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Abstract— Device-to-Device (D2D) enabled cellular networks 

are a promising solution for Ultra-Reliable Low-Latency 

Communication (URLLC) systems. Integrating D2D into 

future wireless industrial networks and next-generation 

manufacturing can support the creation of massive machine-

type wireless connections. In this paper, we present a Base 

Station Assisted (BSA) reinforcement learning approach for 

resource allocation in a D2D-enabled cellular network 

targeting smart manufacturing and Industry 4.0 applications. 

A distributed local Q-table is used for the D2D agents to 

prevent global information gathering and a stateless Q-

learning approach is adopted to reduce the complexity of 

learning and the dimension of the Q-table. The Q-tables of the 

D2D agents are then uploaded to the Base Station (BS) for the 

resource allocation to be implemented centrally. Simulation 

case studies show that the presented semi distributed BSA 

technique results in reduced signalling overheads and a good 

Quality of Service (QoS) across the network compared to other 
conventional schemes. 

 

Keywords—Fifth Generation (5G) and beyond networks; 

Radio Resource Management (RRM); Distributed Algorithms; 

Device-to-Device Communication (D2D); Reinforcement 

Learning. 

I.  INTRODUCTION  

    The increasing growth in the number of wireless smart 

devices and applications necessitates novel and efficient 

Radio Resource Management (RRM) schemes to address 

the different challenges faced. Device to Device (D2D) 

communication is considered one of the key technologies 

for 5G and beyond networks aiming to provide 

improvements in performance metrics such as throughput, 

spectrum, and energy efficiency especially for new verticals 

such as smart manufacturing and Ultra Reliable Low 

Latency Communication (URLLC) use cases, e.g., in 

wireless industrial applications [1]. Machine learning and 

artificial intelligence techniques are some of the main 

techniques currently gaining increased interest to realise the 

expectations of future generation wireless systems [2]-[3]. 

    Spectrum access where a cellular and D2D users share the 

same resources can potentially result in improved spectrum 

efficiency. However, if shared resource allocation is not 

properly coordinated, mutual interference between cellular 

and D2D links may degrade the Quality of Service/Quality 

of Experience (QoS/QoE) of end-users. 

    Future wireless networks are characterised by a high 

density of devices and dynamic environments with rapidly 

changing Channel State Information (CSI). Centralised and 

distributed schemes are two RRM approaches used to 

allocate resources to users. In a centralised scheme, the 

global acquisition of CSI by a centralised controller (e.g., a 

Base Station (BS)) often incurs high signaling overheads 

and computation complexity which, tend to increase with 

the number of users, therefore making it impractical to 

deploy. Furthermore, RRM problems are often formulated 

as optimisation problems where the QoS requirements are 

modelled as the constraints. These optimisation problems 

are often complex and difficult to solve directly. A 

distributed approach does not need a central entity. 

Resource allocation is executed by users, therefore reducing 

the amount of information exchange, computations, and 

processing by the base station, and resulting in improved 

QoS across the network.  

    Game theory and machine learning are important 

techniques that can be used to realise a distributed RRM 

scheme. Matching theory, which, has been used to solve 

assignment or pairing problems between two distinct sets of 

players with diverse QoS objectives [4], may get complex in 

a multiuser scenario with rapidly changing channel 

conditions using full CSI, as in [5].  

    Reinforcement Learning (RL) has been explored to 

address RRM problems in dynamic environments [6]-[7].    

RL is a machine learning approach, well-suited to support 

decision making in 5G-and-beyond networks with 

uncertainties, for example, in distributed resource allocation 

with unknown or partial information of network conditions. 

Q-learning is a reinforcement learning technique that uses a 

look-up table, known as Q-table, to determine an optimal 

strategy to adopt, by storing the values used to compute the 

maximum expected future rewards for actions taken at each 

state.  A large number of agents, states and actions can lead 

to a high-dimension Q-table which, may result in slow 

convergence and limit the practical applications due to the 

high memory requirements [8]. These challenges can be 

addressed by using Deep Reinforcement Learning (DRL) 

which, uses deep neural networks to approximate the tables 

[9]. However, DRL is associated with high complexity and 

large learning data [10]-[11]. 
    RL has been widely investigated to study intelligent 

power level and spectrum channel allocations for D2D-

enabled cellular networks in a multi-agent environment. The 

work in [12] formulated the resource allocation problem as a 

stochastic non-cooperative game among D2D users. 

