and (DP2,DP3).

Note also that the feature model permits to use a unique
matrix accommodating various versions of the system instead
of using a matrix per each version.

Remark The construction process of M is finite since a fix-
point can always be reached. This is because: the domain
model is finite; the matrix elements are sets (and not multisets).

TABLE IX. INTERACTING ACCESS TO LOCK.

–Interaction detected on Lock–
Feature Feature Goal Mode Access Reason
IA To raise an alarm

when the main
door is unlocked.

r To know if it has
been unlocked

MDO To manually un-
lock the door.

w To unlock

TABLE X. INTERACTING DERIVED ACCESS TO LOCK.

–Interaction detected on Lock–
Feature Feature Goal Mode Access Reason
IA To raise an

alarm when the
main door is
unlocked.

r To know if it has
been unlocked

DP3 To open all
openings in
case of smoke.

waff
MDoor ⇐ (wsub

Opening , MDoor)
⇐ (w, Opening)
⇐ To open.

VIII. CONFLICT AND SYNERGY IDENTIFICATION

For each detected interaction a summarizing table is built,
with the information on the goals of the interacting features
and on the reasons for the interacting accesses.

As an example, Table IX captures the interaction (IA,
MDO) on the main door lock. Such a table will help the expert
in the classification of the interaction and its resolution. At this
point the expert can state whether the interaction is a synergy
or a conflict, as clearly in this case, since we do not want the
alarm to be sent when the opening is authorized.

Similar tables are built for the other pairs of interacting
features. The expert can recognize that there is a synergy
between Intruder Alarm and Danger Prevention, since sending
the alarm is useful when some danger sensor is triggered.
Also, the interaction between Main Door Opening and Danger
Prevention is a synergy. Indeed, the two features pursue the
same goal, that is to open the door.

In the case of a derived access, the summarizing table
reconstructs the chain of the derived accesses, and then gives
the reason for the base one, as in Table X.

IX. CONFLICT RESOLUTION

Once an interaction is recognized as a conflict in the
analysis phase, we can take some actions to resolve it. In order
to discuss possible resolution actions, we need to extend the
working example. In addition to IA, MDO, and DP, we also
consider a few more features, namely:

Air change (AC) At 10:00 a.m. open the win-
dows, at 10:30 a.m. close the
windows.

Close window with rain (CW) Close the windows when the
rain sensor is triggered.

Video surveillance (VS) Surveillance cameras are
watched remotely via wifi.

Wifi switch-off (WSO) Switch off the wifi at night.

The extended domain model is in Figure 4, and the
specification of the new features is in Table XII.
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TABLE XI. COMPLETE INTERACTION DETECTION MATRIX

M Lock MDoor Alarm Interior
Switch

Smoke
Sensor Window Opening AirCond RoomAir

External
Temp
Sensor

IA r w
MDO w r
DP w r

DP2 waff
MDoor w r wsup

MDoor

DP3 waff
MDoor wsub

Opening r w

NAC waff
MDoor wsub

Opening wsub
Opening w

r

waff
Opening

r

ACS waff
RoomAir w

r

waff
AirCond

Figure 4. Smart Home Domain, the complete picture.

Various routes to resolution have been proposed in the
literature (see [9] [10] [11] for interesting surveys):

1) Restriction: Avoid tout-court that the conflicting fea-
tures are ever applied in the same system. This is the resolution
strategy to be taken when the two features have incompatible
goals. In other cases, it is an option the expert can choose.
In the running example, we could prevent Video surveillance
(VS) and Wifi switch-off (WSO) from being applied in the
same house. We obtain restriction adding a mutual exclusion
between the pair of conflicting features in the feature model.

2) Priority between the features: A weaker form of restric-
tion is to guarantee that conflicting features are never applied
at the same time. This behaviour can be obtained by defining
priorities. Then, in the case two features are both enabled,
only the one with higher priority is executed. In our example,
priority can be likely used between Air Change (AC) and Close
window with rain (CW). Both features write on the resource
window. In the case of rain at 10:00 a.m., we want the windows
to be closed. The application of this strategy leads to adding
a priority pair to the feature model.

3) Integration: According to this resolution strategy, the
two interacting features are combined in a new one whose
goal encompasses the goals of the two original ones.

