
Efficient Variable Block Size Selection for AVC Low Bitrate Applications

Ihab Amer and Graham Jullien
Advanced Technology Information Processing Systems

(ATIPS)
2500 University Drive, NW

Calgary, AB, Canada, T2N 1N4
e-mails: {amer, jullien}@atips.ca

Wael Badawy
IntelliView Technologies Inc.

808-55 Avenue NE
Calgary, AB, Canada, T2E 6Y4
e-mail: badawy@intelliview.ca

Adrian Chirila-Rus and Robert Turney
DSP Systems Engineering, DSP Division, Xilinx Inc

115 South 4th street
Watertown, WI, USA, 53094

e-mails: {adrian.chirila-rus, robert.turney}@xilinx.com

Rana Hamed

German University in Cairo (GUC)
Main Entrance, Fifth District

New Cairo City, Egypt
email: rana.magdy-hamed@guc.edu.eg

Abstract— The Advanced Video Coding (AVC) standard
proposes the usage of Variable Block Size (VBS) motion-
compensated prediction and mode decision aiming for
an optimized Rate-Distortion (R-D) performance. Unlike
Fixed Block Size (FBS) motion-compensated prediction,
where all regions of the pictures are treated similarly in
terms of temporal prediction, VBS increases the
efficiency of encoding by allowing more active regions to
be represented with more bits than less active ones. The
main concern regarding the usage of VBS motion-
compensated prediction is the dramatic increase it adds
to the encoder computational requirements, which not
only prevents the encoder from satisfying real-time
constraints, but also makes it impractical for hardware
implementation. This paper presents an efficient VBS
selection scheme, which can be applied to any VBS
Motion Estimation (ME) module, leading to significant
reduction in its computational requirements with minor
loss in the quality of the reconstructed picture. The
computational requirements reduction is achieved by
minimizing the number of required ME searches and
simplifying the Mode Decision (MD) operation. In order
to meet different applications’ demands, the proposed
algorithm can be adjusted to function at any of three
operating points, trading off computational
requirements with R-D performance. In the paper, the
algorithm is described in detail, focusing on the
theoretical computational requirements savings. This
theoretical analysis is then supported with simulation
results performed on three benchmark video sequences
with various types of motion.

Keywords- H.264/AVC, motion estimation, variable block
size.

I. INTRODUCTION

To achieve a high coding efficiency, AVC deploys a set
of new features in addition to enhancing a set of previously
used features. In the inter-frame motion prediction, AVC
allows for the usage of variable block sizes motion
estimation/compensation that can support block sizes of
16×16, 16×8, 8×16 and 8×8 resulting in significant
performance improvement. Even more, in the case when an
8×8 mode is chosen, further smaller blocks of sizes 8×4, 4×8
and 4×4 can be used. This method improves the motion
tracking capabilities of the encoder by allowing inactive
regions and regular movements to be represented with an
optimal amount of motion information (e.g., 16×16 mode is
represented by one motion vector), while for fast and highly
irregular movements, the finer blocks can be used at the cost
of increased motion information, but optimal error
representation. In terms of computational and memory
requirements, motion estimation is by far the most complex
module in the entire AVC encoder. As will be shown later,
recent studies show that it represents between 70% and 90%
of the entire encoder computational requirements. The
increase in computational and operational requirements
brought by the usage of such new features requires
algorithmic and implementation enhancements so that the
compression algorithm can become useful in real
applications. As a step towards the design and
implementation of an entire computationally-efficient AVC
encoder, this paper proposes a solution to the increased
computational requirements of the AVC variable block size
motion estimation/compensation (and mode decision)
module. A novel, computationally-efficient algorithm for
variable block size motion estimation and mode decision
(acting at three operating points that meet various
applications’ requirements) is developed and described. The

9

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

obtained simulation results and analysis show that, for the
variety of tested benchmark sequences, the encoder
computational requirements can be reduced to less than half,
at the expense of “minor” degradation in the quality. The
work in this paper further emphasises on the work that has
been introduced in [1].

The remainder of this paper is organized as follows:
Section II describes the key concept behind the adoption of
VBS ME/MD, showing its necessity, and the
computationally-expensive way it is implemented in the
direct approach of the AVC software reference model. A
survey of recent efforts to solve this computational
requirements issue is also given. In Section III, the proposed
VBS selection scheme is described, accompanied with some
theoretical computational requirements analysis to show its
effectiveness. Section IV shows and discusses the
experimental analysis and results obtained by encoding
various benchmark video sequences. Then finally, Section V
concludes this paper.