However, the QoS requirements of cellular users sharing the 

same frequency bands with D2D users were not considered 
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in the reward model. In [13], a multi-agent actor-critic 

framework was proposed which, involves cooperation 

between users and sharing of all historical information 

(states, actions, and policies) in a centralised training 

scheme to ensure stability. This will consequently increase 

the amount of signalling overheads and information 

exchange. In [12]-[15], the reward function captured the 

QoS metric of cellular users in a centralised Q-learning 

approach, which, also leads to increased signalling 

overheads.  

    In this paper, we present a semi-distributed reinforcement 

learning scheme for spectrum resource sharing of D2D 

Users (DUEs) and Cellular Users (CUEs) targeting smart 

manufacturing environments and URLLC networks. This 

semi distributed approach relies on two phases. First, a 

decentralised training of agents is implemented. This is 

followed by Q-tables being uploaded to the base station for 

final resource allocation.  The reward function is modeled in 

such a way that there is no information exchange related to 

other agents’ actions or rewards. To address the problem of 

the ‘curse of dimensionality’ associated with Q-learning, a 

stateless Q-learning approach is adopted to reduce the 

dimension of the Q-table, nonetheless capturing the QoS 

demands of the D2D users. The main contributions of this 

work are summarised below: 

 

• A hybrid RRM scheme with distributed D2D training 

and a centralised channel allocation is presented with an 

advantage of reduced signalling overheads compared 

with conventional centralised approaches. This hybrid 

RRM scheme relies on stateless reinforcement learning 

algorithm is presented, where there is no state 

transition, to ensure a reduced dimension of the state-

action mapping, nevertheless capturing the key 

performance metrics of the DUEs. With this technique, 

there is a decrease in complexity and signalling 

overheads making scheme adaptable to high-density 

networks. 

• In previous works [16]-[18], the QoS of cellular users is 

captured by integrating it in the state space or reward 

function of the D2D users. Rather than the BS exchange 

the QoS estimation of the CUE with the DUE at each 

time slot, a Q-table for the CUEs is maintained and 

updated. 

• Numerical simulations are used verify the performance 

of the presented algorithm in comparison to other 

approaches in terms of achieved throughput, signalling 

overheads and complexity. 

 

    The paper is organised as follows: The system model and 

problem formulation are presented in Section II. In Section 

III, a stateless reinforcement learning algorithm for base 

station-assisted resource allocation is presented. Section IV 

presents simulation case studies and results.  The main 

conclusions and directions for future work are summarised 

in Section V. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 

         We consider D2D and cellular users coexisting within 

a cellular network for uplink spectrum-sharing as illustrated 

in Fig. 1. There are � Cellular Users (CUEs) represented by 

a set � = ���, … , �	 , … �
� and � D2D Users (DUEs) 

denoted by a set  = ���, … , �� , … ��� deployed randomly 

within the coverage of the base station in a single cell 

system. 

 

 

 

 

 

 

 

 
Figure 1.  An illustration of a D2D enabled cellular network 

    The DUEs can autonomously select a Resource Block 

(RB) denoted by a set � = ���, … , �	 , … �
�, from a pool of 

radio resources [18]19, which, can overlap with that of the 

CUEs for the benefit of reuse gain. The cellular users have 

strict performance requirements in the form of minimum 

Signal-to-Interference Plus-Noise-Ratio (SINR) values to 

guarantee their throughput. The D2D links also have 

minimum SINR thresholds to guarantee their throughput 

demands, in addition, to the reliability and delay 

requirements. 

    We assume that each CUE has been pre-allocated a 

resource block. The transmit power of the CUEs and DUEs 

are denoted by ���  and ��� respectively. ��,�, 	���,�, 	���,��  

and ��,�� are the channel gains of cellular communication 

from the CUE �	 to the BS, the interference link from the 

DUE transmitter �� to the BS, the D2D communication link 
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from the DUE transmitter  �� to the receiver �  and the 

interference link form the CUE transmitter to the DUE 

receiver � , respectively. The channel gain comprises 

small-scale fading which, is assumed to be exponentially 

distributed with a unit mean and large-scale fading which, 

includes pathloss and shadowing with log-normal 

distribution.  