VS and WSO can be integrated in a unique feature to
switch off the wifi at night, and switch it on if an intruder

TABLE XII. MORE SMART HOME FEATURES

Air Change
(AC)

read write

To ventilate the house Window
↪→ To open/close

Close window with
rain (CW)

read write

To close the win-
dows in case of
rain

RainSensor Window
↪→ To know
when to close

↪→ To close

Video
surveillance
(VS)

read write

To remotely control
the house

VideoCamera
↪→ To read the
recorded data
Wifi
↪→ To access the
camera

Wifi switch-off
(WSO)

read write

To switch off the wifi
when not used

Wifi
↪→ To switch-off

is sensed, so that surveillance cameras can be watched from a
remote machine.

4) Refinement: In any approach based on a shared state,
we can apply another resolution strategy, considering if it is
possible to add a new resource and make the two conflicting
accesses insist on two distinct resources. Since two features
conflict only because they access, directly or indirectly the
same resource, this refinement solves the problem, by defi-
nition. Think again of the conflict between Intruder Alarm
and Main door opening. We might specify a new IA feature
excluding the case where the door was unlocked using the
interior switch. In some sense, we distinguish between the
electrical and mechanical commands to the lock.

It is obvious that, after each resolution step, the features
are to be checked again to detect if the changes have solved
the conflicts without introducing new ones.
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X. IMPLEMENTATION NOTES

The interaction detection matrix has two properties that
are useful for the implementation of the analysis, i.e., to
reduce the amount of time and space needed to search
the pairs of interacting features: i) the matrix is sparse,
and ii) the elaboration of each column (resource) is inde-
pendent of the others, since it is only necessary to ana-
lyze pairs of cells in the same column. According to well
known techniques, the matrix can be stored as a list of
pairs 〈resource, listOfAccesses〉, where the second element
represents the (sparse) column related to resource. Here,
listOfAccesses is the list of the non-null matrix entries, each
represented as a pair 〈feature, setOfAccessModes〉.

The average cost of the analysis is then O(a2×r), where a
is the average number of accesses to the resources per feature,
and r the number of resources. Note that the structure of the
problem is such that it can be profitably attacked by parallel
map-reduce, in case of very large matrixes, as it may be the
case in real-life projects.

Note that, when creating this structure from the feature
specification, there is no need to order the elements in (the lists
representing) the columns, due to the independent elaboration
of the columns. So, new items can be attached to the front of
the list of the accessed resource (linear cost with r), and the
matrix can be built in O(a× r) in time (and space).

The need to sort the lists of accesses by feature arises only
when it is requested to show the whole matrix to the engineers:
by memoing the state (ordered or not) of each column, the
cost can be made proportional to the number of updates to the
matrix.

XI. DISCUSSION

A discussion is needed on the soundness and completeness
of our detection method with respect to existing ones. We
restrict to design-time techniques, since we are interested in
early detection. The most common way to define a feature
interaction is based on behaviours [3]:

A feature interaction occurs when the behavior of
one feature is affected by the presence of another
feature.

We consider behaviours too, but abstract from their details.
Soundness is related with false positives: the rough detection
based on the shared resources access model can indeed render
false positives, e.g., synergies. These will have to be discarded
during the subsequent analysis. However, also the approaches
analyzing the concrete behaviour cannot automatically dis-
tinguish between conflicts and synergies and some human
intervention is still needed to complete the analysis.

On the other side, the completeness problem can be stated
as: is it possible that the behaviour of two features interfere
even if they do not access, directly or indirectly, any shared
resource? This can happen, for instance, if an hidden resource
is not elicited and is not included in the model.

Often, there are hidden classes in a domain description.
This is a well known problem in software engineering. In
general, when analyzing and modeling a domain, some classes
may be intrinsic to the problem, but never explicitly mentioned
in the documentation. These classes cannot be found with the

noun/verb analysis, and, to be exposed, must be discovered by
the analyst.

Let us consider NAC and ACS. The interference between
these features is detected since we included the air in the room
that has to be cooled in the domain model, and derived an
access of both features to this shared resource. If the hidden
resource was not elicited, the interference was not found.
However, do these feature interfere according to the behaviour
based definition? The answer is no, the behaviour of each
feature is not affected by the other one. Indeed, the conflict
between the actions of opening the windows and switching
on air conditioning can be stated only by an expert. So,
the situation is similar: with both kind of approaches, the
interference can detected thanks to some expert intervention.