II. VBS MOTION ESTIMATION AND MODE DECISION

AVC defines seven block sizes for inter-prediction. The
seven modes are shown in Figure 1. During the encoding
process, an ideal encoder has to examine all these modes to
achieve the best inter-prediction, which requires performing
all the seven modes of searches, and then examining all the
259 possible combinations of macroblock (MB) partitioning
schemes to choose the best one out of them. This VBS
motion estimation and mode selection process result in
significant performance improvement (in terms of rate-
distortion). This is because, on the contrary to Fixed Block
Size Motion Estimation (FBSME), where all sub-blocks in a
MB have the same size, Variable Block Size (VBS) ME
improves the motion tracking capabilities of the encoder by
allowing it to give more “attention” to highly active sub-
blocks (representing an active region with more sub-blocks
would better describe it). However, this leads to dramatic
increase in the computational requirements of the encoder
compared to traditional FBSME-based encoders.

This section overviews the main concept of VBS
ME/MD. It starts with Section A, where the necessity of
VBS ME/MD is investigated. Then in Section B, a
description of the AVC reference software implementation
approach is given. Finally, Section C summarizes some
recent efforts to reduce the computational requirements of
VBS ME/MD.

A. Necessity of VBS ME/MD
In this section the necessity of VBS ME is evaluated by

first demonstrating its usage when encoding different
sequences with different types of motion, then by comparing
the reconstructed sequences R-D performance when VBS
ME is fully or partially disabled.

Figure 2 shows the occurrence percentage of different
block sizes as chosen by the AVC software reference model
“Joint Model JM 10.2”, running with all the seven block

mode types enabled. Full search is used for motion
estimation. The test has been performed for a wide range of
sequences, starting from QCIF (176×144) up to HD 1080p
(1920×1080) and for different motion types.

Table 1 summarizes the characteristics of the sequences
that were used in this experiment.

The impact of choosing the variable block size can be
clearly seen. For example, the traditional 16×16 has been
chosen as the optimal mode for almost 50% of the cases in
the “Shields” sequence, a sequence with regular pan
movement, while it was as small as 5% for high irregular
movement in “Football” sequence, for which the small block
sizes (4×4) has been the best option in 40% of the cases.
In addition, a more informative test was performed by
running the JM several times for each sequence, disabling
one or more inter search/decision mode in each run, then
comparing the R-D curves generated from all runs. Figure 3
shows the impact of disabling some of the searching modes
on the overall encoder efficiency. The sequence used for
this test was Foreman CIF (30 fps). For simplicity, the
testing conditions for the encoder runs included the
following restrictions: the usage of only one reference frame
and the usage of “Low Complexity Mode” for Rate-
Distortion optimization. Each of the curves was generated
with a different inter-search/decision-mode configuration
than the other. Table 2 provides a description of the different
cases used to create Figure 3. Any single curve in the graph
represents a typical relation between rate and distortion in
digital video coding. As expected, the two parameters are
inversely proportional. This is reasonable since the better
quality needed to be preserved in an encoded video
sequence, the more bits required to represent the generated
bitstream.

Rate is typically represented by the minimum number of
bits per seconds required to transmit the generated bitstream
without affecting the continuity of the reconstructed
sequence. It depends on two parameters: the size of the
generated bitstream, and the resolution/frame rate of the
specific sequence. The quality of the reconstructed sequences
is measured by the most widely-used Peak Signal to Noise
Ratio (PSNR) parameter. Due to its easy calculation, PSNR
is the most famous objective quality measurement in video
coding. It is measured on a logarithmic scale and depends on
the “Mean Squared Error” (MSE) between an original and an
impaired image or video frame as shown in (1) and (2). F(i,j)
and f(i,j) are the values of pixel (i,j) in the original and
reconstructed images or video frame of resolution N×M,
while (2n-1) is the highest-possible signal value in the video
frame, where n is the number of bits per frame sample.