    The instantaneous received SINR at the BS from !th CUE 

and "th DUE over !th sub-channel at time slot # is given as 

[1]: 

 																Γ��(#) = '(�)(,*(+),-	.	∑ 0�� (+)'1�)1�,*(+)1�∈3                          (1)

                                                                                                 																Γ��(#) = '1�)1�,1�(+),-	.	∑ 0�� (+)'(�)(,1�(+)(�∈4                           (2) 

 

 λ�	 ∈ �0,1� denotes the binary resource reuse indicator, λ�	 = 1	implying that the  "th DUE selects !th CUE sub-

channel at time slot # and λ�	(#) = 0 otherwise. We assume 

that each DUE can access only one CUE sub-channel i.e., ∑ λ�	
 ≤ 1 and each CUE sub-channel is accessed by only 

one DUE i.e., ∑ λ�	� ≤ 1.    The data rates of the !th CUE 

and "th DUE is at time slot # given by: 

 

           	T��(#) = :	 log>?1 + Γ��(#)A,                                        (3) 

 														T��(#) = :! log2C1 + Γ�"(#)D,                                    (4) 

 

where :	 is the bandwidth of each resource block. The 

variance of the Additive White Gaussian Noise (AWGN) is 

denoted by σ>. 

    The channel gains for the different links (F, G) be 

expressed as follows: 

 

					
HIJ
IK ��,�LM�γ�,�O�,�P�,�QRS ≜ U�,�P�,�QRS���,�LM>γ��,�O��,�P��,�QR- ≜ U��,�P��,�QR-���,��LMVγ��,��O��,��P��,��QRW ≜ U��,��P��,��QRW��,��LMXγ�,��O�,��P�,��QRY ≜ U�,��P�,��QRY

Z            (5) 

 

where M[  is the pathloss constant,	\],[  is the small-scale 

fading gain due to multipath propagation and assumed to 

have an exponential distribution with unit mean. The large-

scale fading comprises pathloss with exponent ^[ and 

shadowing which, has a slow fading gain O],[ with a log-

normal distribution. P],[ is the distance from terminal F to 

terminal G [20].  

    The channel gain	���,��  and ��,��  can be estimated at the 

DUE receiver, � 	and made available at its transmitter, �� 

instantaneously [19]. Similarly, ��,� and 	���,�  can be 

obtained at BS through local information since uplink 

transmission is considered.  

   The reliability of the DUE �� ∈ ,  _��(#), is defined as 

the probability of packet delay exceeding a predefined delay 

bound,	`��,abc, on channel ! at slot # is less than a threshold 

[21]. The objective of the system is to maximise the total 

throughput, d , of paired CUEs and DUEs while satisfying 

the QoS demands. The optimisation problem and constraints 

are described in (6). 

 efg0�� 	 	d = :	(	λ�	(∑ log>?1 + Γ��A��	∈h + ∑ log>(1 + Γ��)��	∈i ))                            
                                                                                                       (6)             

subject to 

   λ�	Γ�� − Γ��,akl ≥ 0                     ∀�	 ∈ �                        (6a)  

 P r C`�� > `��,abcD < 1 − _��∗       ⩝ �� ∈          (6b) 

      ∑ λ�	��∈h ≤ 1                           ⩝ �� 	 ∈                       (6c)                                                

       ∑ λ�	��∈i ≤ 1                           ⩝ �	 	 ∈ �                     (6d) 

                                      

   The minimum SINR, Γ��,akl, to guarantee the throughput 

requirement of the CUEs is defined in constraint (6a). 

Constraint (6b) takes into account reliability and delay, 

where `�� is the packet delay constraint for packet 

transmission of DUE ��. The expression captures the fact 

that the end-to-end delay should be less than `��,abc with a 

probability of at least 1 − _��∗ . Constraints (6c) and (6d) are 

channel association criteria. The reliability of the DUE links 

in (6c) is evaluated using an empirical estimation of number 

of packets transmitted similar to [21], from �� to �  whose 

delay is within the budget `��,abc over the total number of 

packets sent to �  at time slot # i.e., 

  _��(#) = 1 − Pr C`�� > `��,abcD ≈ 1 − v1�(+)�1�(+) ≅ P�"′ (#)�1�(+),   (7) 

 

where P��(#) is the number of packets for which, `�� >`��,abc and P��y (#) is the number of packets transmitted with `�� ≤ `��,abc (or number of packets delivered within the 

delay bound). z��(#) is total packet transmitted by DUE �� 
at time slot #. Reliability can also be measured in terms of 

the outage probability, which, is the probability that the 

measured SINR is lower than a minimum is less than a 

predefined threshold. The expression of the outage 

probability of "th DUE conditioned on the selected !th 

channel at time slot #  is given below [22]. 

