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Abstract — Power Line Communications (PLC) is a technology 

that uses power lines to carry communication data alongside 

electrical signals. This technology has a huge potential and low 

infrastructure cost due to the pre-existing and ubiquitous 

power grid. However, the electrical components in the grid and 

the highly dynamic properties of the grid make power lines a 

hostile medium for PLC, especially when the PLC signal path 

extends over multiple levels (current or voltage) of the grid. 

Subsequently, efficient transmission of the PLC signals from 

the transmitter end and effective demodulation at the receiver 

end are both challenging. In our research, we limit PLC 

transmission frequencies to the ultra-low spectrum and 

investigate supervised machine learning as a potential signal 

demodulation technique. Employing inter-level PLC 

architecture, we transmit and collect baseband-modulated 

data, then use various machine learning algorithms to recover 

the data. We also investigate various feature-based and 

featureless machine learning methods for PLC and conclude 

that feature-based methods provide better generalization for 

our dataset.  
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I. INTRODUCTION 

The following journal article is an extended version of a 
previous conference publication [1] and is partially derived 
from a thesis report [2]. 

Power Line Communications (PLC) is a technology that 
enables the transmission of communication signals over 
power lines. This technology has been in use since the early 
1920s for various telemetry and utility applications [3][4]. 
One major advantage of this technology over other 
communication media, such as phone lines, optical fibers, 
etc., is the ubiquity of available infrastructure, i.e., the wires 
of the power grid itself. However, the grid is also a primary 
hindrance to the widespread deployment of PLC because of 
its heterogeneous nature, and dynamic load and noise 
characteristics [5]. These factors pose difficult challenges in 
the efficient propagation of PLC signals. 

The heterogeneity of the grid comes in the form of 
varying voltage and current levels, different impedance 
profiles and circuit architectures, and various grid devices 
such as power transformers. Transformers cause a 
particularly difficult problem in signal propagation, 
especially for higher-frequency PLC signals [6]. This 
problem can be circumvented by excluding these devices 

altogether and bounding the PLC communication path within 
a single “level” of the power grid. In such an “intra-level” 
PLC, the system voltage, circuit architecture, and other 
properties of the power signal are consistent throughout the 
path of the communication signal, effectively simplifying the 
problem and allowing for the use of conventional 
communications techniques. As a result, intra-level PLC has 
developed into many applications such as powerline Local 
Area Network (LAN) [7] and baby monitors [8]. 
Unfortunately, this solution does not address the problem of 
signal propagation through the different levels of the power 
grid i.e., “inter-level” PLC. 

One existing solution to this propagation problem in 
inter-level PLC systems is the use of additional equipment 
like signal repeaters to bypass power transformer 
interconnection points. These repeaters filter and catch the 
communication signal in one level and pass it to the next 
level so that the integrity of the signal is preserved [9]. 
Broadband over Power Line (BPL) technology, which is a 
duplex and high data-rate application of the inter-level PLC, 
is reliant on such devices [9].  However, the cost and 
complexity associated with developing, deploying, and 
maintaining these devices have effectively obviated the use 
of BPL in modern grid communications [10][11]. Another 
approach, which does not require inter-level bypass devices, 
is the transmission of Ultra-Low-Frequency (ULF) signals 
directly over the power line infrastructure. ULF signals do 
not attenuate as much compared to higher frequency signals, 
even after passing through distribution (power) transformers, 
which have a fairly limited passband. Thus, ULF signals, 
typically in the range of 150 Hz-1350 Hz [12], can be 
injected into the power lines to effect a low-bandwidth form 
of PLC. In fact, this approach is the main principle behind a 
venerable, simplex, low data-rate PLC application called 
“Audio Frequency Ripple Control” (AFRC) that has been 
used in many locales worldwide for load peak shaving, street 
lighting, etc. [12].  

A major disadvantage of using ULF bands for 
communication is the low data rate. However, low-rate 
communications techniques have been shown to have 
substantial value in command & control, distributed system 
management, and other applications, which are distinct from 
the “bearer-plane” of conventional communications systems 
[13]–[15]. There is an urgent need for this kind of 
technology in the power sector. The existing power grids are 
failing because of the exponential increase in power demand 
over the last few decades and the resulting issues [16]–[18]. 
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This problem is exacerbated by the disconnect between the 
power producers and power consumers, which leads to 
serious supply chain problems. ULF-PLC can help in 
bridging this disconnect by providing real-time, ubiquitous, 
low-rate communications facilities, thereby becoming a 
valuable element in the communication infrastructure of a 
continuously sensing and self-monitoring power grid called 
“the smart grid.” 

ULF applications like AFRC employ a simplex 
“downstream” format, i.e., the communication signal 
propagates from a High Voltage (HV) or Medium Voltage 
(MV) tier to a Low Voltage (LV) tier. A different approach 
to communication is an “upstream” method, where the 
signal originates in the LV tier and is collected at the 
MV/HV tier, typically a local substation [19][20]. For 
upstream inter-level PLC, assuming the communication 
signal effectively transits between the tiers of the 
distribution grid, then various Digital Signal Processing 
(DSP) techniques can be utilized to capture, demodulate, 
and decode the signal at the substation. One complexity of 
this approach is that DSP-based techniques would have to 
be unique to that the deployed source-to-destination power 
grid architecture. In many cases, this complexity would be 
exaggerated by a requirement to be tailored to individual 
signals or modulation techniques. This complexity is present 
because every element in the power grid introduces its own 
time-varying interference, which is coherent with the 
fundamental of the power signal. This issue is well-known 
in terms of distribution grid architecture, but not well-
understood in terms of signal processing [21][22]. Thus, an 
approach driven by DSP alone is not scalable. To make 
ULF-PLC technology more universally applicable, Machine 
Learning/Neural Network (ML/NN) algorithms can be 
employed individually or in concert with conventional DSP-
driven approaches [23]. The use of ML/NN algorithms may 
be particularly beneficial in this environment because they 
can estimate and dynamically adjust various parameters to 
correctly reconstruct the transmitted information.   

Depending on the application, PLC can benefit from the 
full spectrum of ML types and techniques (see [23]). In this 
research into the use of ML/NN in ULF-PLC, supervised 
learning techniques are examined for two reasons: (1) the 
availability of labels for the training dataset, which provides 
an accuracy metric, and (2) the ease of implementation, 
which provides a path to deployment in a practical setting. 
The classification task of the ML algorithms was to classify 
a simple On-Off Keyed (OOK), upstream, inter-level ULF-
PLC signal into its on and off states, thereby determining 
the sequence of information bits transmitted via the power 
line channel. Although we evaluated some unsupervised or 
reinforcement learning approaches, the clear benefit of 
supervised learning in this application provided substantial 
advantages. As part of the investigation, we examine PLC 
signal characteristics in the ULF band, explore various ways 
of processing PLC data to be used in ML/NN, and compare 
the performance of some common ML/NN algorithms in 
this domain.  

The rest of this paper is organized as follows. Section II 
provides a brief survey and evaluation of the relevant 

literature. Section III describes the methodology used in the 
collection and processing of our inter-level, upstream ULF-
PLC data. Section IV presents the ML/NN framework used 
in our experimental study. The results of these experiments, 
alongside their corresponding discussions, are presented in 
Section V. Finally, the overarching conclusions of the 
research are presented in Section VI. 

II. LITERATURE SURVEY 

This section surveys the existing body of research related 
to PLC. Although the archival literature covers a wide 
variety of research in various facets of PLC, we focus on low 
and ultra-low frequency, narrow-band PLC to survey 
existing implementation methods. 

Korki et al. [24] developed a ULF-PLC model for an LV 
distribution power grid network involving mathematical 
analysis of the grid components. To evaluate the proposed 
model, Bit Error Ratio (BER) versus Signal-to-Noise Ratio 
(SNR) was investigated through numerical simulation. The 
simulation results showed that the model had acceptable 
BER (compared to other communication standards) for 
communication between neighboring nodes when SNR was 
above 15dB. As a result, the authors concluded that their 
analytical approach can satisfactorily model ULF-PLC in the 
LV region. This research applies a ‘bottom-up’ approach to 
PLC since it builds a simulation model incorporating the 
individual parts of the network. Its counterpart, a ‘top-down’ 
approach, uses measurement and data to estimate the nature 
of the PLC network. The bottom-up approach is harder to 
generalize and scale to arbitrary PLC networks because of 
the highly variable and dynamic nature of the PLC medium. 
In fact, the model proposed in [24] leverages a highly 
specific scope (e.g., PLC in a one-phase LV tier between 
one-hop nodes), which produces very limited results. 
Therefore, in the present work, a top-down method is used in 
hopes of producing a generalizable ULF-PLC solution 
applicable to a wider, less-specific grid domain. 

