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Abstract— The Advanced Video Coding (AVC) standard 
proposes the usage of Variable Block Size (VBS) motion-
compensated prediction and mode decision aiming for 
an optimized Rate-Distortion (R-D) performance. Unlike 
Fixed Block Size (FBS) motion-compensated prediction, 
where all regions of the pictures are treated similarly in 
terms of temporal prediction, VBS increases the 
efficiency of encoding by allowing more active regions to 
be represented with more bits than less active ones. The 
main concern regarding the usage of VBS motion-
compensated prediction is the dramatic increase it adds 
to the encoder computational requirements, which not 
only prevents the encoder from satisfying real-time 
constraints, but also makes it impractical for hardware 
implementation. This paper presents an efficient VBS 
selection scheme, which can be applied to any VBS 
Motion Estimation (ME) module, leading to significant 
reduction in its computational requirements with minor 
loss in the quality of the reconstructed picture. The 
computational requirements reduction is achieved by 
minimizing the number of required ME searches and 
simplifying the Mode Decision (MD) operation. In order 
to meet different applications’ demands, the proposed 
algorithm can be adjusted to function at any of three 
operating points, trading off computational 
requirements with R-D performance. In the paper, the 
algorithm is described in detail, focusing on the 
theoretical computational requirements savings. This 
theoretical analysis is then supported with simulation 
results performed on three benchmark video sequences 
with various types of motion. 

Keywords- H.264/AVC, motion estimation, variable block 
size. 

I.  INTRODUCTION 
 

To achieve a high coding efficiency, AVC deploys a set 
of new features in addition to enhancing a set of previously 
used features. In the inter-frame motion prediction, AVC 
allows for the usage of variable block sizes motion 
estimation/compensation that can support block sizes of 
16×16, 16×8, 8×16 and 8×8 resulting in significant 
performance improvement. Even more, in the case when an 
8×8 mode is chosen, further smaller blocks of sizes 8×4, 4×8 
and 4×4 can be used. This method improves the motion 
tracking capabilities of the encoder by allowing inactive 
regions and regular movements to be represented with an 
optimal amount of motion information (e.g., 16×16 mode is 
represented by one motion vector), while for fast and highly 
irregular movements, the finer blocks can be used at the cost 
of increased motion information, but optimal error 
representation. In terms of computational and memory 
requirements, motion estimation is by far the most complex 
module in the entire AVC encoder. As will be shown later, 
recent studies show that it represents between 70% and 90% 
of the entire encoder computational requirements. The 
increase in computational and operational requirements 
brought by the usage of such new features requires 
algorithmic and implementation enhancements so that the 
compression algorithm can become useful in real 
applications. As a step towards the design and 
implementation of an entire computationally-efficient AVC 
encoder, this paper proposes a solution to the increased 
computational requirements of the AVC variable block size 
motion estimation/compensation (and mode decision) 
module.  A novel, computationally-efficient algorithm for 
variable block size motion estimation and mode decision 
(acting at three operating points that meet various 
applications’ requirements) is developed and described. The 
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obtained simulation results and analysis show that, for the 
variety of tested benchmark sequences, the encoder 
computational requirements can be reduced to less than half, 
at the expense of “minor” degradation in the quality. The 
work in this paper further emphasises on the work that has 
been introduced in  [1]. 

The remainder of this paper is organized as follows: 
Section II describes the key concept behind the adoption of 
VBS ME/MD, showing its necessity, and the 
computationally-expensive way it is implemented in the 
direct approach of the AVC software reference model. A 
survey of recent efforts to solve this computational 
requirements issue is also given. In Section III, the proposed 
VBS selection scheme is described, accompanied with some 
theoretical computational requirements analysis to show its 
effectiveness. Section IV shows and discusses the 
experimental analysis and results obtained by encoding 
various benchmark video sequences. Then finally, Section V 
concludes this paper. 

 

II. VBS MOTION ESTIMATION AND MODE DECISION 
 

AVC defines seven block sizes for inter-prediction. The 
seven modes are shown in Figure 1. During the encoding 
process, an ideal encoder has to examine all these modes to 
achieve the best inter-prediction, which requires performing 
all the seven modes of searches, and then examining all the 
259 possible combinations of macroblock (MB) partitioning 
schemes to choose the best one out of them. This VBS 
motion estimation and mode selection process result in 
significant performance improvement (in terms of rate-
distortion). This is because, on the contrary to Fixed Block 
Size Motion Estimation (FBSME), where all sub-blocks in a 
MB have the same size, Variable Block Size (VBS) ME 
improves the motion tracking capabilities of the encoder by 
allowing it to give more “attention” to highly active sub-
blocks (representing an active region with more sub-blocks 
would better describe it). However, this leads to dramatic 
increase in the computational requirements of the encoder 
compared to traditional FBSME-based encoders. 

This section overviews the main concept of VBS 
ME/MD. It starts with Section A, where the necessity of 
VBS ME/MD is investigated. Then in Section B, a 
description of the AVC reference software implementation 
approach is given. Finally, Section C summarizes some 
recent efforts to reduce the computational requirements of 
VBS ME/MD. 

 

A. Necessity of VBS ME/MD 
In this section the necessity of VBS ME is evaluated by 

first demonstrating its usage when encoding different 
sequences with different types of motion, then by comparing 
the reconstructed sequences R-D performance when VBS 
ME is fully or partially disabled.  

Figure 2 shows the occurrence percentage of different 
block sizes as chosen by the AVC software reference model 
“Joint Model JM 10.2”, running with all the seven block 

mode types enabled. Full search is used for motion 
estimation. The test has been performed for a wide range of 
sequences, starting from QCIF (176×144) up to HD 1080p 
(1920×1080) and for different motion types. 

Table 1 summarizes the characteristics of the sequences 
that were used in this experiment. 