 { (#) = Pr CΓ�� ≤ Γ��,aklD 

                  = 1 − |1�)1�,1�}c~	(Q�1�,����-�1��1�,1�)|1�)1�,1� 	.�1�,���|(�)(,,1� ≤ { � ,            (8) 

 

62

International Journal on Advances in Telecommunications, vol 15 no 3 & 4, year 2022, http://www.iariajournals.org/telecommunications/

2022, © Copyright by authors, Published under agreement with IARIA - www.iaria.org



where { (#) is the measured outage probability of DUE �� 
at time slot # and { �  is the maximum tolerable outage 

probability of ��.  
     

    The reliability of the DUE in terms of outage probability 

is expressed as [21]: 

 

                                _��(#) = 1 − { (#).                            (9) 

 

    Transmission delay is given as the ratio of packet size 

transmitted within delay bound to the transmission rate [23].  

From (7), (8) and (9) the transmission delay of "th DUE 

using the !th RB is formulated as: 

 

                         `��(#) = v1�� (+)
:!���-(�	.	Γ�") .                 (10) 

   At each time slot #, the resource allocation system 

implements two functions, namely:  

i) determining the SINR, Γ��  for the !th CUE and the SINR Γ�� that the "th DUE to ensure that the minimum SINR and 

target reliability _��∗ 	 thresholds are achieved and  

ii) allocating RBs to "th DUE so that d  is maximised. 

     

   The resource allocation optimisation problem for D2D 

communication in a cellular network is NP hard and a direct 

solution is not feasible. We present a base station-assisted 

resource allocation scheme which, adopts a semi-

distributive RRM approach. 

 

III. STATELESS REINFORCEMENT LEARNING FOR BASE 

STATION-ASSISTED  RESOURCE ALLOCATION  

      The goal of the agents is to maximise throughput in a 

D2D-enabled cellular network. At each time slot #, a DUE 

observes a state	�+  and takes an action �+ from the action 

space (i.e., select an RB �	), according to a policy π. Q-

learning enables an agent to determine the optimal strategy 

that maximises its long term expected cumulative reward. 

The Q-value is updated as follows [23]: 

 �+.� 	
= ��+(�+ , �+) + � �G+ + �max�′ �+(�+.�, �+.�) −�+(�+ , �+)�		if		� = �+ ,			� = �+�+(�+ , �+)	, otherwise Z, 
                                                                                         (11) 

 

where � ∈ [0,1] is the learning rate. With � = 0,  the Q-

values are never updated, hence no learning has taken place; 

setting � to a high value such as means that learning can 

occur quickly and 0 ≤ � ≤ 1 is the discount factor used to 

balance immediate and future reward [24]. 

    The state space, action space and rewards function in the 

learning environment are defined as follows: 

 

1) State Space: The state observed by DUE �� ∈ , ¡��	 (#), 
using resource block RB �	 at time slot # is defined by three 

variables, resulting in eight possible states as defined in 

Table I. 

 

                          ¡��	 (#) = ¢¡�1�	 , ¡£1�	 , ¡¤1�	 ¥,                      (12) 

   

where ¡ ∈ ¡��	 = �0,1�. ¡�1�	 (#) indicates the interference 

level and is defined as: 

 

              ¡�1�	 (#) 	= ¢1														Γ��(#) ≥ Γ��,akl0																							otherwise Z,              (12a) 

 ¡£1�	 (#) indicates the level of reliability and is defined as:  

                 ¡£1�	 (#) 	= ¢1																				_��(#) ≥ _��∗0																							otherwise Z ,          (12b) 

 ¡¤1�	 (#) indicates the packet transmission time and is defined 

as: 

 

             ¡¤1�	 (#) 	= ¢1														`��(#) ≤ `��,abc0																							otherwiseZ ,               (12c) 

 

 