Varadarajan et al. [25] investigated the channel and noise 
characteristics of the physical layer of PLC systems in the 
distribution grid. The characterization of channel and noise 
in the Federal Communications Commission (FCC) 
regulated PLC frequency band (9kHz to 150kHz) was done 
with empirical measurements from field tests using a 
modem, utility meters, and measurement equipment such as 
spectrum analyzer and oscilloscope. The researchers 
observed that the presence of distribution transformers 
causes severe frequency-selective attenuation of the PLC 
signals, which corroborates our observations. Hence, they 
concluded that focusing on the less attenuated (lower 
frequency) sub-bands can increase the quality and the 
coverage of the transmitted PLC signals. In contrast to [24], 
this study uses a top-down, empirical approach to 
characterize the PLC channel, which is simpler than an 
analytical bottom-up approach. However, the results 
discussed in [25] are not “constructive” and so do not 
provide a solution to overcome the challenges of PLC, 
instead providing observations and suggestions for 
implementation. In contrast, the present research considers 
applicable results from [25] (e.g., the effect of transformers 
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in ULF-PLC) while also exploring several approaches, 
which can comprise a solution framework to leverage and 
categorize generally applicable ML-based approaches.  

Prasad et al. [26] evaluated the use of Power Line 
Modems (PLM) for detecting faults in the power grid. To do 
so, the authors collected raw data containing diagnostic 
parameters from the PLM, then extracted features from the 
raw data and used ML algorithms to identify and predict 
faults. This approach was able to detect faults with high 
accuracy and predict future faults with a lower, but 
satisfactory, accuracy. Similar to [24], this study uses 
mathematical analysis to model PLC architecture. 
Additionally, similar to [25], this study uses a top-down 
approach to detect faults through ML. In contrast to [24] and 
[25] however, [26] also presents a direct application of PLC 
in terms of useful grid diagnostics. However, [26] is limited 
in scope and future utility because the associated 
communication technology (i.e., BPL) has become obsolete 
[10][11]. Therefore, the present research attempts to evaluate 
technologies that may be leveraged in a more general 
implementation of ULF-PLC.  

Nassar et al. [27] reviewed the signal processing 
techniques used to model 3-500 kHz range narrowband PLC 
(NB-PLC) and presented the local utility applications of NB-
PLC using multi-path modeling and transmission-line 
modeling. In [27], PLC noise is characterized in terms of its 
periodicity and uncoordinated interference, and a framework 
for implementing Orthogonal Frequency-Division 
Multiplexing (OFDM) in NB-PLC is provided. The authors 
conclude that channel and noise modeling can be used to 
make robust PLC for two-way communication between the 
customers and the local utility in the higher frequency bands 
(e.g., not ULF-PLC). This study uses the channel and noise 
modeling approach similar to [24] while focusing on NB-
PLC above 3kHz for utility applications. Although the 
approach and outcomes of [27] are comprehensive, no novel 
techniques or experimentation were introduced. Further, the 
applicability of spectrum above 3kHz is suspect in the 
distribution grid due to the large, series inductance presented 
by power transformers. In contrast, the present work focuses 
on ULF-PLC and attempts to leverage findings from the 
various approaches described in the literature.    

In summary, two main methods of PLC implementation 
are prevalent: a ‘bottom-up’ approach, which leverages 
mathematical modeling and simulation and a ‘top-down’ 
approach, which leverages empirical measurement to 
develop useful models and evaluate technology performance. 
The bottom-up approach is network and application specific, 
subject to component modeling errors or omissions, cannot 
be easily scaled, and requires complex simulation. The top-
down approach is more easily scalable, simpler to 
implement, and doesn’t suffer from component modeling 
errors. Therefore, the objective of the present work is to 
employ a top-down approach, including a combination of 
DSP techniques and ML/NN to aid in discriminating inter-
level, ULF-PLC communication signals in the distribution 
grid. 

III. DATA 

In this section, the methodology used to collect the raw 
data and the processes used to convert or transform the raw 
data to ML-ready datasets are described. 

A. Transmission and Collection 

The data transmission and collection architecture of the 
inter-level, upstream ULF-PLC is shown in Figure 1. As 
shown in this figure, baseband modulated ULF-PLC signals 
were transmitted from a research lab (LV tier) through the 
distribution grid and collected at a remote substation (MV 
tier). To create the experimental datasets, an Ametek 
CS3000 programmable current source [28] was used to 
generate On-Off Keyed (OOK) current signals with 
frequencies varying from 690 Hz to 2010 Hz and various 
amplitudes. These signals were injected into the split-phase, 
LV (120VRMS) power line via a specially constructed 
narrowband filter. This filter is a transformer-based bandpass 
filter or “resonant tank,” which blocks the power signal from 
entering the output port of the current source while allowing 
the signal generated by the current source to pass upstream 
into the power line. The signal injected into the power line 
first enters a split-phase distribution link typical of 
conventional “wall outlets,” then into the local distribution 
grid via three-phase distribution transformers, which “step 
up” the voltage for longer distance transmission. At each 
“level change” (tier), the transformer jointly adjusts the 
voltage (upward) and current (downward), according to the 
structure of the transformer’s coils (turns ratio). Some 
signature of the transmitted ULF-PLC signal is introduced 
into all three phases of the distribution and transmission links 
during this voltage transition as a result of magnetic cross-
coupling within the transformer core [6]. In the substation, 
current transformers (CT) affixed to MV (13kVRMS) 
feeders sense the current disturbances introduced by the 
injected ULF-PLC signal. This current signal was then 
discretized using a conventional Data Acquisition device 
(DAQ) [29]. 

B. Raw Time-Series Data 

The raw data captured using substation-resident, remote 
DAQ comprised of a set of three-phase time-series data 
sequences containing samples of the 60Hz power signal and 
its harmonics, the injected communication signal (ranging 
from 690Hz-2010Hz) and its harmonics, and time-variant 
noise at all frequencies. The acquired signals were sampled 
at 8kHz using 16-bits of resolution per sample (see more 
information about the capture parameters in Appendix B). 
The fundamental of the power signal dominates the raw data 
because of its extremely high amplitude relative to the 
injected signal, as shown in Figure 2. The three-phase raw 
time-series data plotted in this figure contain the PLC signal 
injected at 1595Hz, but this is not apparent from this plot 
alone. The vertical scale of the plot is in millivolts (mV) due 
to the nature of the output signals of the sensing current 
transformer where the full-scale of 1250mV corresponds to 
several hundred amperes, whereas the injected signal 
amplitude was lower than 1A. 
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Figure 1. Data transmission and capture architecture for upstream, inter-

level ULF-PLC. 

 

Figure 2. Time-domain plot of three-phase data received at the substation 
with PLC frequency at 1595Hz.  The vertical scale of the plot is in 

millivolts (mV) due to the nature of the output signals of the sensing 

current transformer (1250mV corresponds to several hundred amperes). 

C. Processing 

Since the raw-time series data were predictably not very 
useful in our case, the next logical step was to transform the 
signal into other domains and/or extract useful information 
(or features) from it. 

1) Transformation 
Transformation, for our purposes, is defined as the 

conversion of time-series data to frequency domain or time-
frequency domain data. There is very little loss of 
information in these kinds of transformations as long as care 
is maintained in the representation and storage of the 
intermediate or final values. The frequency and time-
frequency transformations of our original time-series data 
are described in subsequent sections. 

a) Frequency Domain 

The time-domain raw data were transformed to the 
frequency domain using the Fast Fourier transform (FFT) 
[30]–[32]. Figure 3 shows a representative example of the 
frequency domain plot of a single-phase sequence 
containing a ULF-PLC signal transmitted at 1595Hz. As 
seen in this figure, the power signal and its harmonics 
dominate the spectral plot. Nonetheless, as indicated by the 
red arrow in Figure 3, a smaller but prominent peak is 
present at 1595Hz, which shows the presence of our 
transmitted PLC signal. However, the spectrum plot cannot 
show the time-varying nature of the signal, and thus does 
not provide us information about the OOK encoded data that 
were transmitted. Hence, a single frequency-domain 
transformation of the acquired signal may be effective in 

detecting the presence or absence of the PLC signal but 
cannot be used to decode the time-varying information 
contained within it. Further, errors in framing 
synchronization in composing the frequency-domain 
transformation can produce unwanted or misleading side 
effects. 

b) Time-frequency Domain 

The deficiencies of frequency domain transformation, 
i.e., the inability to decode OOK information in our case, 
can be mitigated by appropriate time-frequency analysis 
such as a spectrogram. The transformation methods used to 
produce a spectrogram are very similar to the frequency-
domain conversion, except the FFT is applied to frames or 
sub-sequences within the sequence instead of the entire 
time-series sequence (e.g., Short-Time Fourier Transform, 
or STFT). This approach provides some indicative 
information regarding the presence or absence of the PLC 
signal in those time frames. Therefore, concatenating the 
spectral analysis of appropriately overlapped and windowed 
time-domain frames across the length of the data can be 
used to adequately estimate the spectral configuration of the 
data. 