Sometimes features interactions are defined in an even
more abstract way:

Features interactions are conflicts between the inter-
ests of the involved people.

We express the personal interests in the feature goals, and
base the analysis on it. Hence, we are compliant with respect
to this notion. Understanding if the persons involved have
conflicting interests is a different problem.

Finally, we have restricted our analysis to pairs of features.
One further aspect to consider, and this is again based on
experience in feature interaction, is the question as to how
many features are required to generate a conflict. In the
community discussions have taken place around a topic called
“three-way interaction”. In the feature interaction detection
contest at FIW2000 [8] this was an issue, and the community
decided that there are two types of three-way interaction: those
where there is already an interaction between one or more pairs
of the three features and those where the interaction only exists
if the triple is present. The latter were termed “true” three-way
interactions. Nothing has been written about true three-way
interaction, as only one, quite contrived, example of such an
interaction has been found. We can hence consider as realistic
the assumption that no “true” three-way interaction may occur.

Three-way interactions can occur among features imple-
mented with directives to the preprocessor as done for instance
in [12] but this is strictly related with the implementation tech-
nique. On the contrary, in our abstract setting, any interaction
in a set of three (ore more) features is always caused by the
interaction between two of them.

XII. RELATED WORK

In [1], we first described the main concepts and ideas of
an early and light analysis of features to detect interactions.
Here, the approach is extended along various dimensions:

• We added the feature model definition in the first
phase: the feature model describes relations between
features such as priorities and mutual exclusions. It
helps to accommodate in a unique model various
version of a feature based system. At the same time,
it is used to discard from the analysis those pairs of
features that will never be applied in the same system
and hence never interfere.
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• We have considered derived accesses to the resources:
An interaction can occur between features that are
somehow related in the domain. The domain structure
can help in coming up with all interactions automati-
cally, instead of needing manual analysis by an expert.

• We have given a formal rule to fill the interaction
detection matrix.

• We have discussed the complexity of the implemen-
tation.

A. Programming features
Bruns proposed to address the problem at the programming

language level, by introducing features as first class objects [2].
Our view is that such an approach is worth pursuing, but
needs be complemented by introducing features for features
in the early stages of the development process, namely in
requirements analysis.

B. Requirements interaction
Taxonomies of feature interaction causes have been pre-

sented in the literature [4] [13]. Among the possible causes,
there are interactions between feature requirements. We ad-
dress here a special case of the general problem of require-
ments interaction. A taxonomy of the field is offered in [14].
It is structured in four levels, and identifies 24 types of
interaction collected in 17 categories. It assumes that the
requirements specification is structured in system invariants,
behavioural requirements, and external resources description.
Their analysis is much finer grained than ours. Should the two
analysis be performed in sequence, our own should prevent the
appearance of some interaction types in the second one, like
those of the non-determinism type.

Nakamura et al. proposed a lightweight algorithm to screen
out some irrelevant feature combinations before the actual
interaction detection, on the ground that the latter may be
very expensive [15]. They first build a configuration matrix
that represents concisely all possible feature combinations,
and is therefore similar in scope to our interaction matrix.
However, it is very different in contents, since it is derived
from feature requirements specifications in terms of Use Case
Maps, which give a very detailed behavioural description of
the features. The automatic analysis of the matrix lends to three
possible outcomes per pair of features: conflict, no interaction,
or interaction prone. In our approach, the automatic analysis
gives only two outcomes: no interaction or interaction prone,
as one might expect, given the simpler model.

Another similar approach is Identifying Requirements In-
teractions using Semi-formal methods (IRIS) [7]. Both meth-
ods are of general application, and require the construction of
a model of the software-to-be. In IRIS the model is given in
terms of policies, but the formality is limited to prescribing a
tabular/graphical structure to the model. Both methods leave
large responsibility to the engineers in the analysis. However,
larger effort is required, and larger discretion is left to them in
IRIS: in our approach, interaction detection is automatized, and
the engineer can focus on conflict identification and resolution.
Finally, the IRIS model is much more detailed than ours, so
that resolving the identified conflicts may entail much rework,
while resolution in our case provides new hints to requirements
specification. The last consideration applies as well to the two
previous approaches.