2

,

[(,) (,)]
i j

f i j F i j

MSE
N M

∀

−

=
×

∑

(1)

2

10

(2 1)
10 log

n

PSNR
MSE

−
=

(2)

10

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 3 shows that the blue curve (Case 0, which uses all
the variable block sizes) is the optimum one in terms of R-D
performance. The brown curve (Case 5, where only a fixed
4×4 search/decision mode is used) has a relatively poor
performance, especially at low bitrates (around 1 Mb/s), as
most of the residual data is cut-off by the coarse quantization
process (high QP value), giving more influence to the size of
the encoded motion info on the output bitrate. Besides, the
light-blue curve (Case 3, where only a fixed 16×16
search/decision mode is used) also shows a poor
performance, especially at high bitrates (around 6 Mb/s),
when the savings achieved by representing each macroblock
by only one motion vector becomes negligible when
compared to the overhead of encoding the residuals, which
becomes higher for macroblocks with more “activity” inside.

Figure 4 shows that the generated R-D curves for all the
tested sequences tend to demonstrate a relatively similar
behaviour to what has been discussed above at different
bitrates (the higher the sequence resolution, the higher the
required bitrate).

In conclusion, VBS ME/MD is an important tool that has
been used in AVC to optimize the R-D performance of the
encoder. It allows inactive regions and regular movements to
be represented with an optimal amount of motion
information (e.g., 16×16 blocks), while for fast and highly
irregular movements, the finer blocks are used (e.g., 4×4
blocks), achieving optimal error representation, at the cost of
increased motion information.

B. Direct Implementation of VBS ME/MD
A feature of the way AVC reference software (JM) adopts
Rate-Distortion Optimization (RDO) is by performing an
exhaustive search for the “best” partitioning scheme (the
one that gives the lowest R-D Cost) among all the 259 (44
(8×8 or smaller) sub-modes + 1 (8×16) + 1 (16×8) + 1
(16×16) modes) possible combinations. This can be shown
in Figure 5 [2]. Hence, the JM searches exhaustively for the
minimum possible distortion that can be achieved subject to
a specific rate constraint. This can be expressed as follows:
Find min(D) subject to R<Rc, which can be elegantly solved
using Lagrangian optimization where a distortion term is
weighted against a rate term as follows [3]:

Find min(J), where J = D + λR (3)

where J is the R-D Cost that needs to be minimized. D is

the Distortion. JM uses the Sum of Absolute Differences
(SAD) as the metric of distortion because of its less
computational requirements compared to other metrics. SAD
is calculated using (4), where F(i,j) and f(i,j) are the values of
pixel (i,j) in the reference and the candidate block
respectively. R represents the Rate. The way to estimate the
rate differs based on the type of rate-distortion optimization
scheme being used. For high-complexity mode, JM uses the
exact number of bits for header, motion info, and transform
coefficients (the way they look after the last encoding stage)
as the metric of rate as shown in (5). λ (the Lagrange

parameter that determines the importance of rate with respect
to distortion) is exponentially related to the Quantization
Parameter (QP) after multiplying it with a double-precision
weight as shown in (6).

,

(,) (,)
i j

SAD f i j F i j
∀

= −∑ (4)

R = Rheader (exact) + Rmotion (exact) + Rcoefficients (exact) (5)
λ = weight×2(QP-12)/3 (6)

For low-complexity mode, motion cost calculation is

performed using a less complex scheme. A lookup table
(LUT) is used to roughly estimate the number of bits needed
to encode the difference between the motion vectors and the
predictors as shown in (7). λ is also estimated roughly from
QP by a lookup table as shown in (8).

R = LUTMV_COST[MVcand-MVpred] (7)
λ = LUTQP2QUANT[max(0, QP-12)] (8)

For simplicity reasons, and practical hardware

implementation, any reference to rate-distortion optimization
in the remaining part of this paper is a reference to the low-
complexity mode, unless clearly mentioned otherwise.
Recent complexity analysis was performed in [4] to estimate
the distribution of complexity among different modules of
the AVC encoder. A typical profile of the encoder
complexity (by files) based on an Intel® PentiumTM III 1.0
GHz general purpose processor with 512 MB of memory is
shown in the pie chart of Figure 6(a). Also, another run-time
complexity analysis was performed in [6], where the
reference software (Baseline profile) was executed on a Sun®
BladeTM 1000 with UltraSPARCTM III 1 GHz processor. The
run time percentage (approximated to the nearest integer
value) of each module is shown in the pie chart of Figure 6(b).
The figure shows that the computational requirements of
motion estimation/compensation typically represent from
70% to 90% of the overall encoder computational
requirements for a typical AVC encoder, which makes it a
primary candidate for hardware acceleration. Besides, this
module is the main target of encoder computational
requirements reduction for most researchers. Most of the
efforts aim at introducing “reasonable” quality degradation
as an expense of computational requirements savings
compared to the optimal (yet very complex) exhaustive-
search solution. The next section surveys some of those
efforts.