In practice, there are a few measures that can be taken 
during this time-frequency transformation to enhance the 
information contained in the raw data. Windowing the time-
domain frames with window functions can minimize the 
spectral leakage effect [33]–[35]. Similarly, overlapping the 
time-domain frames prevents information loss caused by the 
tapered ends of the windowing functions. Parameters related 
to these techniques, such as window type, frame length, 
overlap length, as well as other parameters such as 
frequency resolution affect the quality of the spectrograms, 
and thus, their values need to be carefully chosen (see 
Appendix C for these values for present work). Since 
spectrograms can be produced using Fourier (or similar) 
transforms, the resulting datasets may have complex-valued 
representations, with both real and imaginary components. 
Equation 1 [36] shows the mathematical representation of a 
complex number ‘z,’ where ‘a’ is the real component, ‘b’ is 
the imaginary component, and ‘i’ is the indeterminate 
satisfying i2 = -1.   

 
 z = a + i*b (1) 

 

 

Figure 3. Frequency domain plot of the raw data showing the presence of 

the ULF-PLC signal at 1595Hz (pointed by the red arrow). The highest 
peak in this plot shows the dominant power signal at around 60Hz. The odd 

harmonics of this power signal can be seen as the secondary peaks. 
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In ML/NN implementation, these complex-valued data 
pose a critical challenge since the traditional ML/NN 
algorithms and architecture are typically not structured to 
operate on complex-valued datasets. One way to overcome 
this challenge is to devise new ML/NN frameworks, which 
accommodate complex-valued inputs and have complex-
valued weights or coefficients. This is an active area of 
research [37][38] but out of scope for the present work. An 
easier, more accessible approach is to use an appropriate, 
real-valued concatenated or pre-processed representation of 
the complex-valued data as input to conventional ML/NN 
structures.  In this research, we utilize two different real-
valued formats for the complex-valued transform data: the 
magnitude/phase or polar format, and the rectangular or 
cartesian format. 

i) Magnitude/Phase (Polar) Format 

The most common method of converting complex-valued 
data to real-valued data is by combining the rectangular or 
cartesian real and imaginary components via a polar 
transformation.  In polar form, the magnitude of a complex 
number is represented by the square root of the sum of 
squares of the real and imaginary components, and the phase 
is represented by the arctangent of the ratio of imaginary to 
real components [36].  

For transformed time-series data, taking the magnitude of 
each complex-valued element of a 2D complex-valued 
spectrogram produces a magnitude spectrogram. This 
magnitude spectrogram has the same dimensions as its 
parent complex-valued spectrogram but does not include 
phase information. Figure 4(a) shows a magnitude 
spectrogram of one of our captured ULF-PLC datasets where 
the PLC frequency is at 1595Hz. This figure shows a dotted 
band at around 1595Hz, which corresponds to the 
transmitted OOK PLC signals. The zoomed-in version of this 
band is shown in the inset black box of Figure 4(a), which 
clearly shows the ‘On’ and ‘Off’ states of the ULF-PLC 
signal.  The solid bands at various frequencies correspond to 
the power signal and its odd harmonics (shown by the red 
arrows in Figure 4(a)), which are spaced 120Hz apart.  

The PLC signal also produces its own harmonics, though 
not as strong as power signal harmonics. Interestingly, the 
“harmonics” of the ULF-PLC signal are harmonically offset 
from the ULF-PLC signal based on the fundamental 
frequency of the power signal, not the ULF-PLC signal. As a 
result, they are “echoes” or “images” of the ULF-PLC signal 
with the harmonic structure described by the power signal’s 
frequency. If the ULF-PLC signal is injected in the 
frequency bands between the harmonics of the power signal, 
then a magnitude spectrogram can provide a good estimation 
of the transmitted information, especially OOK or 
amplitude-shifted ULF-PLC signal as shown in Figure 4(a). 
Therefore, the present work uses magnitude spectrograms as 
one of the ML/NN datasets to evaluate the accuracy of 
decoding the PLC signals. 

As seen from 4(b), the phase spectrogram is very noisy, 
and the presence of the ULF-PLC signal is not visually 
apparent. Therefore, phase spectrograms were not used in the 
present work. 

 
(a) Magnitude Spectrogram 

 
(b) Phase Spectrogram 

Figure 4. (a) Magnitude spectrogram of the captured data showing the 

transmitted OOK ULF-PLC signal with the dotted horizontal band at 
around 1595Hz. The solid bands at lower frequencies correspond to the 

power signal and its harmonics. (b) Phase spectrogram of the same data. 

ii) Rectangular (Cartesian) Format 

In addition to magnitude and phase spectrograms, other 
types of spectrograms (e.g., real and imaginary) can be 
generated as well by manipulating the components of the 
complex data. Plots in Figure 5 show the real spectrogram 
and imaginary spectrogram of the same dataset used for 
magnitude and phase spectrograms in Figure 4. 

 

 
(a) Real spectrogram 

 
(b) Imaginary spectrogram 

Figure 5. Real spectrogram (a) and imaginary spectrogram (b) of captured 

data with ULF-PLC signal at 1595 Hz. 
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The real and imaginary spectrograms show a trace of the 
PLC signal at 1595Hz; however, this band is not as distinct 
as the magnitude spectrogram plot in Figure 4. This is 
expected since the real and imaginary spectrograms 
completely ignore the other component, resulting in a huge 
loss of information. However, a combination of these two 
2D spectrograms in a 3D space could potentially be better 
than a magnitude spectrogram since this would be a direct 
representation of complex-valued data as shown in Equation 
1. This 3D spectrogram is hereby referred to as ‘Rectangular 
spectrogram’ in the present work because of its 
correspondence to the rectangular form of the complex-
valued transform results.  

Figure 6 shows in detail how the rectangular 
spectrogram (and other spectrograms) may be generated 
from the raw time-series data (as suggested in [39]). First, 
the 1D raw-time series data are divided into multiple 
overlapping frames, which are then windowed. Next, these 
time-series frames are transformed into frequency space 
using FFT. The 1D complex-valued FFT products for all 
frames are then combined to get a 2D complex spectrogram. 
From this complex spectrogram, real, imaginary, magnitude, 
and phase (not shown) spectrograms are produced. Finally, 
the real and imaginary spectrograms are stacked to form a 
3D rectangular spectrogram.  

 

In previous work [40], the rectangular spectrogram has 
been shown to produce better accuracy results than the 
magnitude spectrogram, especially when the signal of 
interest is dominated by out-of-band interferers such as the 
power signal fundamental, which is present in PLC 
transmissions. Therefore, we used 3D rectangular 
spectrogram datasets for ML/NN analysis in the present 
work as well. 

2) Feature Extraction 
Besides the spectrograms, other signal features including 

amplitude envelope, zero-crossing rate, spectral centroid, etc. 
can also be used to extract target information from the 
received ULF-PLC signals. For the present work, three 
signal features are used: (1) amplitude envelope, (2) root-
mean-square energy, and (3) spectral centroid. These 
features are briefly described in subsequent sections. 

a) Amplitude Envelope 

The amplitude envelope of a signal describes the 
variation in the amplitude of the signal over time [41]. It 
effectively traces the outline of the signal in the time 
domain and is loosely representative of the instantaneous 
energy in the signal [42]. In our case, the complete 
amplitude envelope is not useful since the 60Hz power 
signal and its harmonics dominate all other superimposed 
signals, as described previously. As is typical in 
communications systems, the narrowband amplitude 
envelope, centered on specific sub-bands, can be more 

 

Figure 6. Process of generating rectangular spectrogram from raw time-series data. As shown here, the 1D raw-time series data are first divided into 

multiple overlapping frames. Then, each of these frames are windowed by a window function. Next, these time-series frames are transformed into 
frequency space using Fast Fourier Transform (FFT). The 1D complex valued FFT products for all frames are then combined to get a 2D complex 

spectrogram. From this complex spectrogram, real (denoted by axy), imaginary (bxy) and magnitude spectrogram (|z|xy) are produced. Finally, the real 

and imaginary spectrograms are stacked to form a 3D rectangular spectrogram. 
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useful. To approximate this approach and create a useful 
training/testing dataset, we filtered the raw frames of the 
powerline signal with non-overlapping bandpass filters of 
100Hz bandwidth (1Hz-100Hz, 101Hz-200Hz,…,2901-
3000Hz) to create thirty sub-band representations of the 
signal. Clearly, the amplitude envelope of certain sub-bands 
contains the injected PLC signal, so the amplitude envelope 
can be useful. 

b) Root-Mean-Square Energy 

An energy of a digital signal is defined as the sum of the 
square of its magnitude [43]. Root-Mean-Square Energy 
(RMSE) is the square root of the mean energy of a signal, as 
in Equation 2 [44] where xi is the ith sample of signal x and 
N is the total number of samples. This is particularly useful 
for signals that are “balanced” or have zero mean in the time 
domain.  