TABLE I. State Space for DUEs 

 ¦§̈ ©ª  ¦«¨©ª  ¦¬¨©ª  ¦¨©ª  

0 0 0 0 

0 0 1 0 

0 1 0 0 

0 1 1 0 

1 0 0 0 

1 0 1 0 

1 1 0 0 

1 1 1 1 

    

 

    The state-action dimension is reduced by adopting a 

stateless learning approach. For the considered scenario, an 

action �	 ∈  taken by an agent will result in the end of an 

episode i.e., states 0 and 1 are terminal states, where ¡��	 (#) 	= 1 is the goal state of the DUEs. Therefore, the 

learning environment can be modelled entirely using a 

stateless Q-learning i.e., action-reward only since the state 

transition is not required. An agent can choose its action 

based solely on its Q-value. The updated Q-value of the 

chosen action is based on the current Q-value and the 
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immediate reward from selecting that action. The update 

function in (11) is re-formulated as follows: 

 �+.�(�+) = ¢�+(�+) + �[G(�+) − �+(�+)], if		� = �+�+(�+),										otherwise Z     (13) 

 

where G(�+) is the immediate reward of selecting �. 

    In contrast to the standard Q-value update function in 

(11), it can be seen in (13) that not only the state-action 

formation (�, �) is not necessary, but also the information of 

the next state �+.� is not required because the actions lead to 

a terminal state. Therefore, the Q-table is defined in terms of 

the actions only and updated using the immediate reward. 

This results in 1 × |�|	dimension Q-table for "th DUE. This 

method reduces the learning complexity and the Q-table 

dimension.  

    The traditional cellular users in the network need to be 

protected from the interference caused by the DUEs for their 

minimum SINR to be satisfied. This may be achieved by 

integrating the SINR of the CUE, Γ��  in the state space or by 

reward function modelling. This way, the DUEs can obtain 

the information from the BS at time slot # as in [17]-[18], 

[25]; hence, the DUEs get a reward if the CUE SINR Γ�� ≥ Γ��,akl	, and a penalty otherwise. Rather than the BS 

exchange the measured CUE SINR, Γ�� , with the DUEs for 

every action �+ taken at each time slot, we adopt a scheme 

in which, the BS keeps a look-up table of the !th CUE based 

on the actions on the DUEs. Therefore, the Q-table for the !th CUE is  1 × |�|	 considering a stateless Q-learning 

structure.     

2) Action Space: The action space of DUE �� ∈  is a set of 

all actions denoted by  = ���,+ , … , �	+ , … �,
+ �, where  �	+ is 

the action taken by �� ∈  at time slot # and defined as the 

selection of an RB �	. 
3) Action-Selection Strategy: There are methods to select an 

action based on the current evaluation of the Q-value at 

every time slot # using a policy denoted by {��+ . These 

methods are used to balance the exploration and exploitation 

of actions taken by the agents [26]. Epsilon greedy (°-

greedy) is one of the methods of choosing an optimal Q-

value and described as follows: 

 {¨©± = ²argmax�∈³ �(�) 									probability	1 − °		(exploitation)Random	action														probability	°	(exploration) Z 
                                                                                          (14) 

 

where ° is the exploration rate with 0 ≤ ° ≤ 1. The 

exploration rate is the probability that the agents will 

explore the environment rather than exploit it. ° → 1 results 

in greater exploration whereas ° → 0 means greater 

exploitation. 

 

4) Reward Function: The reward function is modelled such 

that it relies only on local observations and can be 

implemented in a distributive manner. The rewards of the "th DUE and !th CUE for taking an action �	+ is expressed in 

terms of the achievable throughput using the Shannon 

capacity formula. Thus, the reward is directly related to the 

objective function of the optimisation problem. 

    Equation (15) shows that "th DUE only gets a reward 

when all the state variables are 1 (i.e., the minimum QoS 

demands are met), while !th CUE gets a reward if its 

minimum SINR is satisfied at each time slot for the action 

taken by "th DUE. From the reward function defined above, 

learning can be implemented independently in a 

decentralised manner such that each agent maintains a local 

Q-table. There is no information exchange relating to other 

agents’ actions or rewards and no cooperation is needed 

between the agents, which, results in reduced signalling 

overheads and reduced complexity compared with a 

centralised Q-learning approach.  