The impact of choosing the variable block size can be 
clearly seen. For example, the traditional 16×16 has been 
chosen as the optimal mode for almost 50% of the cases in 
the “Shields” sequence, a sequence with regular pan 
movement, while it was as small as 5% for high irregular 
movement in “Football” sequence, for which the small block 
sizes (4×4) has been the best option in 40% of the cases. 
In addition, a more informative test was performed by 
running the JM several times for each sequence, disabling 
one or more inter search/decision mode in each run, then 
comparing the R-D curves generated from all runs. Figure 3 
shows the impact of disabling some of the searching modes 
on the overall encoder efficiency. The sequence used for 
this test was Foreman CIF (30 fps). For simplicity, the 
testing conditions for the encoder runs included the 
following restrictions: the usage of only one reference frame 
and the usage of “Low Complexity Mode” for Rate-
Distortion optimization. Each of the curves was generated 
with a different inter-search/decision-mode configuration 
than the other. Table 2 provides a description of the different 
cases used to create Figure 3. Any single curve in the graph 
represents a typical relation between rate and distortion in 
digital video coding. As expected, the two parameters are 
inversely proportional. This is reasonable since the better 
quality needed to be preserved in an encoded video 
sequence, the more bits required to represent the generated 
bitstream.  

Rate is typically represented by the minimum number of 
bits per seconds required to transmit the generated bitstream 
without affecting the continuity of the reconstructed 
sequence. It depends on two parameters: the size of the 
generated bitstream, and the resolution/frame rate of the 
specific sequence. The quality of the reconstructed sequences 
is measured by the most widely-used Peak Signal to Noise 
Ratio (PSNR) parameter. Due to its easy calculation, PSNR 
is the most famous objective quality measurement in video 
coding. It is measured on a logarithmic scale and depends on 
the “Mean Squared Error” (MSE) between an original and an 
impaired image or video frame as shown in (1) and (2). F(i,j) 
and f(i,j) are the values of pixel (i,j) in the original and 
reconstructed images or video frame of resolution N×M, 
while (2n-1) is the highest-possible signal value in the video 
frame, where n is the number of bits per frame sample. 
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Figure 3 shows that the blue curve (Case 0, which uses all 
the variable block sizes) is the optimum one in terms of R-D 
performance. The brown curve (Case 5, where only a fixed 
4×4 search/decision mode is used) has a relatively poor 
performance, especially at low bitrates (around 1 Mb/s), as 
most of the residual data is cut-off by the coarse quantization 
process (high QP value), giving more influence to the size of 
the encoded motion info on the output bitrate. Besides, the 
light-blue curve (Case 3, where only a fixed 16×16 
search/decision mode is used) also shows a poor 
performance, especially at high bitrates (around 6 Mb/s), 
when the savings achieved by representing each macroblock 
by only one motion vector becomes negligible when 
compared to the overhead of encoding the residuals, which 
becomes higher for macroblocks with more “activity” inside.  

Figure 4 shows that the generated R-D curves for all the 
tested sequences tend to demonstrate a relatively similar 
behaviour to what has been discussed above at different 
bitrates (the higher the sequence resolution, the higher the 
required bitrate).  

In conclusion, VBS ME/MD is an important tool that has 
been used in AVC to optimize the R-D performance of the 
encoder. It allows inactive regions and regular movements to 
be represented with an optimal amount of motion 
information (e.g., 16×16 blocks), while for fast and highly 
irregular movements, the finer blocks are used (e.g., 4×4 
blocks), achieving optimal error representation, at the cost of 
increased motion information. 

 

B. Direct Implementation of VBS ME/MD 
A feature of the way AVC reference software (JM) adopts 
Rate-Distortion Optimization (RDO) is by performing an 
exhaustive search for the “best” partitioning scheme (the 
one that gives the lowest R-D Cost) among all the 259 (44 
(8×8 or smaller) sub-modes + 1 (8×16) + 1 (16×8) + 1 
(16×16) modes) possible combinations. This can be shown 
in Figure 5  [2]. Hence, the JM searches exhaustively for the 
minimum possible distortion that can be achieved subject to 
a specific rate constraint. This can be expressed as follows: 
Find min(D) subject to R<Rc, which can be elegantly solved 
using Lagrangian optimization where a distortion term is 
weighted against a rate term as follows  [3]:  

 
Find min(J), where J = D + λR (3) 
 
where J is the R-D Cost that needs to be minimized. D is 

the Distortion. JM uses the Sum of Absolute Differences 
(SAD) as the metric of distortion because of its less 
computational requirements compared to other metrics. SAD 
is calculated using (4), where F(i,j) and f(i,j) are the values of 
pixel (i,j) in the reference and the candidate block 
respectively. R represents the Rate. The way to estimate the 
rate differs based on the type of rate-distortion optimization 
scheme being used. For high-complexity mode, JM uses the 
exact number of bits for header, motion info, and transform 
coefficients (the way they look after the last encoding stage) 
as the metric of rate as shown in (5). λ (the Lagrange 

parameter that determines the importance of rate with respect 
to distortion) is exponentially related to the Quantization 
Parameter (QP) after multiplying it with a double-precision 
weight as shown in (6). 

 

,

( , ) ( , )
i j

SAD f i j F i j
∀

= −∑ (4) 

R = Rheader (exact) + Rmotion (exact) + Rcoefficients (exact) (5) 
λ = weight×2(QP-12)/3 (6) 
 
For low-complexity mode, motion cost calculation is 

performed using a less complex scheme. A lookup table 
(LUT) is used to roughly estimate the number of bits needed 
to encode the difference between the motion vectors and the 
predictors as shown in (7). λ is also estimated roughly from 
QP by a lookup table as shown in (8). 