 

                                         (2) 
 
For our raw (full-band) PLC data, the energy (or 

instantaneous energy in a frame) would again be dominated 
by the power signal. Hence, we frequency separated the 
frames as described in Section III.C.2)a) and calculated 
RMSE for each of the thirty narrowband signals of each 
frame. Similar to the amplitude envelope, we were 
expecting variations in the RMSE in the frequency range 
containing ULF-PLC signals (for example, 1501-1600Hz 
for the 1595Hz PLC signal) to provide useful information 
about the PLC signal. 

c) Spectral Centroid 

The spectral centroid is the measure of the center of 
mass of the signal’s spectrum [45]. Unlike time-domain 
features such as amplitude envelope and RMSE, the spectral 
centroid is a frequency-domain feature. The spectrum of our 
full-band signal contains a primary peak near 60Hz and 
large secondary harmonic peaks at odd multiples of 60Hz 
because of the dominant power signal. As shown in Figure 
3, whenever the OOK PLC signal is active (‘On’), a peak is 

present at that frequency. The presence or absence of the 
PLC signal shifts the center of mass of the spectral 
representation, thereby providing a classification measure of 
the state of the transmitted PLC signal. 

D. Dataset 

The raw data, obtained from DAQ at the substation, 
were composed of twenty-three individual files in the WAV 
format. Each of these files contained three-phase, time-
domain PLC data (such as shown graphically in Figure 2) 
with a different baseband PLC transmission frequency for 
each file ranging from 690Hz to 2010Hz (Appendix B). The 
remaining processing steps in the present work consider 
only data from ‘Phase A.’ However, in subsequent research, 
the comparison between phases after injection of a 
communication signal on a single phase can also produce 
some useful insight [16].  

The bit duration or baud rate of the injected OOK signal, 
i.e., the original length of the individual on or off state 
representing a ‘0’ or ‘1’ bit, in the experimental dataset was 
about 2 seconds (16,000 samples) when interpreted via 
conventional “Return-to-Zero (RZ)” line encoding [46].  To 
enhance the dataset for ML/NN training, we interpreted the 
transmissions as “Non-Return-to-Zero (NRZ)” with 1,000x 
repeats per bit, thus providing a substantially larger training 
set.  

Features of the oversampled dataset such as amplitude 
envelope, RMS energy, and spectral centroid were extracted 
and compiled into ‘Dataset 1’ (see Figure 7), a 2D dataset 
with 61 feature columns - 30 each for amplitude envelope 
and RMS energy, and 1 for spectral centroid - and 18,400 
rows (800 per file*23 files). Similarly, 2D magnitude 
spectrogram and 3D rectangular spectrograms (Appendix C) 
were constructed for the signals and combined into ‘Dataset 
2’ and ‘Dataset 3’ (see Figure 7). Even though, as seen in 
Figure 2, the unprocessed, full-band time-series data does 
not seem to provide any indication of the transmitted PLC 
signal due to the strong out-of-band interference of the 
power signal, we compiled this raw data into ‘Dataset 4’ to 
be certain that the ML/NN evaluation came to the same 
conclusion.  

 

Figure 7. Flow chart showing the summary of steps taken to convert the raw data to ML/NN ready datasets. 
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The flow chart in Figure 7 shows the summary of these 
steps (see Appendix E for a more detailed flow chart). In 
this figure, the orange highlights, i.e., ‘Dataset 1,’ comprises 
feature-based data while the light green highlights, i.e., 
‘Dataset 2,’ ‘Dataset 3’ and ‘Dataset 4,’ comprise 
featureless data. The summary of these datasets is shown in 
Table I. The difference between our use of feature-based 
versus featureless datasets is described in section IV. 

TABLE I.  DATASETS AND THEIR BRIEF DESCRIPTION 

Dataset 

Name 

Type Description 

Dataset 1 Feature-

based 

Uses amplitude envelope, RMS energy, and 

spectral centroid 

Dataset 2 Featureless 2D magnitude spectrogram 

Dataset 3 Featureless 3D rectangular spectrogram 

Dataset 4 Featureless 1D time-series data 

IV. MACHINE LEARNING AND NEURAL NETWORK SETUP 

ML/NN can be categorized based on various criteria, 
such as forms of learning (supervised, unsupervised, 
reinforcement), types of tasks (classification or prediction), 
learning techniques (batch or online), etc. [47][48]. Although 
not a traditional way of classifying ML/NN, a distinction 
based on data processing requirements can be important 
because of its implication in realistic applications. Under this 
criterion, ML/NN can be broadly divided into two 
categories: feature-based learning and featureless learning. In 
the current work, we implement both feature-based and 
featureless ML/NN on our PLC data, comparing and 
contrasting the performance of these two methods based on 
various metrics. In this section, the two methods are 
discussed along with a brief description of their experimental 
setup, their expected performance, and their relation to our 
datasets. 

A. Feature-based ML/NN 

In feature-based learning, useful features are extracted 
from the raw data during pre-processing. These features are 
then compiled into a dataset before being fed into the 
ML/NN algorithms. The advantage of this approach is that 
large datasets with lots of noise and irrelevant features can 
be transformed and concentrated into smaller datasets, 
reducing computing time and complexity. However, the ML 
performance largely depends on the quality and consistency 
of the extracted features. The study of the data and the 
knowledge of the domain is vitally important in this type of 
ML, and thus, substantial effort in ML applications is spent 
on these data study and feature planning stages. 

For the current work, ‘Dataset 1’ was used for feature-
based ML/NN, as indicated in Figure 7 and Table 1, with a 
70:30 training:testing configuration. To form the models 
with various supervised algorithms, Python Sci-kit learn 
[49] was used for Logistic Regression (LR) [50], Support 
Vector Machines (SVM) [51], and Decision Tree (TREE) 
[52]. The hyperparameters for these algorithms were 
optimized using the grid search [53] method. Accuracy, 
precision [54], recall [55], and f1 scores [56] were computed 
to evaluate and compare these various models’ training and 

testing performance. Learning curves [57] were plotted and 
evaluated to ensure the models were not overfitting or 
underfitting. Confusion matrices [58] were also plotted to 
visualize the accurate label versus the predicted label.  

In general, LR does well on linear classification. Our 
OOK PLC signals are linearly separable. However, the 
background power line channel, with the power signal and 
its coherent harmonics, is highly non-linear and introduces 
coherent distortion. Hence, if the featureless or unprocessed 
datasets were used on LR, we expected this algorithm to 
struggle. The feature extraction process we have utilized 
filters out these background non-linearities to some extent. 
Therefore, LR should still be able to do reasonably well 
with feature dataset. SVM, on the other hand, has both 
linear and non-linear kernels and TREE is a non-linear 
classifier. Therefore, we expected both of these algorithms 
to perform well using our feature-based dataset.  

Besides these basic “one neuron” ML models, a multi-
neuron, multilayer Neural Network (NN) or Artificial 
Neural Network (ANN) model was also tested using 
Python’s Tensor Flow [59] and Keras [60]. The various 
hyperparameters of these NN models were optimized by 
manual trial and error (see Appendix D). Accuracy scores, 
loss and validation curves, and confusion matrices were 
generated to evaluate this model’s performance, which was 
compared with the other ML models. Since ANN is also a 
non-linear classifier, we expected this method to provide 
high classification accuracy. For a low dimensional, low 
complexity feature dataset such as our PLC data, ANN may 
be overly complex and could potentially lead to overfitting. 
However, ANNs are more versatile than LR, SVM, and 
TREE because of their multi-neuronal, multi-layer structure, 
and thus, could also be used in ULF-PLC data, which has 
more complex signal characteristics. 