C. Design and run-time techniques
As another example of the ubiquity of the feature interac-

tion problem, Weiss et al. show how it appears also in web-
services [16]. The approach to design-time conflict detection
entails the construction of a goal model where interactions are
first identified by inspection, and the subsequent analysis is
then conducted on a process algebraic refined formal model.
Also in this case, our model is more abstract, and the two
techniques may be used synergically.

In a visionary paper, Huang foresees a runtime monitoring
module that collects information on running compositions of
web-services, and feeds it to an intelligent program that, in
turn, detects and resolves conflicts [17].

Several run-time techniques to monitor the actual behaviour
of the system and detect conflicts and possibly apply corrective
actions, are reported in the literature, as surveyed in [11]: for
instance, [18] tackle the problem with SIP based distributed
VoIP services; in [19] policies are expressed as safety con-
ditions in Interval Temporal Logic, and they can be checked
at run-time by the simulation tool Tempura. These techniques
should be seen as complementary to the design-time ones, like
ours: the combined use of both approaches can provide the
developers with very high confidence in the quality of their
product, as suggested also by [10], which discusses the need
for both static and dynamic conflict detection and resolution.

D. Aspect oriented techniques
A related topic is that of interactions between aspect-

oriented scenarios. A scenario is an actual or expected execu-
tion trace of a system under development. The work described
in [20] is similar to ours, in so far as they place it in the
phase of requirements analysis, propose a lightweight semantic
interpretation of model elements. The technique relies on a
set of annotations for each aspect domain, together with a
model of how annotations from different domains influence
each other. The latter allows the automatic analysis of inter-
domain interactions. It is likely that, if feature and aspect
orientation are combined in the same development, the two
techniques could be integrated.

E. Formal methods
A recent trend of design-time conflict detection exploits

formal static analysis by theorem proving and model check-
ing. The need for experimentation along this line has been
recognized by Layouni et al. in [21], where they exploit the
model checker Alloy [22] for automated conflict detection.

In [23], we presented a formal semantics for the APPEL
policy language, which so far benefited only from an informal
semantics. We also presented a novel method to reason about
conflicts in APPEL policies based on the developed semantics
and modal logic, and have touched on conflict resolution.

In [24], we show how to express APPEL [25] policies in
UML state machines, and exploit the UMC [26] model checker
to detect conflicts. In [27], we automate the translation from
APPEL to the UMC input language, and address the discovery
and handling of conflicts arising from deployment-within the
same parallel application-of independently developed policies.

A feature interaction detection method close to model
checking is presented in [28]: a model of the features is built
using finite state automata, and the properties to be satisfied
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are expressed in the temporal logic Lustre. The environment
of the feature is described in terms of the (logical) properties
it guarantees, and a simulation of its behaviour is randomly
generated by the Lutess tool; the advantage is that such an
approach helps avoiding state explosion.

F. Abstract Interpretation
We remark a difference with the usual way of performing

abstract interpretation [29], where the starting point is a
detailed model, which is simplified, by abstracting away the
information that is not needed for the intended analysis. An
analysis by abstract interpretation defines a finite abstract set of
values for the variables in a program, and an abstract version of
the program defined on this abstract domain. Here, we abstract
the actions to read or write but we only consider the variables
(resources) name, and not their values, concrete or abstract.

G. Interactions affecting performance
Recently, work has been done on detecting and resolving

interactions that, thought not disrupting the behaviour, impact
on the overall performance of the system. The approach
described in [30] is based on a simple black box model: in-
teractions are detected using direct performance measurements
designed according to few heuristics. It would be interesting to
assess whether our technique may supplement advantageously
the heuristics to the point of balancing the cost of the required
domain model.

H. Best practices in requirements engineering (RE)
We refer to [31], since it emphasizes the identification

of the product goals in the early phases of the analysis,
and addresses explicitly the problem of conflicts in require-
ments. More precisely, the advocated RE process foresees the
construction of a set of models of the system-to-be, each
addressing a dimension of concerns. The most relevant one
for our purposes is the Goal Model, which captures the system
objectives in a structure of system goals and refines them to
software requirements (SR). In this context,

• a goal is a prescriptive statement of intent that the
system should satisfy through the cooperation of its
agents,

• some of the agents are software ones, that is, they are
part of the software-to-be, and

• a (software) requirement is a goal under the responsi-
bility of a single (software) agent.