 
R = LUTMV_COST[MVcand-MVpred] (7) 
λ = LUTQP2QUANT[max(0, QP-12)] (8) 
 
For simplicity reasons, and practical hardware 

implementation, any reference to rate-distortion optimization 
in the remaining part of this paper is a reference to the low-
complexity mode, unless clearly mentioned otherwise. 
Recent complexity analysis was performed in  [4] to estimate 
the distribution of complexity among different modules of 
the AVC encoder. A typical profile of the encoder 
complexity (by files) based on an Intel® PentiumTM III 1.0 
GHz general purpose processor with 512 MB of memory is 
shown in the pie chart of Figure 6(a). Also, another run-time 
complexity analysis was performed in  [6], where the 
reference software (Baseline profile) was executed on a Sun® 
BladeTM 1000 with UltraSPARCTM III 1 GHz processor. The 
run time percentage (approximated to the nearest integer 
value) of each module is shown in the pie chart of Figure 6(b). 
The figure shows that the computational requirements of 
motion estimation/compensation typically represent from 
70% to 90% of the overall encoder computational 
requirements for a typical AVC encoder, which makes it a 
primary candidate for hardware acceleration. Besides, this 
module is the main target of encoder computational 
requirements reduction for most researchers. Most of the 
efforts aim at introducing “reasonable” quality degradation 
as an expense of computational requirements savings 
compared to the optimal (yet very complex) exhaustive-
search solution. The next section surveys some of those 
efforts. 

 

C. Recent Efforts to Reduce Complexity of VBS ME/MD 
Many algorithms for fast ME and MD have been 

proposed in the literature. Most of them rely on the fact that 
human’s visual system is typically insensitive to the 
degradation in PSNR that is less than 0.2 dB. Hence, they 
tend to reduce the computational requirements, at the 
expense of minor “unrecognizable” quality degradation. In 
this section, an overview of the recent efforts to reduce the 
VBS ME/MD in AVC is given. Some of the algorithms that 
have been introduced recently rely on exploiting video 
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features such as texture and edge information to predict the 
best possible mode. As an example, Wu et al  [7] proposed to 
adjust the block sizes based on the homogeneity of the region 
in the MB. They observed that homogenous regions, which 
are determined by using the magnitude of the edge vector, 
tend to move together, and hence should not be split into 
smaller blocks. The results they provided indicate that the 
technique is not as effective for dynamic sequences as it is 
for inactive ones. They achieved a maximum computational 
requirements reduction of 45% for inactive sequences, but it 
did not exceed 10% reduction for active sequences. The tests 
they performed were on low resolution sequences only 
(QCIF and CIF), which leaves the effectiveness of their 
algorithm with high resolution sequences questionable. Lin 
et al  [2] developed a combined algorithm for fast motion 
estimation and mode decision by exploiting the motion and 
cost information available from blocks that have been 
processed prior to the current block. The authors proposed to 
predict the mode of a current MB based on previously coded 
MBs, then perform a fast ME for this predicted mode. If the 
resulting cost is less than an adaptively calculated threshold, 
the algorithm skips any further calculations for this block. 
Although the authors did not investigate the potential of their 
algorithm for HW implementation, the way they described it 
makes it less likely to be implemented in hardware. A 
possible candidate HW design should be able to handle the 
worst case scenario, which is to calculate all the complex R-
D costs for all the seven modes. This task is too complex to 
be executed within a reasonable number of clock cycles that 
fits typical encoder systems requirements unless a huge (non 
realistic) design is implemented. The authors did not provide 
any computational requirements analysis to justify the time 
savings they are claiming. They also claim that they 
observed a maximum PSNR degradation of 0.4 dB in their 
experiments on CIF sequences, which is big enough to 
generate visually noticeable defects. Yu et al  [8] proposed a 
strategy that incorporates temporal similarity detection as 
well as the detection of different moving features within a 
macroblock. Their experiments were performed on QCIF 
resolution only, and they showed up to 9% bitrate overhead 
with highly dynamic sequences. The authors did not provide 
any visual justification of the quality they are claiming. Also 
they did not show any potential for hardware 
implementation. In  [9], the author proposed an algorithm that 
relies mainly on two predictive factors: intrinsic complexity 
of the MB and mode knowledge from the previous frame. 
The algorithm added more than 5% bitrate overhead for 
dynamic sequences, and the maximum achieved time saving 
for all the tested QCIF and CIF sequences was 30%. 

Tourapis et al  [10] proposed to extend and adapt the 
concept of the Enhanced Predictive Zonal Search (EPZS) 
motion estimation algorithms within the AVC standard. 
They proposed additional modifications to the predictor 
consideration, and introduced a new refinement pattern and a 
new iterative refinement process to improve the efficiency of 
the algorithms. The results of their experiments on selected 
CIF sequences showed a speedup in the motion estimation 
process (without providing enough computational 
requirements analysis to justify this speedup). However, in 

that paper, the authors did not introduce any enhancements in 
the mode decision process. In  [11], the authors had more 
focus on mode decision. They proposed a fast mode decision 
mechanism by considering that the mode decision error 
surface is monotonic with partition block size. Their 
approach depends on searching specific block sizes first, 
then based on the values of the resulting cost parameters, a 
decision was made whether to perform an early termination 
or not. If not, all possible search modes are performed. This 
means that for highly dynamic sequences, the speedup of the 
mode decision process is expected to be negligible. The 
authors did not provide any computational requirements 
analysis or comparisons, and they reported a speedup in the 
encoding process of the examined CIF sequences, without 
describing the configurations of the reference (JM) they are 
comparing with. In  [12], the authors proposed fast mode 
decision and motion estimation processes with main focus on 
MPEG–2/AVC transcoding. The algorithm utilizes the 
motion information from MPEG–2 for an AVC encoding 
using EPZS. The target application for this work had limited 
processing power; hence the authors ignored the small sub-
partitions that AVC standard offers. This had its effect on the 
obtained results for the tested CIF sequences. Highly 
dynamic sequences showed more than 0.3 dB degradation in 
PSNR, with a speedup of an order of magnitude in the 
encoding time.  