C. Recent Efforts to Reduce Complexity of VBS ME/MD
Many algorithms for fast ME and MD have been

proposed in the literature. Most of them rely on the fact that
human’s visual system is typically insensitive to the
degradation in PSNR that is less than 0.2 dB. Hence, they
tend to reduce the computational requirements, at the
expense of minor “unrecognizable” quality degradation. In
this section, an overview of the recent efforts to reduce the
VBS ME/MD in AVC is given. Some of the algorithms that
have been introduced recently rely on exploiting video

11

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

features such as texture and edge information to predict the
best possible mode. As an example, Wu et al [7] proposed to
adjust the block sizes based on the homogeneity of the region
in the MB. They observed that homogenous regions, which
are determined by using the magnitude of the edge vector,
tend to move together, and hence should not be split into
smaller blocks. The results they provided indicate that the
technique is not as effective for dynamic sequences as it is
for inactive ones. They achieved a maximum computational
requirements reduction of 45% for inactive sequences, but it
did not exceed 10% reduction for active sequences. The tests
they performed were on low resolution sequences only
(QCIF and CIF), which leaves the effectiveness of their
algorithm with high resolution sequences questionable. Lin
et al [2] developed a combined algorithm for fast motion
estimation and mode decision by exploiting the motion and
cost information available from blocks that have been
processed prior to the current block. The authors proposed to
predict the mode of a current MB based on previously coded
MBs, then perform a fast ME for this predicted mode. If the
resulting cost is less than an adaptively calculated threshold,
the algorithm skips any further calculations for this block.
Although the authors did not investigate the potential of their
algorithm for HW implementation, the way they described it
makes it less likely to be implemented in hardware. A
possible candidate HW design should be able to handle the
worst case scenario, which is to calculate all the complex R-
D costs for all the seven modes. This task is too complex to
be executed within a reasonable number of clock cycles that
fits typical encoder systems requirements unless a huge (non
realistic) design is implemented. The authors did not provide
any computational requirements analysis to justify the time
savings they are claiming. They also claim that they
observed a maximum PSNR degradation of 0.4 dB in their
experiments on CIF sequences, which is big enough to
generate visually noticeable defects. Yu et al [8] proposed a
strategy that incorporates temporal similarity detection as
well as the detection of different moving features within a
macroblock. Their experiments were performed on QCIF
resolution only, and they showed up to 9% bitrate overhead
with highly dynamic sequences. The authors did not provide
any visual justification of the quality they are claiming. Also
they did not show any potential for hardware
implementation. In [9], the author proposed an algorithm that
relies mainly on two predictive factors: intrinsic complexity
of the MB and mode knowledge from the previous frame.
The algorithm added more than 5% bitrate overhead for
dynamic sequences, and the maximum achieved time saving
for all the tested QCIF and CIF sequences was 30%.

Tourapis et al [10] proposed to extend and adapt the
concept of the Enhanced Predictive Zonal Search (EPZS)
motion estimation algorithms within the AVC standard.
They proposed additional modifications to the predictor
consideration, and introduced a new refinement pattern and a
new iterative refinement process to improve the efficiency of
the algorithms. The results of their experiments on selected
CIF sequences showed a speedup in the motion estimation
process (without providing enough computational
requirements analysis to justify this speedup). However, in