 

G��(�+) = ¼d��½ (#)						¡��	 (#) = 1	0, 												¡��	 (#) = 0 Z ,                   (15a)  

 

               G��(�+) = ¢d��½(#)							Γ�� ≥ Γ��,akl	0,																			otherwiseZ.                 (15b) 

 

   The Q-value of the "th DUE for selecting  !th RB at time 

slot # is updated as follows: 

 

���	 (�+) = ¼���	 (�+) + � �G��(�+) − ���	 (�+)� , if		� = �+���	 (�+),										otherwise Z. 
                                                                                        (16a) 

 

Similarly, the Q-value of the !th CUE for action taken by 

the "th DUE is updated as follows: 

 

���� (�+) = ¼���� (�+) + �¾G��(�+) − ���� (�+)¿, if		� = �+���� (�+),										otherwise Z. 
                                                                                      (16b) 

 

   From (16), it can be seen that after the training, the Q-

table of the "th DUE, 	���(�), will return ���	 (�) = 0 for its 

action on  !th RB that do not meet its QoS requirements. 

Similarly, the Q-table of the !th CUE, 	���(�), will return ���� (�) = 0 for the action of ©th DUE on ªth RB that do not 

meet its QoS requirements.  

   The BSA algorithm summarised in Algorithm I, aims to 

optimise the achieved system throughput. After the training 

phase, each DUE loads its Q-value table, ���(�),  to the BS 

for centralised matching. The BS will then allocate cellular 

resource blocks to D2D links in such a way that spectrum 

sharing is optimised, network throughput is maximised	and 

there is no need for information exchange between the UEs 

to find a suitable candidate. 
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Algorithm I: The BSA Reinforcement Learning Algorithm 
  

   1: Initialise the action-value function for the DUEs 

      ���(�) = 0|���(�) ≡ ���	 (�+)	, ! = 1,2, … , �    ⩝ �� ∈  

   

   2: Initialise the action-value function for the BS for the actions of     

      the "th DUE on the !th RB   

     ¾���(�) = 0|���(�) ≡ ���� (�+), " = 1,2, … ,�	¿    ⩝ �	 ∈�                 
  3:    for �� ∈   1 ≤ " ≤ �  do 

  4:        while not converge do  

  5:  generate a random number Á ∈ �0,1� 
  6:            if Á < ° then 

  7:                  Select action �	+ randomly 

  8:            else 

  9:                   Select action �	+=argmax�∈³��"(�#) 
10:            end 

 

11:            Evaluate _�� , Γ�� and `��  of �� ∈  for the action �+ 
 

12:            Measure the SINR, _�� , of CUE �	 ∈ � for the 

action   �+ taken by �� ∈  

13:  Observe immediate reward of �� ∈  and �	 ∈ �,   

                  

14:            Update action-value for action of  �� ∈  on the !th   RB ���	 (�) = ���	 (�) + � �G��(�+) + ���	 (�)� 
 

15:            Update action-value for �	 ∈ � for action �+ of "th  

                 DUE  ���� (�) = ���� (�) + �¾G��(�+) + ���� (�)¿  
 

16:          end while 

17:    end for 

 

18: Load ���(�) to the BS          ⩝ �� ∈  

 

19: for �� ∈   1 ≤ " ≤ �  do 

20:      Obtain �(�) = Â���	 (�), ���� (�)Ã 		! = 1,2, … , � 

21:     	�Ä(�) ⊆ �(�)| Â��"! (�), ��!" (�)Ã ∈ ℝ+
, where ℝ.   

            positive real number 

22:       �ÇÈÇ = ���	 (�) + ���� (�)         ⩝ F ∈ �É(�) 
23: end for 

 

24: Set up a list for unmatched DUE Ê = 	��� :	⩝ �� ∈ Ê� 
25: while Ê ≠ ∅ do 

26:       Rank Ê in increasing order of |0 �É(�)| 
27:       Start DUE �� ∈ Ê: �É(�) ≠ ∅ with the least | �É(�)| 
28:        �	∗ = max[�	∈ �TOT 

29:        Ê = Ê − ��  
30:        �É(�) = �É(�)\�!∗       ⩝ ��� ∈ Ê|	"y ≠ " 
31: end while 

 

 

 

IV. SIMULATION CASE STUDY AND PERFORMANCE 

EVALUATION 

   The performance of the BSA approach described in 

Section III, is verified by considering a single-cell network 

in an industrial scenario. The simulation set-up and channel 

models are as described in [1] and summarised in Tables II 

and III. The network dynamics is captured by generating the 

channel fading effects randomly. The throughput is the main 

metric used to evaluate the performances of the algorithms. 