Lee et al  [13] proposed an early skip mode decision as 
well as a selective intra mode decision. They reported a 
maximum improvement of 30% in the required encoding 
time. Ahmad et al  [14] proposed a scheme that is based on a 
3D recursive search algorithm and takes into consideration 
the motion vector cost and previous frame information. They 
also reported a maximum decrease of 30% in the required 
encoding time. However, they did not provide any quality 
assessments; neither did they provide any computational 
requirements analysis of their algorithm. In  [15], Kim et al 
proposed an algorithm that uses the property of All Zero 
Coefficients Block (AZCB), obtained by quantization and 
coefficient thresholding, to skip unnecessary modes. The 
authors reported an average speedup of two times for the 
tested QCIF and CIF sequences. However, based on the 
algorithm flow that they provided, the algorithm is expected 
to lose its computational efficiency when applied to highly 
dynamic sequences, as no early skipping will be performed 
in this case, and all the inter-search modes will be required. 
Jiang et al  [16] proposed a low complexity VBS ME 
algorithm for video telephony communication. Their 
technique included classifying macroblocks in a frame into 
types, and applying different searching strategies for each 
type. They based their cost calculations on SAD only, 
ignoring the rate component. They did not propose any 
modification to the MD module. Hence, the algorithm 
efficiency is limited to the usage of the proposed ME 
algorithm only. In spite of the achieved time savings 
compared to the full search approach, the reported results 
showed noticeable degradation in encoding time when 
compared to other fast ME algorithms. Also, the authors’ 
experiments on QCIF and CIF sequences showed that the 
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algorithm is confined in applications with sequences of low 
motion and high temporal correlation. 

Tanizawa et al  [17] proposed a fast rate-distortion 
optimization method targeting low complex mode decision. 
The proposed method was based on a 2-step hierarchical 
mode decision. In the first step, a simple R-D cost without 
tentative coding is calculated. One or more coding 
candidates are selected using the obtained R-D cost. The 
number of candidates varies with the value of the 
quantization parameter (QP). In the second step, the 
conventional RDO method is applied to the candidates that 
have been chosen in the first step. The authors timing 
comparisons did not include the motion estimation operation. 
A disadvantage of this method is its unsuitability for 
hardware implementation due to the extremely complex 
RDO calculation that is applied for the successful candidates 
of the first step. Dai et al proposed an algorithm in  [18] that 
limits the candidate modes to a small subset by pre-encoding 
a down-sampled small version of the image. They reported a 
50% reduction in encoding time for the three tested CIF 
sequences. Kuo et al  [19] also proposed a multi-resolution 
scheme and an adaptive rate-distortion model with early 
termination rules to accelerate the search process. In 
addition, the authors derived a rule to estimate the bits 
resulting from residual coding. The reported results showed 
significant improvement in the encoding time for the tested 
CIF sequences when compared with the exhaustive full 
search technique. However, the algorithm showed poor R-D 
performance when applied to highly dynamic sequences. 
Chen et al  [20] proposed a fast bits estimation method for 
entropy coding to be used in RDO instead of calculating the 
actual bitrate, which is an extremely complex operation if 
performed for each candidate location. The algorithm is 
based on simplifying the CAVLC only, which makes it 
inapplicable to the Main- and High-profile encoders that are 
intended to be configured to use CABAC. The authors did 
not propose any simplification to the motion search and 
mode decision strategy, which makes a hardware 
implementation of their method unpractical. 

Rhee et al  [21] introduced one of the earliest proposals to 
use VBS ME. In their work, they proposed two algorithms. 
One of them was extremely computationally extensive and 
they proposed to use it as a reference by the following 
research work in the field, while the other was a simpler 
version that is based on heuristics. Their work relied on local 
motion information. A set of candidate motion vectors of 
each fixed size small block is first obtained by full search 
whose matching error is less than a prescribed threshold. 
Neighbouring blocks are then merged in a quad-tree manner 
if they have at least one motion vector in common. The only 
modes the algorithm supported were the square modes (4×4, 
8×8, and 16×6). Tu et al extended this work in  [22] by taking 
the quantization parameter and the Lagrange cost function 
into consideration to determine the threshold for comparing 
the distance between the motion vectors of the two blocks. 
The experimentation was performed on QCIF and CIF 
sequences. No timing or computational requirements 
analysis was introduced. The authors proposed to start with 
8×8 searches, and then merge all the way up in the tree to 

obtain larger block sizes. Hence the supported modes were 
(8×8, 16×8, 8×16, and 16×16) only. The authors then 
proposed in  [23] a merge and split scheme, which gave the 
algorithm the ability to represent all search modes. They 
proposed to perform a “simple” refinement search after every 
merge or split operation. This extra search would introduce 
relatively large complexity overhead to the motion 
estimation module if the complexity of the main motion 
estimation search is comparable. The obtained results for the 
tested QCIF and CIF sequences were obtained at QP = 30 
only and no rate distortion curves were given. In  [24], the 
authors used the same merging scheme, with the possibility 
of excluding some low-probability modes in the mode 
decision process. Again, this extra search that is required 
after each merging or splitting would introduce relatively 
large complexity overhead to the motion estimation module 
if the complexity of the main motion estimation search is 
comparable.  

Ates et al  [25] proposed a hierarchical block-matching-
based motion estimation algorithm that uses a common set of 
SAD computations for motion estimation of different block 
sizes. Based on the hierarchal prediction and the median 
motion vector predictor of AVC, the algorithm defines a 
limited set of candidate vectors; and the optimal motion 
vectors are chosen from this common set. The authors 
showed their complexity analysis; however, they did not 
support it with experimental timing measurements. This 
algorithm showed acceptable PSNR degradation and 
increase in required bitrates for the tested QCIF, CIF, and 
SIF sequences. The next section describes the proposed VBS 
selection scheme, accompanied with some theoretical 
computational requirements analysis to show its 
effectiveness. 