B. Featureless ML/NN 

In contrast with feature-based learning, featureless 
learning does not require explicit feature extraction during 
data pre-processing. Although the ML or NN algorithms 
still require features, these features are extracted from the 
raw data by the algorithms themselves thereby removing the 
burden from the operator. This translates to a more 
generalizable, repeatable, and uniform ML analysis. This 
type of ML is more scalable since human intervention is less 
important when scaling to datasets of different properties. 
Unfortunately, featureless learning also requires more 
computational power, and the ML is more prone to noise. 

ANN was used for our featureless datasets because of its 
simple architecture, ease of implementation, scalability, and 
most importantly, its ability to process multi-dimensional 
datasets. The multi-neuron nodes and fully connected layers 
of ANN can process complex information, such as the 2D 
and 3D spectrogram datasets, where the traditional ML 
algorithms fail. Therefore, they are an ideal candidate to 
evaluate our featureless ULF-PLC datasets.  

The hyperparameters of the ANN including the number 
of hidden layers and the number of neurons in each layer 
were kept the same as for feature-based ANN (Appendix 
D). Accuracy scores, loss and validation curves, and 
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confusion matrix were generated for the optimized models 
for each dataset to evaluate the performance of the models 
and compare them across datasets. 

Within our featureless datasets, we expected the time-
series dataset to fail for the reasons presented in Section 
III.B., and for the magnitude and rectangular spectrogram 
datasets to produce better outcomes due to the tradeoff 
between the quality and the quantity of information they 
contain. For example, the magnitude spectrogram captures 
the On/Off amplitude information of OOK signals more 
clearly and compactly. However, as described in Section 
III.C.1)b)ii), the rectangular spectrogram contains more 
information about the transmitted PLC signal. Therefore, the 
accuracy and other performance measures of these two 
datasets in a NN model depend on how well the NN fits the 
respective data. With enough optimization, we expected 
both these datasets to perform similarly. 

V. RESULTS AND DISCUSSIONS 

The results of our research are divided into three main 
sections based on the type of dataset used in ML/NN. 
Section V.A. covers the results generated from feature-
based dataset, Section V.B. covers the results from the use 
of featureless dataset, and Section V.C. compares the 
feature-based and featureless datasets.  

The experimentation using both feature-based and 
featureless ML/NN is further divided into three cases, as 
listed in Table 2, each representing a unique real-life 
scenario. These scenarios arise because of the nature of the 
power signals. The frequency of the fundamental power 
signal in the PLC channel is not constant but oscillates close 
to 60Hz. This power signal produces strong odd harmonics 
at 120Hz spacings, which also oscillate corresponding to the 
fundamental. These dominant signals, therefore, occupy a 
wide range of variable frequencies in the ULF-PLC 
spectrum. This problem is exacerbated by additional noise 
of the channel, which can present time-variant interference 
to the ULF-PLC signals. Therefore, locating clean 
frequency bands for transmitting a signal in the ULF 
spectrum can be challenging.  

Case 1, as listed in Table 2, simulates the scenario in 
which the frequency band to send the PLC signal is known 
and consistent. This would require a great deal of 
knowledge of the channel, so that the PLC frequency band 
does not overlap with the pre-existing harmonics (or the 
noise), which are also time-varying. Therefore, this is an 
unlikely scenario; however, if implemented correctly, is the 
easiest for the receiver to process. 

TABLE II.  THREE EXPERIMENTAL CASES SIMULATING THREE UNIQUE 

FREQUENCY SCENARIOS IN ULF-PLC 

Case Description 

Case 1 Baseband ULF-PLC signal frequency is always the 
same, and thus known  

Case 2 Baseband ULF-PLC signal frequency changes within a 
set of known values 

Case 3 Baseband ULF-PLC signal frequency changes within a 
range  

 

Case 2 is similar to Case 1 in the sense that it simulates a 
scenario where the PLC frequency is known. However, in 
this case this frequency is not constant, but changes 
frequently to some known set of values (e.g., frequency 
hopping [61][62]). This case is built on the assumption that 
there is a technology present on the transmitter side that 
facilitates frequency hopping by continuously scanning the 
power line spectra and identifying an “open” channel from a 
set of allocated channels. This case is more realistic than 
Case 1 because it accounts for the variable nature of the 
channel and the ability to dynamically select open 
subsections of the low-frequency spectrum. However, this 
approach still relies on the assumption that the at least some 
of the frequency bands or sub-channels in the pre-defined 
set is always optimal for transmission. As a result, effective 
implementation of a frequency-hopped ULF-PLC system 
would depend in large part on dynamic spectral analysis of 
the channel. 

Finally, Case 3 simulates a scenario in which the PLC 
frequency band is unknown as well as dynamic. Like Case 
2, this case is built on the assumption that there is system 
that dynamically identifies an open channel. However, 
unlike Case 2, the open channel frequency does not need to 
be from a pre-determined set (but will be within the ULF 
range). This case also has interesting application in the 
observation or extraction of unknown events or the presence 
of anomalous signals in the ULF-PLC bands. 

For both types of datasets and all three cases, the 
performance of the models is evaluated primarily using the 
metric of training accuracy, which essentially reflects the 
system’s BER, an important metric in digital 
communication. BER is the ratio of error bits to the total 
number of transmitted bits. Thus, BER is the “unit 
complement” of accuracy, i.e., BER + accuracy =100%. 
Therefore, higher accuracy translates to lower BER, which 
in turn means that communication is more efficient. 

A. Feature-based Dataset 

As described in Section III.D. and illustrated in Figure 7, 
we constructed the feature-based dataset (‘Dataset 1’) by 
combining the amplitude envelope, RMS energy, and 
spectral centroid features. 

1) Case 1- Known and Static Frequency 
For Case 1, the PLC frequency is known. To process, we 

divided ‘Dataset 1’ into individual frequency subsets, then 
trained and tested ML/NN within each subset. The data in 
all these frequency subsets were standardized (separately), 
the hyperparameters of LR, SVM, and TREE algorithms 
were optimized, and then fitted with the corresponding 
models.  

The training to test ratio for each experiment was set to 
70:30. Since, each frequency subset was trained and tested 
separately, there were 560 training samples and 240 test 
samples for each Case 1 experiment. After fitting the 
models with these training data, the models were tested with 
test data. The process was repeated ten times (with 
randomized training test split for each iteration) to explore 
the variance of the performance of these models. Figure 8 
shows the accuracies (mean accuracy curves and the 95% 
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confidence interval from ten iterations) of the four models 
from these test data at various frequencies. The inset graph 
within Figure 8 shows the frequencies, from 930Hz to 
1650Hz, where the model test accuracies were consistently 
over 90%. 

As seen in Figure 8, the lower and higher end of the 
experimental spectrum both have low test accuracies across 
all models. This is due to the limits of the coupling filter as 
well as the bandpass filtering nature of the channel for the 
PLC signals. At lower range of frequencies (below 870Hz in 
the graph), the harmonics of the fundamental power signal 
is very strong, and thus, the PLC signal is severely distorted. 
As frequency increases, these harmonics die off, opening 
dynamic subchannels into which the PLC signals can be 
introduced. However, beyond a certain frequency (after 
1710Hz in the graph), the PLC signals are heavily 
attenuated by the transformers and other grid components, 
including the coupling filter, causing poor PLC output at the 
receiver. Therefore, there is a frequency window where the 
PLC signal transmission is optimal. Figure 8 shows that, in 
our case, this window is between 930Hz to 1650Hz. Within 
this window, the test accuracies are fairly high (mostly 
above 95%) and stable for all models, as shown by the inset 
graph in Figure 8.  

In summary, this Case 1 experimentation shows that 
with sufficient knowledge of the channel and with a set of 
known PLC frequency, upwards of 95% accuracies can be 
obtained using feature-based ML/NN. High accuracy of the 
models means low BER, which translates to high efficiency 
in communication. 

2) Case 2- Known but Dynamic Frequency 
For Case 2, we took ‘Dataset 1’ as a whole for training 

and testing, instead of separating it with respect to 
frequency as described for Case 1. Hence, ‘Dataset 1’ was 
randomly split into training and test set, and the ML/NN 
models were fitted with the training set and evaluated with 
the test set. The dataset is more complex in this case for 
ML/NN to generalize because the PLC frequency is not the 
same throughout, and thus, the weight for the feature 
column keeps changing during learning process. This results 
in slower convergence than Case 1, as shown in Figure 9. 