The performance of BSA is compared with centralised 

optimisation and the game theoretic Deferred Acceptance 

(DA) techniques [1][20]. 

A. Throughput Performance  

   The throughput performance of matched DUEs as a 

function of the number of DUEs in the system �, is shown 

in Fig. 2. It can be concluded that the sum throughput of the 

DUEs increases with the number of cellular users � for all 

the considered algorithms. As expected, the number of 

admitted DUEs increases with the introduction of new 

DUEs to the system, but unchanged if a valid cellular 

resource-sharing partner cannot be found because the 

minimum QoS requirements are not satisfied. The 

performances of centralised and BSA approaches are 

comparable, while the DA method shows the least 

performance. The BSA algorithm outperforms the DA 

algorithm by up to 9.69% increase in the DUE throughput 

performance. However, it is semi-distributive as the final 

resource allocation is implemented by the BS whereas the 

DA approach is decentralised (the channel selection is user-

centric, and no BS intervention is necessary to achieve 

autonomy). Players can make their resource allocations 

choices to maximise their individual throughput and 

ultimately achieve system stability.  The performance of the 

sum throughput of the matched UEs (that is valid pairings 

between CUEs and DUEs) with respect to the number of 

cellular users �	is shown in Fig. 3. The sum throughput 

increases with �. The BSA approach indicates better 

performance at � ≤ 35 with up to 12.05% increase in sum 

throughput compared to the centralised approach, while the 

centralised approach performed better at � > 35	with up to 

9.39% increase in throughput. The DA algorithm again 

shows the least performance compared to the BSA 

technique. 

    The effects of the outage probability of the DUE, { � , and 

delay threshold of the DUEs, `��,abc  on the sum rate of the 

matched UEs for all algorithms are shown in Fig. 4 and Fig. 

5, respectively. The sum throughput of the matched UEs 

increases with { �  and `��,abc. This is because higher { �  

causes the interference from the CUEs to be more tolerable 

by the DUEs, therefore making potential CUE-DUE pairing 

possible. Similarly, higher `��,abc increases the sum 

throughput at fixed outage probability and payload since the 

delay requirement is less stringent. More DUEs are able to 
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satisfy the delay constraint and the number of admitted 

DUEs is increased.  

 
 

TABLE II. MAIN SIMULATION PARAMETERS [1][20][27] 

 

Parameter Value 

Carrier frequency, Ò� 2GHz 
System bandwidth 10MHz 

Number of resource blocks (RB), � 50 

RB bandwidth 180	kHz 
Maximum CUE transmit power, P��,abc 23dBm 

Maximum DUE transmit power, P��,abc 13dBm 

D2D distance, P��,�� 10m ≤ P��,�� ≤ 20m 

CUE SINR Threshold, Γ��,akl 7 dB 

DUE SINR Threshold, Γ��,akl 3 dB 

Noise power density −174	dBm/Hz 
Number of CUEs, � 50 

Number of DUEs, � 50 

Reliability for DUE, { � 10QÝ 

Exploration rate, ° 0.7 

Learning rate, � 0.9 

DUE Maximum Delay,	`��,abc 50ms 
DUE Message Size,	z�� 15kB 

 
 

TABLE III. CHANNEL MODEL FOR LINKS [28]-[30] 

 

Parameter In-factory         

DUE link 

UE-UE link BS-UE link 

Pathloss 

model 
36.8 log�à(�[m]+ 35.8 

	40 log�à(�[m])+ 28 

37.6 log�à(�[m])+ 15.3 

Shadowing 4dB 6dB 8dB 

Fast fading Rayleigh  Rayleigh  Rayleigh  

     

 

 
 

Figure 2.  Sum-rate of matched DUEs with varying number of DUEs, � in the System, for � = 50 

  

 
Figure 3.  Sum Throughput of matched UEs as a function of the number of 

DUEs  �, in the system, for � = 50   

 
Figure 4.  Effect of the DUE outage ratio { �, on the sum throughput of 

matched CUE-DUE pair for � = � = 50, `��,abc = 50ms 

 
 

Figure 5.   Effect of the delay bound, `��,abc on the sum throughput of 

matched CUE-DUE pair for � = � = 50, { � = 10QÝ 
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B. Signalling Overheads and Complexity Analysis 

    We now evaluate and compare the signalling overheads 

and computation complexity of the investigated algorithms. 