 

III. THE PROPOSED VBS MODE DECISION ALGORITHM 
 

The proposed variable block size motion estimation and 
mode decision algorithm is based on a merging scheme. It is 
a bottom-up approach approximation method that exploits 
the correlation of the smaller blocks motion vectors in a 
uniform or close motion vector field to build up the larger 
blocks. The algorithm uses the available typical motion 
estimation information such as predictor, refinement 
displacement, and cost. The cost here maybe directly 
considered as the R-D Cost described in (3) assuming that it 
is going to be pre-calculated in the motion estimation engine 
and passed as an input to the algorithm, or it might be 
considered as the SAD requiring the calculation of the R-D 
Cost within the algorithm module. A description of the main 
data structure of the algorithm is given in Section A. In 
Section B, a theoretical computational requirements analysis 
is introduced to emphasise the computational efficiency of 
the proposed algorithm. Finally Section C describes the 
flow of the proposed algorithm. 
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A. The Main Data Structure of the Proposed Algorithm 
The main data structure of the algorithm is shown in 

Figure 7. It is mainly a decision tree that is used to decide 
about the “suitable” neighbouring nodes to approximately 
merge them upwards forming a parent node. The algorithm 
is based on the observation that, if the cost of a parent block 
is higher than the sum of costs of the children blocks, then 
the even larger block-size modes can be excluded. Each 
node in the tree represents a “legal” block partition. A node 
is represented by its best-representing motion vector that 
have been calculated by block-based motion estimation (or 
interpolated by merging), the predictor used as the anchor to 
start searching around, and the R-D cost accompanied with 
this motion vector and motion vector predictor. 

 

B. Computational Complexity Analysis 
The tree consists of four decision-levels and five nodes-

levels as shown in Figure 7. Roughly, it can be assumed that 
all the even nodes-levels of the tree (level 0, level 2, and 
level 4) require approximately the same computational 
requirements (1x each level) to find the best motion vectors 
for all the nodes of a level and to calculate their 
accompanied costs, while the two odd nodes-levels of the 
tree (level 1 and level 3) require approximately a 
computational requirements of (2x each level) to find the 
best motion vectors and costs. 

The overall ME/MD module computational requirements 
can be viewed as the sum of the VBS best motion vector 
search computational requirements and the VBS mode 
decision computational requirements. This is shown in (9). 

 
Comp_Req_Total = Comp_Req_MV_Searches + 

Comp_Req_VBS_MD 
(9) 

 
Hence, the overall inter-related computational 

requirements of the ME/MD module in the JM can be 
estimated using Figure 5 and Equation (9). Due to the 
exhaustive nature of the direct JM implementation, it is 
required to perform all the types of searches for all possible 
modes, which is equivalent to 7x, in order to find the best 
match for each and every block type. Also, it is required to 
find the best partitioning scheme among all the 259 possible 
combinations, a relatively complex operation, whose 
computational requirements will not be described in details 
due to its dependence on the way it is implemented. Due to 
the dominance of the search computational requirements 
over the mode decision one, any reference to (JM 7x) in the 
remaining part of this paper is a reference to the exhaustive-
search JM implementation of the ME/MD module. 

By nature, the proposed merging tree makes the ME/MD 
module simpler than the JM implementation due to its 
hierarchical mode decision approximation scheme (simpler 
mode decision operation). However, as mentioned above, the 
dominant part that determines the overall module 
computational requirements is the influence it has on the 
computational requirements of the motion vector search part 

(first parameter of (9)). Therefore, the most effective cost 
reduction technique for the overall module would come by 
reducing the required number of searches. This led to the 
idea of allowing the algorithm to meet a wider base of 
market demands by making it adjustable to work at three 
different operating points, trading between computational 
requirements and R-D performance. The key concept is to 
reduce the required searches as much as possible, while still 
keeping the R-D degradation within the different allowance 
windows offered by different customers. Figure 8 describes 
the difference between the three operating points. The 
encircled levels refer to levels where the motion vectors of 
all their nodes are found by performing block-based 
searches. The arrows refer to the interpolated levels and 
where they are interpolated from. For operating point 1, the 
algorithm requires performing the 4×4, 8×8, and 16×16 types 
of searches. This corresponds to a search computational 
requirements of 3x (based on the metric mentioned above), 
which is less than half the computational requirements of the 
JM exhaustive implementation (JM 7x). The motion vectors 
and the predictors of the other types of modes (4×8, 8×4, 
8×16, and 16×8) are “interpolated” using the actually-
calculated motion data of the child nodes in the levels that 
directly precede those levels in the merging tree structure. 
The algorithm working at this operating point would fit the 
requirements of high-resolution applications, such as SD and 
HD broadcasting. Operating point 2 is the second mode of 
the algorithm. It requires performing 4×4 and 8×8 types of 
searches only, reducing the search computational 
requirements to 2x, while the motion vectors and the 
predictors of the other types of modes (4×8, 8×4, 8×16, 
16×8, and 16×16) are “interpolated” using the tree structure. 
Operating point 3 is also introduced to meet the 
requirements of applications such as simple handheld 
devices where reduced computational requirements (and 
power consumption) is the main priority. This mode requires 
performing 4×4 searches only (level 0 of the tree), reducing 
the search computational requirements to 1x, while the 
motion vectors and the predictors of all the other types of 
modes (4×8, 8×4, 8×8, 8×16, 16×8, and 16×16) are 
“interpolated” in a bottom-up fashion all the way through the 
tree structure. 