 

 

Figure 8. Graph showing test accuracy curves of Logistic Regression, 

SVM, Decision Tree and Neural Network models fitted with various ULF-
PLC signal frequency dataset (subsets of Dataset 1). The shadowed region 

of the curve represents the 95% confidence interval of the accuracies. The 

inset graph shows a zoomed-in version of the curves for frequencies from 

930Hz to 1650Hz. 

 
(a) Case 1 at frequency of 1290Hz 

 
(b) Case 2 with full ‘Dataset 1’ 

 
(c) Case 2 with trimmed ‘Dataset 1’ 

Figure 9. Graphs showing training and test (or validation) accuracy and 

loss curves of identical NN for (a) Case 1 with frequency of 1290Hz, (b) 

Case 2 with full dataset, and (c) Case 2 with trimmed dataset. The trimmed 

dataset for (c) is from 870Hz to 1710Hz. 

As seen in Figure 9(a), the accuracy and loss curves of 
both training and test sets converge within the first few 
epochs for Case 1. However, for Case 2, the convergence 
takes more epochs. Figure 9(b) is for the Case 2 dataset with 
full range of frequencies, i.e., the complete ‘Dataset 1,’ 
which shows that the loss and accuracy curves do not 
stabilize within  50 epochs. In addition, the accuracies are 
much lower at the end of the training than in Case 1 
(approximately 80% compared to around 95% for Case 1). 
This is because of the presence of 690Hz-810Hz and 
1770Hz-2010Hz frequency data within ‘Dataset 1,’ which 
contains distorted PLC signals as shown in Figure 8. The 
data corresponding to these frequencies dilute the dataset, 
thereby causing low accuracies in Case 2. Therefore, for a 
fairer comparison, we took out these frequency data from 
the dataset for further Case 2 analysis, resulting in a 
“trimmed” dataset for Case 2. Figure 9(c) shows the 
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accuracy and loss curves of this trimmed ‘Dataset 1.’ In 
addition to the increased accuracies, trimming the dataset 
resulted in enhanced loss and accuracy curves.  

After trimming ‘Dataset 1’ to include only the frequency 
data from 870Hz-1710Hz (i.e., the passband of our PLC 
channel), next we fitted the four algorithms with this 
updated dataset. The training and test accuracies, precision, 
recall and F1 scores of these models are listed in Table 3.  

As seen in Table 3, SVM had the highest scores in all 
performance metrics for this trimmed ‘Dataset 1’: Case 2. 
TREE and NN displayed similar performance, while LR 
outcomes were substantially worse with approximately 10% 
difference in every metric compared to SVM. Further, 
observing the recall values, the NN model is competitive 
with the SVM due to the recall capabilities to classify true 
labels very well and has a minimal number of samples that 
were "false negatives." 

To analyze the possible causes of this discrepancy 
between the various algorithms, we constructed a 2D plot 
with decision regions for each of these models. The two 
feature columns for these 2D plots were selected using 
backwards Sequential Feature Selection (SFS) [63] to give 
two most influential feature columns for each model. Figure 
10 shows these plots for LR, SVM and TREE models. The 
axis names in these plots are in the format ‘Feature 
abbreviation’ followed by ‘Frequency sub-band.’ RMSE 
indicates ‘RMS Energy’ feature while APEV indicates 
‘Amplitude Envelope.’ 

As seen in Figure 10, LR displays a linear and 
continuous boundary, while the decision boundary of SVM 
is continuous and curved, and the decision boundaries of 
TREE are straight but discontinuous. These decision 
boundaries separate the two OOK signal states (i.e., On and 
Off or 1 and 0); therefore, the more flexible these 
boundaries are, the better the accuracy of the models’ 
classification. The linearity of LR can sometimes prevent it 
from fitting some training data, whereas the SVM and 
TREE are more flexible, and thus, can have higher 
classification accuracy. However, SVM and TREE are more 
prone to overfitting for the same reason. In our current case, 
i.e., Case 2, there is no overfitting (or underfitting) on any of 
our models as shown by the small difference between 
training and testing accuracies in Table 3. 

TABLE III.  PERFORMANCE OF LR, SVM, TREE AND NN WITH 

TRIMMED ‘DATASET 1.’ THE VALUES SHOWN IN THE TABLE ARE THE MEAN 

+/- STANDARD DEVIATION FROM TEN ITERATIONS  

Algorithms Training 

accuracy 

Testing 

accuracy 

Precision Recall F1 

score 

LR  0.81790 

+/- 
0.00328 

0.81870 

+/- 
0.00398 

 0.84334 

+/- 
0.00522 

0.80534 

+/- 
0.00808 

0.82387 

+/- 
0.00429 

SVM 0.92355 

+/- 

0.00293 

0.90826 

+/- 

0.00388 

0.93420 

+/- 

0.00595 

 .88838 

+/- 

0.00473 

0.91070 

+/- 

0.00370 

TREE 0.90768 

+/- 

0.00478 

0.86604 

+/- 

0.00980 

0.91220 

+/- 

0.02532 

 .82626 

+/- 

0.02008 

0.86661 

+/- 

0.00889 

NN 0.90571 
+/- 

0.00313 

0.90078 
+/- 

0.00409 

0.91201 
+/- 

0.01740 

0.89916 
+/- 

0.02417 

0.90507 
+/- 

0.00517 

 
(a) LR 

 
(b) SVM 

 
(c) TREE 

Figure 10. Plots showing training and test data (standardized), plotted over 

two optimal feature columns, along with the decision boundary and shaded 
target regions of (a) LR (b) SVM and (c) TREE models. The axis names 

are in the format ‘Feature abbreviation’ followed by ‘Frequency sub-band.’ 

3) Case 3- Unknown and Dynamic Frequency  
In Case 3, the ML/NN is trained with a range of 

frequencies, and the test is done with some frequency within 
or close to this range, but not present in the training set. 
Therefore, the only prior information needed in this scenario 
for real-life implementation is the general frequency range 
containing the PLC signal and a training set, which 
incorporates this same range, or set of potential 
channels/subchannels. The expectation is that the ML/NN 
will train within this range and be able to generalize well 
enough to classify signals, which lie in frequencies or 
subchannels that were not specifically trained for 
recognition. To simulate this scenario, we separated ‘Dataset 
1’ into individual frequency subsets or subchannels, used all 
subchannels except one subset for training, and tested on the 
unused subchannel. Our objective with this case was to test 
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how well ML/NN models can generalize on data with 
untrained PLC frequency and to observe what effect the 
frequency has in the case of ambiguous subchannel isolation. 
As with Case 2, including the complete ‘Dataset 1’ for this 
case would dilute the dataset and cause low training 
accuracy. In practical use cases, the frequency bounds or 
range of subchannels can be specified. Therefore, for Case 3, 
we used trimmed ‘Dataset 1’ as in Case 2.  

Figure 11 shows the test accuracies of this experiment for 
the four algorithms (LR, SVM, DT, and NN). In the figure, 
frequencies shown on the X-axis indicate the subchannel that 
was not contained in the training set. As a result, the results 
shown in Figure 11 indicate the accuracy of the ML/NN 
approach for transmissions where that specific sub-band was 
used in testing but was not used in training. 

As seen in Figure 11, all of the algorithms had some 
success in generalizing to the test data with untrained PLC 
sub-bands. However, the performance is not consistent for 
any algorithms across the whole spectrum. The low 
accuracies at the extremes, i.e., 870Hz and 1710Hz can be 
explained by the fact that the models are trained using sub-
bands higher or lower from the testing sub-band, but not 
both higher and lower. Therefore, the model only has the 
upper or lower set of sub-bands to generalize the test set. 
This causes low accuracy. Extending this similarity or 
bounding measure argument, we expect the sub-bands near 
the middle of the range to have the highest accuracy, 
decreasing to either side. The curves in Figure 11 promise a 
similar trend; however, this general trend seems to be 
contradicted by two big dips around sub-bands centered at 
1050Hz and 1350Hz. Upon closer examination of the 
models at these two sub-bands, we discovered that the 
inconsistencies are due to the lack of robustness of the 
models themselves. The architecture and hyperparameters of 
each model were held constant for all sub-bands and all test 
scenarios, i.e., the models are not optimized for specific 
training set. This approach simulates the real-life 
implementation of this case, where the models are trained 
across a broad set of subchannels and cannot be optimized 
for the unknown subchannel. Therefore, our models were 
not optimized for certain test sets, and they failed at those 
frequencies. Despite this setback, the models showed high 
accuracy in the majority of tested sub-bands, and thus 
showed promising generalization behavior. Further 
optimization of these models or use of more complex 
models may be useful in rectifying the inconsistencies.  