Signalling overheads are evaluated in terms of the level of 

involvement of the BS and User Equipment (UE), i.e., BS-

UE communication. The signalling overhead evaluated is an 

aggregation of contributions of channel information 

acquisition and information exchange by the BS-UE links.      

The number of iterations d depends on the network 

dynamics. A summary of the signalling overhead estimation 

is presented in Table IV. The different approaches are also 

evaluated in terms of their computation complexity. The run 

time for the algorithm also depends on the number of 

iterations and on the number of users. It can be concluded 

that the centralised algorithm has the highest complexity, 

while the DA scheme has the least complexity, with a 

10.38% reduction in processing time compared with the 

centralised approach for the studied scenario. 

    An overall comparison for the studied techniques based 

on throughput, signalling and complexity metrics is shown 

in Fig. 6 for different numbers of users. It can be seen that 

the centralised approach has the best throughput 

performance, however it has higher signalling overheads 

and computation complexity in comparison to the other 

approaches. DA has the lowest throughput performance and 

complexity, while BSA achieves the lowest signalling 

overheads. BSA achieves a 49.81% reduction in signalling 

overheads and 0.94% reduction in complexity with less than 

9% lower throughput performance compared to the 

centralised approach which, is a good tradeoff of throughput 

and signalling overheads.  

 
 

 
 

Figure 6a.  Use-case 1:  � = 30,� = 50 

 

 
Figure 6b.  Use-case 2:  � = 40, � = 50 

 

 
Figure 6c.  Use-case 3:  � = 	� = 50 

 

Figure 6. Overall performance comparison with the centralised approach as 

a reference 

 

    

TABLE IV. SIGNALLING OVERHEAD ESTIMATION 

 

Estimation of the Signalling 

Overhead by the BS 

Centralised M(1+4T) 

DA 2M(N+T) 

BS-A 2M(1+T) 
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In summary, the results indicate that for throughput 

maximisation in a low-density network in which, self-

organisation is not important, the centralised scheme is the 

best to adopt at the cost of signalling overheads. The DA is 

a promising technique to achieve good throughput 

performance at lower signalling overheads and complexity 

if device autonomy and network stability are essential. On 

the other hand, BSA is a semi-distributive approach which, 

offers a good trade-off of throughput, complexity and 

signalling overheads trade-off compared to DA and 

centralised optimisation schemes. 

    Regardless of the limitations of the investigated and 

developed RRM techniques presented in this paper, the 

results from adopting these methodologies, suggest the 

possibility of developing a conceptual qualitative  

evaluation framework to assist in the selection of an 

appropriate scheme to achieve specific priorities for the 

target industrial scenarios, as presented in Table V.  

TABLE V. QUALITATIVE COMPARISON OF THE DIFFERENT 

METHODOLOGIES 

Scheme BSA Centralised 

Optimisation 

DA 

RRM 

Approach 

Semi 

distributed 

Centralised Distributed 

RRM 

Technique 

Reinforcement 

learning 

Mathematical 

optimisation 

Matching 

theory 

Throughput Average Best Worst 

Complexity Average Worst Best 

Signalling 

Overheads 

Best Worst Average 

 

V. CONCLUSIONS 

    

   We presented a semi-distributed BSA scheme for RRM of 

a D2D enabled cellular network targeting wireless industrial 

applications. The BSA scheme is an RL based approach 

which relies on distributed training of the D2D agents. 

Subsequently, the look-up tables for the D2D agents are 

loaded to the BS for centralised channel allocation. 

   The performance of the BSA scheme was compared with 

centralised optimisation and the game theoretic DA 

approaches in terms of throughput, signalling overheads and 

computation complexity. It is concluded that BSA offers a 

good trade-off of throughput, complexity and signalling 

overheads compared to DA and the centralised optimisation 

schemes. However, the BSA scheme is semi distributed. 

The future work aims at exploring optimised fully 

distributed techniques with the aim of  facilitating an 

increased DUE autonomy through the combination of game 

theory and machine learning techniques. 
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