Table 3 shows the schemes that are going to be referred to 
in the next section, with a brief description of each. Note that 
JM 1x, JM 2x, and JM 3x, are generated by running the JM, 
disabling some of inter search/decision modes. They are 
mainly included to evaluate the performance of VBS 1x, 
VBS 2x, and VBS 3x (operating point 3, 2, 1) respectively 
compared to their corresponding almost-same-
computational-requirements JM implementations (in 
addition to the main comparison with the optimum R-D 
performance of JM 7x). A ‘√’ in the above table refers to an 
actual MV search and mode decision. A ‘–’ refers to an 
absence of this block-type search and mode decision, while 
an ‘M’ refers to a block-type that is interpolated by merging 
of child nodes. The number of comparisons required for 
VBS 1x, 2x, and 3x mode decision are derived assuming that 
each merging rule requires a single comparison. The MD 
computational requirements of VBS 2x and 3x also include 
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the additions and comparisons required for early mode 
skipping, while the computational requirements of the 
control logic are not stated. The MD computational 
requirements for JM 2x and 3x are not given in details 
because of being implementation-dependent. 

 

C. Description of the Proposed Algorithm 
In this section, a description of the algorithm that has 

been implemented is provided. The coverage of the 
algorithm to the three operating points mentioned above is 
also discussed. Figure 9 shows the flowchart of the algorithm. 
As can be seen, at operating point 3, the tree structure is 
parsed (checked for merging) starting from its level 0 (L0) 
all the way up to its level 4 (L4). At operating point 2, the 
sum of costs (using (3)) of each four neighbouring 4×4 nodes 
(each L0 quad) is compared with the corresponding 8×8 cost 
to decide whether to start with 4×4 quads followed by 
merge-checking for one level up, or to start with the 8×8 
level (L2) followed by merge-checking for two levels up. 
Operating point 1 differs from operating point 2 by having 
an additional check for possible early decision to choose 
16×16 mode, which makes the last-level merge-checking 
stage unnecessary. In Figure 9, it is assumed that the nodes 
costs are calculated on the spot; however, they can be passed 
as inputs to the VBS module as they have already been 
calculated during the search for best motion vectors. A key 
element that determines the efficiency of the above merging 
scheme is how accurate the merging rules are. On the other 
hand, its computational requirements are very influential in 
determining the second parameter in (9). Note that based on 
Figure 7, different rules maybe used for merge-checking of 
different nodes. However, for simplicity, the same merging 
rule is initially presumed to be applicable for all pairs of 
blocks. Other varieties of the algorithm may be applicable, 
such as changing the rule according to the level it is located 
in, or giving some nodes more priority than others by 
subjecting them to more accurate merging rules. It is clear 
that a suitable rule would be an accurate, yet simple one. The 
steps of the merge-checking rule are provided in Figure 10. 

It is worth mentioning that for generality, the shown 
pseudo-code is based on the assumption that each searched 
node has been searched using N_MV different motion 
vectors predictors (N_MV is assumed to be 4 as an 
example), or that N_MV successful candidates are elected by 
the ME search engine rather than only the best one per 
search. This means that each search node will be initially 
marked by 4 best motion vectors and 4 motion vector 
predictors, which would help avoiding falling into local 
minima. For simplicity, all the testing results mentioned in 
the next section have been generated after assigning N_MV 
to 1. Also it was found that using Th_x = Th_y = 0 is a 
reasonable choice. The next section shows the experimental 
analysis and results obtained by encoding various benchmark 
video sequences. 

 
 

IV. EXPERIMENTAL ANALYSIS AND RESULTS 
 

In this section, results of the performed experiments to 
evaluate the performance of the proposed algorithm are 
introduced. The main goal is to compare the algorithm at its 
three operating points to the different JM references 
mentioned in the previous section. Section A describes the 
method and experimentation environment, while Section B 
shows the detailed comparisons with the brutal-force method 
that is adopted by the reference software in terms of time 
complexity and R-D performance. 

 

A. Method and Experimentation Environment 
The evaluation process is done by performing a 

comprehensive test where various video sequences are 
encoded by seven versions of the encoder (see Table 3) 
throughout a specific range of Quantization Parameter (QP). 
The goal is to plot the seven generated R-D curves for each 
sequence to sense the closeness of the R-D performance of 
the encoder working with the proposed VBS ME/MD 
algorithm, to the optimum exhaustive solution. Besides, the 
different encoding times of various sequences with the tested 
versions of the reference software will be given, and 
compared to the “theoretical” computational requirements 
analysis that has already been introduced in Section B of the 
previous section. The sequences were selected to represent a 
variety of motion types. This helps in creating a wide range 
of input stimuli to test the algorithm behaviour. In order to 
cover a wider range of rate and quality requirements during 
the testing process, QP was set to vary throughout a broad 
range of values. 

 

B. Obtained Results 
This section starts by showing execution-time 

measurements and results in subsection 1, followed by the 
rate-distortion results in subsection 2. 

 
1) Execution Time Measurments and Results 

All the results that are discussed in this section have been 
obtained by running the seven versions of the AVC encoder 
(defined in Table 2) on a unified platform. Table 4 shows the 
time spent by each of the seven versions of the software on 
encoding ten frames of each of the tested sequences (with 
QP = 30). The values between parentheses represent the 
savings in computational time with respect to the JM7x 
version. The table shows that using VBS 1x, VBS 2x, or 
VBS 3x, reduces the encoding time of all the tested 
sequences at least by more than half when compared to the 
required encoding time for the pure JM 7x version. This 
conforms to the theoretical computational requirements 
analysis that has been discussed in Section B of the last 
section. The total encoding time for VBS 1x, VBS 2x, and 
VBS 3x is almost the same as for JM 1x, JM 2x, and JM 3x 
respectively (with minor increase due to the extra 
comparisons and additions). However, the next section 
shows that the improvement of the VBS nx algorithms over 
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the corresponding JM nx ones in terms of R-D performance 
is clear enough to neglect this minor complexity overhead, 
especially when targeting low bitrate applications. Also, the 
table shows that most of the encoding time is being spent on 
the motion estimation calculation, which conforms to the 
encoder complexity profile that was shown in Figure 6. Figure 
11 shows a graphical representation of the obtained results. 
The results show that the more motion a sequence contains, 
the more time it spends in motion estimation, which in turns 
translates to an overall increase in encoding time. 
 