 

 

Figure 11. Test accuracies for Logistic Regression, SVM, Decision Tree 
and Neural Network for Dataset 2: Case 3. The PLC frequency on the x-axis 

represents the test frequency. 

B. Featureless Dataset 

In addition to using a feature-based dataset in ML/NN, 
we also investigated the use of featureless datasets. We did 
so by constructing 1D time-series, 2D magnitude 
spectrogram and 3D rectangular spectrogram datasets, as 
discussed in Section III.D. NNs were used on each dataset 
because of their ability to accept multi-dimensional input 
data. The multi-neuronal architecture of NNs is also more 
complex than one-neuron structures of LR, SVM or TREE, 
which could aid in parsing through our noisy featureless 
datasets. The structure and hyperparameters of the NN for 
the time-series and magnitude spectrogram dataset were 
identical to the NN used for the feature-based dataset 
(Appendix D). For the rectangular spectrogram however, an 
additional convolution layer and a max pool layer were 
added (as part of manual optimization) before the fully 
connected NN layers. The complete architecture of this 
convolutional neural network (CNN) is shown in Figure 12.  

As seen in Figure 12, each sample of the rectangular 
spectrogram is 3x1024x2, where 2 is the number of 
channels (i.e., stacked real spectrogram and imaginary 
spectrograms). The first operation is convolution with 64 
3x3 filters producing 1x1022x64 feature maps that are fed 
into the max pool layer with pool size 1x3 and produces 
output of 1x340x64. This output is flattened to a 1D array of 
size of 21,760 samples and fed into the fully connected NN 
for training and testing. This NN is identical to the ones 
used in the feature-based dataset (Appendix D). Subsequent 
sections describe the comparative analysis of these three 
featureless datasets. 

1) Case 1- Known and Static Frequency 
In Case 1, the NN/CNN is trained and tested within a 

particular frequency subset or set of subchannels/sub-bands. 
The test accuracy results of the NN/CNN models are 
presented in Figure 13. 

 

Figure 12. CNN architecture showing the various layers of operation on 

our rectangular spectrogram dataset. 

 

Figure 13. Graph showing test accuracy curves (with 95% confidence 

interval) of NN models fitted with magnitude spectrogram (Dataset 2), 
rectangular spectrogram (Dataset 3) and time-series (Dataset 4) datasets 

containing ULF-PLC signals of various frequencies. 
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The time-series dataset exhibited poor performance, as 
expected due to the strong out of band interference (i.e., the 
power signal). Between the two spectrogram formats, the 
magnitude spectrogram models exhibited better overall 
performance, and particularly better accuracy than the 
rectangular spectrogram models, especially in the lower and 
the higher end of the spectrum. The magnitude spectrogram 
models also had a much narrower and more consistent 
confidence interval than the rectangular spectrogram. The 
confidence interval result is especially interesting since a 
larger confidence interval implies larger variance, and 
hence, the rectangular spectrogram dataset seems to have 
higher variance in its accuracy results. Higher variance 
suggests more unpredictability and less repeatability in the 
performance, which is undesirable. 

This discrepancy in performance between magnitude 
spectrogram and rectangular spectrogram formats can be 
explained by the type and quantity of information each 
dataset contains. The magnitude spectrogram, by definition, 
contains only the magnitude or energy information of the 
signal, which is directly related to the signal amplitude. So, 
for OOK signals, the magnitude spectrogram more clearly 
represents modulation transitions, thus simplifying the task 
for the NN. In contrast, the rectangular spectrogram holds 
more information about the signal, including phase data, 
which could be advantageous in some use cases such as 
phase-based modulation (e.g., Phase Shift Keying) or a 
combination of phase and amplitude modulation (e.g., 
Quadrature Amplitude Modulation). However, in the 
approaches discussed here, the larger size of the rectangular 
dataset causes data dilution resulting in lower performance 
compared to magnitude spectrogram models. 

2) Case 2- Known but Dynamic Frequency 
As in Case 2 of the feature-based ML/NN analysis 

{Section V.A.2)}, the NN/CNN is trained with the trimmed 
featureless datasets (without separating frequency subsets). 
The objective in this approach is to explore which 
featureless datasets perform the best when trained with 
samples containing PLC signals of varying frequencies. 
Table 5 summarizes the result of this experimentation (with 
ten iterations of each model). 

As shown in Table 5, the magnitude spectrogram models 
outperform other models. The time-series models fail again 
due to the nature of the unprocessed time-series PLC data 
and the presence of the strong out-of-band interferer. 
Interestingly, the recall score of the time-series dataset is 
very close to 1. This does not necessarily mean that the 
time-series model performed well. Figure 14 shows the 
confusion matrix of one of these time-series models, which 
explains why the recall score was high even though the 
accuracy was low. As shown in this figure, the time-series 
model predicted all samples as ‘1’ (On), which explains the 
low accuracy. The recall is calculated as shown in Equation 
3. The true positives are the accurately classified positives 
(top left quadrant in Figure 14) while the false negatives are 
misclassified negatives (bottom left quadrant). In our case, 
both values are zero, giving 0÷0, which causes error, but is 
overwritten as 1 during processing. In this way, the recall 
was very high. 

                    (3) 
 

TABLE IV.  PERFORMANCE OF MAGNITUDE SPECTROGRAM (DATASET 

2), RECTANGULAR SPECTROGRAM (DATASET 3) AND TIME-SERIES 

(DATASET 4) NN/CNN MODELS. THE VALUES SHOWN IN THE TABLE ARE 

THE MEAN +/- STANDARD DEVIATION FROM TEN ITERATIONS 

Dataset type Training 

accuracy 

Testing 

accuracy 

Precision Recall F1 

score 

Time-series 0.52595 

+/- 
0.00000 

 0.52583 

+/- 
0.00000 

0.52583 

+/- 
0.00000 

1.00000 

+/- 
0.00000 

0.68924 

+/- 
0.00000 

Magnitude 

spectrogram 

1.00000 

+/- 

0.00000 

0.95503 

+/- 

0.00326 

 0.96010 

+/- 

0.00413 

0.95415 

+/- 

0.00512 

0.95710 

+/- 

0.00314 

Rectangular 

spectrogram 

0.76138 

+/- 

0.15679 

0.73655 

+/- 

0.14313 

0.74463 

+/- 

0.14841 

0.88257 

+/- 

0.08874 

0.79102 

+/- 

0.07624 

 

 

Figure 14. Confusion matrix of a featureless time-series model. This model 

was fitted with trimmed ‘Dataset 4’ for Case 2 analysis. 

3) Case 3- Unknown and Dynamic Frequency 
In Case 3, the NN/CNN models are trained using every 

sub-band within the dataset (Datasets 2, 3 and 4) except one, 
and tested with the one that was left out of the training 
process. The objective in this approach was to observe if the 
NN/CNN featureless models can generalize during the 
training process to be able to perform well on test data with 
untrained PLC sub-bands. The result of this experimentation 
is summarized in Figure 15. 

 

 

Figure 15. Test accuracy curves of NN/CNN models fitted with magnitude 

spectrogram, rectangular spectrogram, and time-series dataset for Case 3 

analysis. 
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As seen in Figure 15, the time series data again failed, as 
expected. The magnitude and rectangular spectrogram 
formats, however, had some success in generalizing to a 
new frequency data subset. The bell-shaped accuracy curves 
of both rectangular and magnitude spectrograms support the 
“similarity measure” hypothesis formulated previously in 
Case 3 of feature-based datasets in Section V.A.3). 
Reiterating, it seems that the ML/NN models are able to 
generalize the best (and perform well) to a sub-band when 
trained on the greatest number of similar sub-bands, and in 
particular sub-bands on “both sides.” The sub-bands near 
the edge of the passband have the fewest “similar” sub-
bands for training whereas the sub-bands in the middle of 
the passband have the most, and hence, the accuracies for 
edge cases should be the lowest with increasing accuracy 
moving towards the middle. The curves for both 
spectrogram datasets shown in Figure 15 indeed show that 
the accuracies are low at the edge frequencies and greatest 
at mid frequencies, supporting our hypothesis. For practical 
implementation, this means that the training frequency 
range, for this type of unknown and dynamic PLC 
frequency scenario, should be wide enough so that the most 
probable PLC sub-bands or test frequencies lie somewhere 
in the middle. This structure would ensure good 
classification accuracy (or low BER), and hence, efficient 
communication. 