To see how our approach may fit into this scenario, it is
enough to consider each feature as a software agent, whose
requirement is given by the associated goal. Moreover, one
can easily see that the software requirements in the running
example may be the result of refining more general goals, like
avoid that people are trapped into the house in case of fire.

The standard validation of the RE Goal Model includes a
process to manage goal conflicts, which consists of four steps:

1) identify overlapping statements, i.e., those that refer
to some inter-related phenomena;

2) detect conflicts among overlapping statements, possi-
bly using some tool supported heuristics;

3) generate conflict solutions;
4) evaluate solutions and select the best ones.

In our approach, the first step is the construction of the
interaction detection matrix, the second one is the process of
pairwise feature interaction analysis described in Section VIII,
and the third one what suggested in Section IX.

According to the agile nature of feature oriented software
development, our approach to conflict detection entails also
the construction of modelling items that belong to down stream
activities in the RE process of [31], namely, building an Object
and an Operation model.

The Object model provides a structural view of the system-
to-be, showing how the concepts involved in the relevant
phenomena are structured in terms of individual attributes
and relationships with other concepts. As such, it is often
conveniently represented by UML Class diagrams. Among
the types of object to be considered in this model we find
the already mentioned Agents, and the Entities, i.e., passive
objects. The collection of the entities defines the state-space
of the system, in terms of the object instances that may be
present, each with its own internal state, as defined by the
values of its attributes. Being at the RE level, there are no
issues of information hiding, that is, a shared state is assumed.

The Operation model provides an operational rather than a
declarative view of the system-to-be, unlike the previous mod-
els. This one is essential in Goal operationalization, that is, the
process of mapping the requirements (leaf goals) to a set of
operations ensuring them. Here, an operation is characterized
by necessary and sufficient conditions for its application, which
yields a state transition, in turn characterized by the operation
post-condition.

In our approach, the collection of the resources and of the
features constitutes the Object model. Any resource is an entity
and any feature is an Agent. However, we depart from van
Lamsweerde’s process with respect to the Operation model,
since we do not share his goal that the model contains enough
information to allow its validation, that is, providing evidence
that the operations of each agent ensure the goals. As we
have shown, abstracting operations to their mode (read/write)
and goal is sufficient to support feature conflict detection and
resolution.

The integration of the support to interaction detection de-
scribed here with the standard tools that support Requirements
Engineering (RE), like DOORS, can be foreseen to occur
in two modes, namely, loosely or tightly. In either cases,
the information collected in the RE tool can be exploited to
provide the engineer in chase of interactions with the structure
of the tables of the features, i.e., names and definitions. In the
case of loose coupling, these information need be exported in
a dedicated tool: The engineer can then complete the tables
adding the affected resources and the access modes, which
are unlikely to be available in a standard RE tool. Once
the analysis and resolution have been performed, the relevant
information have to be fed back into the RE tool. A dedicated
tool, equipped with interfaces supporting the most popular
standard RE data interchange XML based standard, would
support the interaction detection technique presented here for
a wide range of RE tools. To get a tight coupling, one has
to rest on the extension features the RE tool at hand offers:
given that the computations needed to put our technique to
work are essentially simple, there should be no major problem
with most RE tools.
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XIII. CONCLUSIONS

We present a state based approach to the early detection,
analysis and resolution of interactions in feature oriented soft-
ware development. Starting with a light model of the state that
the features abstractly share, the main steps of our approach
are the generation of an interaction matrix, the assessment of
each interaction (conflict or synergy), and the update of the
model to resolve conflicts. The abstraction is such that only
the mode (read or write) of an access to the shared state is
considered; each access is characterized by its contribution to
the overall goal of the feature it pertains to.

We provide a proof of concept of how interactions can be
detected automatically, as well as of how the developers can get
support in their assessment of the interactions and resolution of
the conflicts, looking at the well known Smart Home domain.

An interesting development will be to evaluate whether
to formalize the goal model, and how, in view of a (partial)
automatic support to the developers’ analysis tasks. Another
line of development of the approach would be to supplement
each resource in the shared space with a standard access
protocol, to prevent conflicting interactions. Inspiration in this
direction may come from well established practices, like access
control schemes and concurrency control.
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