2) Rate-Distortion Measurments and Results 
Figure 12 to Figure 14 show the R-D behaviour of the tested 

versions of the encoder, with an emphasis on the low-bitrate 
region. The figures show that the generated graphs are 
consistent with the expected behaviour of the algorithm. It is 
clear that for all the sequences, the lower the bitrate, the 
more effective the algorithm appears to act (at all operating 
points). This is because at lower bitrates, motion data have a 
comparable effect on bitrate to the residual data; hence any 
savings are highly sensible. 

For all sequences, VBS 1x may be used as an optimized 
version of JM 1x. Though, its performance is relatively poor 
when compared to VBS 2x, VBS 3x, or JM 7x, it can be 
used as a reasonable compromise when the target application 
requires low complexity and low power system with 
reasonable R-D behavior. For all the examined sequences, 
JM 7x does not outperform VBS 3x by more than 0.2 dB at 
any bitrate (around the target bitrate that suits the sequence 
resolution). 

VBS 1x, VBS 2x, and VBS 3x introduce enhancements 
over JM 1x, JM 2x, and JM 3x respectively. The 
enhancements become more sensible at low bitrates. For 
example, VBS 1x introduces huge enhancement (around 8 
dB) over JM 1x when encoding the sequence “Mobile and 
Calendar QCIF 30 fps” (Figure 14) targeting as low bitrate as 
29.5 Kbps. Also, the merging operation that was performed 
resulting in VBS 2x boosted the curve of JM 2x for the 
sequence “Miss America QCIF 30 fps” (Figure 13) by (6 dB) 
at 26.5 Kbps bitrate. 

In summary, the experimental analysis and results 
demonstrate the main contribution of the proposed 
algorithm. It is mainly the ability to exhibit acceptable R-D 
behavior for different sequences with various types of 
motion. Nevertheless, the ME/MD computational 
requirements are less than half the computational 
requirements of ME/MD of JM 7x. This leads to faster 
encoding time on software platforms, as well as smaller 
(hence less expensive) implementations on hardware 
platforms. 

 

V. CONCLUSION 
 

Having the VBS ME tool in the AVC standard improves 
its coding efficiency significantly. However, it also 
introduces extreme computational requirements to the 
encoder. The JM (AVC software reference model) has an 
exhaustive approach to implement VBS ME/MD. All seven 

types of motion estimation searches are performed, and then 
in the mode decision step, an exhaustive search follows to 
choose the best partitioning scheme among all possible 
combinations. Knowing that VBS ME and MD typically 
represent from 70% to 90% of the entire encoder 
computational requirements, many research efforts have 
been introduced in the literature to reduce their 
computational requirements. However, most of the solutions 
were local to specific types of simplified motion estimation 
searches. 

In this paper a computationally-efficient VBS selection 
scheme was introduced. The scheme is applicable to any 
VBS ME module, leading to significant reduction in its 
computational requirements with minor loss in the quality of 
the reconstructed picture. Three versions of the proposed 
algorithm have been introduced in order to meet different 
applications’ demands. Evaluation experiments were 
performed on three benchmark video sequences with various 
spatial and temporal characteristics ranging from smooth 
slow motion, up to random fast motion. Timing analysis of 
the performed experiments showed that the proposed 
algorithm (with its three versions) reduces the encoding time 
of all the tested sequences at least by half when compared to 
the required encoding time for the pure brutal-force solution. 
Objective quality measurement is represented by R-D 
performance. It has shown that, for all the performed tests, 
VBS 1x, VBS 2x, and VBS 3x introduce enhancements over 
JM 1x, JM 2x, and JM 3x respectively, with minor 
computational overhead. In general, the proposed algorithm 
is mostly effective with low-power decoder devices, with 
reduced computational resources, especially when targeting 
low-bitrate video applications. 
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Figure 1. Variable block sizes defined in AVC 
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Figure 2. Optimal distribution of the various block sizes in the inter-predicted frames 
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Table 1. Summary of the characteristics of the tested sequences 
 

 
Sequence 

 
Type 

 
Resolution 

Frame 
Rate 

 
Description of the first ten 

frames 

 
Type of motion 

Foreman QCIF 176×144 30 fps A man talking to a still camera Slow limited motion 
Foreman CIF 352×288 30 fps A man talking to a still camera Slow limited motion 
Football CIF 352×288 30 fps A part of a football game Extensive motion 

 
City 

SD 
(4CIF) 

 
704×576 

 
30 fps 

A scene of a city taken with a 
panning camera 

 
Regular motion 

 
Shields 

HD 
(720p) 

 
1280×720 

 
60 fps 

A person pointing at a group of 
shields while the camera is 

panning 

Camera shooting of 
highly textured 

scenes 
 

Tractor 
HD 

(1080p) 
 

1920×1080 
 

60 fps 
A Tractor working at field Camera shooting of 

very high resolution 
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Figure 3. R-D behaviour of Foreman CIF (30 fps) with various inter searches/decision-modes enabled 
 
 
 

Table 2. Description of the different curves in  
Figure 3 

 
Curve Description 
Case 0 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 search/decision modes are enabled 
Case 1 16×16, 8×8, 8×4, 4×8, and 4×4 search/decision modes are enabled 
Case 2 16×16, 8×8, and 4×4 search/decision modes are enabled 
Case 3 Only 16×16 search/decision mode is enabled 
Case 4 Only 8×8 search/decision mode is enabled 
Case 5 Only 4×4 search/decision mode is enabled 
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Figure 4. R-D behaviour of different sequences with different inter                                                     
                            searches/decision-modes enabled 
                           (a) Foreman QCIF (30 fps) 
                           (b) Mobile CIF (30 fps) 
                           (c) Football CIF (30 fps) 
                           (d) Shields HD 720p (60 fps) 
 
 
 

 
 
 
 
 
 
 
 
 