C. Feature-based Vs Featureless Learning 

In Sections V.A. and V.B., the results of feature-based 
and featureless ML/NN/CNN were discussed separately. In 
the present section, these two methods are compared 
directly based on the previous results of NN models from 
each category, as shown in Figure 16. NN is used to 
compare the two methods because an identical NN (with 
same hyperparameters) was used with feature-based as well 
as featureless datasets. For featureless method, the 
magnitude spectrogram is used as the dataset format of 
choice (i.e., Datasets 2) because of its overall best 
performance as shown by results in Section V.B. 

Figure 16(a) reveals that the featureless NN model had 
slightly higher accuracies than the feature-based NN model 
when testing these models with a trained parameter. In this 
case, NN models were able to find the relevant features 

using extracted features for the feature dataset and feature 
maps for featureless dataset. However, the information 
contained within the relevant feature maps is truer to the 
original raw signal than the lossy extracted features due to a 
reduction in steps required for data pre-processing. 
Therefore, the featureless NN models had marginally better 
performance than feature-based NN. 

On the other hand, when the models were asked to 
generalize to an untrained parameter, as in Case 3 shown in 
Figure 16 (b), the feature-based NN models perform better 
overall than featureless NN. This result may be due to the 
fact that the NN model needed to be more complex for the 
featureless dataset on account of its greater size (3x1024 per 
sample for magnitude spectrogram dataset whereas 1x61 for 
the feature dataset), higher dimensionality (2D for 
magnitude spectrogram while 1D for feature dataset) or the 
noise within the dataset (higher noise level in the magnitude 
spectrogram dataset than the feature dataset). Another 
probable cause could be that the NN model overfitted the 
featureless dataset. Overfitting might not have been a 
problem with the feature-based dataset because of the 
limited number of features. However, for the featureless 
dataset, the number of features (in the form of feature maps) 
is much greater, and thus the weights are spread out during 
training, causing overfitting of the training data. This 
overfitting then results in poor generalization for untrained 
samples. 

VI. CONCLUSION 

In this research study, an inter-level, upstream PLC 
network architecture was created; using this network 
architecture, OOK ULF baseband PLC signals were 
transmitted and captured; the captured data was processed to 
create feature-based and featureless ML/NN datasets. These 
datasets were used in various ML/NN formats to classify the 
temporal On/Off states of the transmitted OOK ULF-PLC 
signal. Using this pipeline, three broad questions related to 
the use of ML/NN in ULF-PLC data were explored. First, 
ULF-PLC signal characteristics were evaluated. Second, 
methods for pre-processing complex-valued 
communications signals were explored for use in 
conventional ML algorithms. Finally, the efficacy of a small 

    
                  (a) Frequency analysis: Case 1- known and static frequency                     (b) Frequency analysis: Case 3- unknown and dynamic frequency 

Figure 16. Graphs showing test accuracy curves (with 95% confidence interval) of Neural Network models fitted with feature dataset and magnitude 
spectrogram-based featureless datasets. (a) Case 1 frequency analysis using feature-based ‘Dataset 1’ and featureless ‘Dataset 2’ and (b) Case 3 

frequency analysis using ‘Dataset 1’ and ‘Dataset 2’. 
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collection of supervised ML techniques in decoding ULF-
PLC communication data was evaluated.  

A. PLC Signal Characteristics 

As presented in Section V.A.1) (Figure 8) and Section 
V.B.1) (Figure 13), the optimal frequency range for inter-
level ULF-PLC appears to be confined in a distinct 
passband around 930Hz-1650Hz. Below this band, the 
strong odd harmonics of the fundamental power signal 
interfere directly with the PLC signal, while above this 
band, grid components such as power transformers attenuate 
the signals substantially, causing poor signal propagation. 
This passband frequency range is dependent on various 
other factors such as the grid architecture (between the PLC 
signal transmitter and receiver), the coupling filter, etc. 
Therefore, frequency range as presented in this research 
may be relatively common but are not universally 
applicable. However, the bandpass nature of the power line 
channel is indeed characteristic of ULF-PLC. 

B. Dataset Characteristics 

One of the primary objectives of this study was to 
explore how the raw ULF-PLC data could be used in 
ML/NN and what types of data pre-processing might be 
most desirable or effective. To that end, we investigated two 
different methods: feature-based and featureless.  

Between the three featureless datasets, the time-series 
format was the least effective because of the dominance of 
the power signal in this domain as an out-of-band interferer. 
When the same data was transformed to time/frequency 
representation, the ML/NN performance improved 
significantly. The magnitude spectrogram format performed 
better due to its efficient representation of the OOK ULF-
PLC data. If more sophisticated frequency and/or phase shift 
methods are used for modulating data into the ULF-PLC 
channel, then the use of rectangular spectrogram formats is 
likely to outperform magnitude spectrogram formats, as 
concluded in our previous research [40]. Therefore, there 
are merits to all of these featureless datasets, in this ULF-
PLC application and beyond. In particular the ability of the 
system to recognize data based on various sub-band 
configurations is compelling. 

The outcomes from feature-based and featureless 
datasets were compared directly using an identical NN. The 
results of this comparison are discussed in Section V.C. and 
shown in Figure 16. Interestingly, the featureless magnitude 
spectrogram models had higher test accuracy than the 
feature-based models when the test data had the same PLC 
signal parameter (frequency) as the training data. However, 
when the test data had completely different signal 
parameters, the feature-based models were more consistent 
in providing high classification accuracies. As a result, we 
conclude that NN models overfit with the larger featureless 
dataset, causing it to generalize poorly on the test data with 
untrained parameters. Therefore, feature-based methods 
may be more appropriate when generalization is desired. 

In addition to testing accuracy, comparison of feature-
based and featureless methods using metrics such as the 
complexity of the ML models, time of processing, 

scalability, etc. may be valuable outcomes. In our tests using 
the ULF-PLC dataset, feature-based models had similar 
performance to featureless models despite employing 
simpler algorithms. The use of simpler models along with 
smaller dataset of the feature-based method resulted in a 
requirement for substantially less computer processing 
power and training time. However, the feature-dataset also 
requires substantial data pre-processing, which requires time 
and knowledge of the domain, and which can omit 
unknown, but relevant features. In contrast, although 
featureless methods require more complex ML/NN models, 
they are also easier to scale to varying architectures and 
applications and require less domain-specific knowledge to 
optimize. Further, they are capable of detecting features 
and/or outcomes that may have been previously unknown. 
Therefore, feature-based methods are desirable when 
training time and computer processing power are a 
consideration, while featureless methods are attractive when 
scaling and ease of deployment are the main concerns, and 
when the dataset environment may not be completely 
known. 

C. ML/NN Algorithm Characteristics 

To evaluate the ULF-PLC dataset, we utilized three 
supervised ML algorithms: Logistic Regression (LR), 
Support Vector Machine (SVM) and Decision Tree (TREE). 
We also used Neural Network (NN) and Convolutional 
Neural Network (CNN) models. The comparison between 
LR, SVM, TREE and NN, presented in Section V.A., 
indicates that the classification accuracies of these models 
were very similar, with SVM slightly better in most cases 
due to its non-linear capability. However, this also meant 
that SVM models needed much more stringent 
regularization to avoid overfitting, which increases 
implementation complexity. In contrast, NN and CNN may 
be more suitable for featureless datasets because of their 
relatively more complex architectures and native ability to 
process multi-dimensional datasets. For the same reason, 
NN and CNN approaches are also more flexible and 
scalable.  
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APPENDIX 

• Appendix A: Github Page 

The data files and Python scripts used for in this thesis 

can be found at: 

https://github.com/kushal-thapa/ML_for_PLC_thesis  

• Appendix B: Features of the raw ULF-PLC data 

Number of raw PLC files: 23  
File type: .wav 
Length of each file: 100 seconds  
PLC signal amplitude: 1A 
PLC frequency: 690Hz-2010Hz with 60Hz spacings 
Number of channels: 3  
Sampling rate: 8000 samples per second 

• Appendix C: Spectrogram Parameters 

Frame size = 500 samples 
Frame overlap = 250 samples 
FFT size =1024 
Window = Hanning 

• Appendix D: Optimized hyperparameters of the NN 
for Dataset 1 

No. of hidden layers 2 

Hidden layer 
1 

No. of nodes 64 

Activation function Relu 

Hidden layer 
2 

No. of nodes 32 

Activation function Relu 

Output layer No. of nodes 2 

Activation function Softmax 

Learning rate 0.001 

Optimizer Adam 

Loss Sparse categorical 
crossentropy 

Epochs 50 

Batch size 16 

 

• Appendix E: Experimentation steps 

 

 

Figure Appendix 1: Extension of Figure 7 showing the creation of datasets and the subsequent use of those datasets in various cases in feature-based 

and featureless methods. 
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