Figure 5. Exhaustive search for best partition scheme as adopted in AVC reference software 
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                             Figure 6. AVC encoder computational complexity 
                                         (a) profiled by files (from  [4]) 
                                         (b) profiled by functional modules (from  [6]) 
 

 
 

 
 

Figure 7. The main data structure of the algorithm: The merging tree 
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Figure 8. Required searches and interpolations for the algorithm’s three                
                                                             operating points      
                          (a) The merging tree                      (b) Operating point 1 (VBS 3x) 
                          (c) Operating point 2 (VBS 2x)     (d) Operating point 3 (VBS 1x) 

 
 
 
 
 
 

Table 3. Required searches and computational complexities for the tested references 
 

Search/Decision Modes  
Ref. 4×4 8×4 4×8 8×8 16×8 8×16 16×16 

 
Computational Requirements 

JM 7x √ √ √ √ √ √ √ 7x MV search + searching 259 combs for MD 
JM 3x √ – – √ – – √ 3x MV search + searching 17 combs for MD 
JM 2x √ – – √ – – – 2x MV search + searching 16 combs for MD 
JM 1x √ – – – – – – 1x MV search + No mode decision 
VBS 3x √ M M √ M M √ 3x MV search + 26 comps + 18 adds (for MD) 
VBS 2x √ M M √ M M M 2x MV search + 25 comps + 12 adds (for MD) 
VBS 1x √ M M M M M M 1x MV search + 25 comps (for MD) 
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Figure 9. Flowchart of the proposed algorithm  
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Figure 10. Steps of the merge-checking rule 

1. If one of the nodes is “unavailable”, then the parent node is also “unavailable”, else: 
 

2. Calculate the number of identical (or semi-identical) MVs in the pool of candidate MVs of each of the 
two nodes (4×4 = 16 possible pairs of MVs combinations). A simple rule to identify semi-identical MVs 
would be: 

D_MV_x = abs(MV_x1 - MV_x2); 
D_MV_y = abs(MV_y1 - MV_y2); 

 
n_semi_iden_MV = 0; 

If ((D_MV_x <= Th_x) && (D_MV_y  <= Th_y)){ 
semi_identical = true; 
n_semi_iden_MV++; 

} 
 Else 

  semi_identical = false; 
 
 

This operation should be repeated to count the number of semi-identical MVs between the two nodes under 
test (n_semi_iden_MV). 

 
3. Decide whether to merge the two nodes under test or not based on the following rule: 

If (0<QP<12)  merge = ((n_semi_iden_MV >12)?true:false); 
Else if (13<QP<25) merge = ((n_semi_iden_MV>9)?true:false); 
Else if (26<QP<38) merge = ((n_semi_iden_MV >6)?true:false); 

Else   merge = ((n_semi_iden_MV _MV>3)?true:false); 
 

4. If the two nodes are chosen to be merged, then the parent node is marked as “available”. The average 
MVs of the best 4 pairs of semi-identical MVs will be assigned to the parent node, This will be used to 
decide if this parent node is to be merged with its neighbour next-level node or not.  

 
5. If the two blocks are not to be merged, then each of them will be marked with its best MV out of its 4 

candidate ones, and the parent node will be marked as “unavailable”. 
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Table 4. Encoding time of the tested sequences via the seven versions of the reference software 
 
 

 Carphone 
QCIF (30 
fps) 

Miss 
America 
QCIF (30 
fps) 

Mobile 
QCIF (30 
fps) 

Total 
Enc. time 
(sec) 

 
7.11 

 
6.83 

 
7.2 

 
 
JM 

7x Time 
spent on 
ME (sec) 

 
6.794 

 
6.5 

 
6.9 

Total 
Enc. time 
(sec) 

3.302 
(53.56%) 

3.01 
(59.93%) 

3.11 
(56.81%) 

 
 
VBS 

3x Time 
spent on 
ME (sec) 

2.861 
(59.76%) 

2.7 
(58.46%) 

3.0 
(56.52%) 

Total 
Enc. time 
(sec) 

3.049 
(57.12%) 

2.99 
(56.22%) 

3.1 
(56.94%) 

 
 
JM 

3x Time 
spent on 
ME (sec) 

2.877 
(57.65%) 

2.71 
(58.31%) 

2.9 
(57.97%) 

Total 
Enc. time 
(sec) 

2.172 
(69.45%) 

2.153 
(68.48%) 

2.2 
(69.44%) 

 
 
VBS 

2x Time 
spent on 
ME (sec) 

1.952 
(72.55%) 

1.9 
(70.77%) 

2.1 
(69.57%) 

Total 
Enc. time 
(sec) 

2.172 
(69.45%) 

2.14 
(68.67%) 

2.18 
(69.72%) 

 
 
JM 

2x Time 
spent on 
ME (sec) 

1.892 
(72.15%) 

1.85 
(71.54%) 

2.0 
(71.01%) 

Total 
Enc. time 
(sec) 

1.061 
(85.08%) 

0.95 
(86.09%) 

1.2 
(83.33%) 

 
 
VBS 

1x Time 
spent on 
ME (sec) 

0.813 
(88.33%) 

0.75 
(88.46%) 

0.9 
(86.96%) 

Total 
Enc. time 
(sec) 

1.046 
(85.29%) 

0.9 
(86.83%) 

1.1 
(84.72%) 

 
 
JM 

1x Time 
spent on 
ME (sec) 

0.797 
(88.27%) 

0.74 
(88.62%) 

0.8 
(84.06%) 
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Figure 11. Time spent by the seven versions of the software on encoding the tested sequence 
                                   (a) Total encoding time (b) ME encoding time 
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Figure 12. R-D behaviour for Carphone QCIF (30 fps) at low bitrate 
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Figure 13. R-D behaviour for Miss America QCIF (30 fps) at low bitrate 
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Figure 14. R-D behaviour for Mobile and Calendar QCIF (30 fps) at low bitrate 
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