that paper, the authors did not introduce any enhancements in
the mode decision process. In [11], the authors had more
focus on mode decision. They proposed a fast mode decision
mechanism by considering that the mode decision error
surface is monotonic with partition block size. Their
approach depends on searching specific block sizes first,
then based on the values of the resulting cost parameters, a
decision was made whether to perform an early termination
or not. If not, all possible search modes are performed. This
means that for highly dynamic sequences, the speedup of the
mode decision process is expected to be negligible. The
authors did not provide any computational requirements
analysis or comparisons, and they reported a speedup in the
encoding process of the examined CIF sequences, without
describing the configurations of the reference (JM) they are
comparing with. In [12], the authors proposed fast mode
decision and motion estimation processes with main focus on
MPEG–2/AVC transcoding. The algorithm utilizes the
motion information from MPEG–2 for an AVC encoding
using EPZS. The target application for this work had limited
processing power; hence the authors ignored the small sub-
partitions that AVC standard offers. This had its effect on the
obtained results for the tested CIF sequences. Highly
dynamic sequences showed more than 0.3 dB degradation in
PSNR, with a speedup of an order of magnitude in the
encoding time.

Lee et al [13] proposed an early skip mode decision as
well as a selective intra mode decision. They reported a
maximum improvement of 30% in the required encoding
time. Ahmad et al [14] proposed a scheme that is based on a
3D recursive search algorithm and takes into consideration
the motion vector cost and previous frame information. They
also reported a maximum decrease of 30% in the required
encoding time. However, they did not provide any quality
assessments; neither did they provide any computational
requirements analysis of their algorithm. In [15], Kim et al
proposed an algorithm that uses the property of All Zero
Coefficients Block (AZCB), obtained by quantization and
coefficient thresholding, to skip unnecessary modes. The
authors reported an average speedup of two times for the
tested QCIF and CIF sequences. However, based on the
algorithm flow that they provided, the algorithm is expected
to lose its computational efficiency when applied to highly
dynamic sequences, as no early skipping will be performed
in this case, and all the inter-search modes will be required.
Jiang et al [16] proposed a low complexity VBS ME
algorithm for video telephony communication. Their
technique included classifying macroblocks in a frame into
types, and applying different searching strategies for each
type. They based their cost calculations on SAD only,
ignoring the rate component. They did not propose any
modification to the MD module. Hence, the algorithm
efficiency is limited to the usage of the proposed ME
algorithm only. In spite of the achieved time savings
compared to the full search approach, the reported results
showed noticeable degradation in encoding time when
compared to other fast ME algorithms. Also, the authors’
experiments on QCIF and CIF sequences showed that the

12

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

algorithm is confined in applications with sequences of low
motion and high temporal correlation.

Tanizawa et al [17] proposed a fast rate-distortion
optimization method targeting low complex mode decision.
The proposed method was based on a 2-step hierarchical
mode decision. In the first step, a simple R-D cost without
tentative coding is calculated. One or more coding
candidates are selected using the obtained R-D cost. The
number of candidates varies with the value of the
quantization parameter (QP). In the second step, the
conventional RDO method is applied to the candidates that
have been chosen in the first step. The authors timing
comparisons did not include the motion estimation operation.
A disadvantage of this method is its unsuitability for
hardware implementation due to the extremely complex
RDO calculation that is applied for the successful candidates
of the first step. Dai et al proposed an algorithm in [18] that
limits the candidate modes to a small subset by pre-encoding
a down-sampled small version of the image. They reported a
50% reduction in encoding time for the three tested CIF
sequences. Kuo et al [19] also proposed a multi-resolution
scheme and an adaptive rate-distortion model with early
termination rules to accelerate the search process. In
addition, the authors derived a rule to estimate the bits
resulting from residual coding. The reported results showed
significant improvement in the encoding time for the tested
CIF sequences when compared with the exhaustive full
search technique. However, the algorithm showed poor R-D
performance when applied to highly dynamic sequences.
Chen et al [20] proposed a fast bits estimation method for
entropy coding to be used in RDO instead of calculating the
actual bitrate, which is an extremely complex operation if
performed for each candidate location. The algorithm is
based on simplifying the CAVLC only, which makes it
inapplicable to the Main- and High-profile encoders that are
intended to be configured to use CABAC. The authors did
not propose any simplification to the motion search and
mode decision strategy, which makes a hardware
implementation of their method unpractical.

Rhee et al [21] introduced one of the earliest proposals to
use VBS ME. In their work, they proposed two algorithms.
One of them was extremely computationally extensive and
they proposed to use it as a reference by the following
research work in the field, while the other was a simpler
version that is based on heuristics. Their work relied on local
motion information. A set of candidate motion vectors of
each fixed size small block is first obtained by full search
whose matching error is less than a prescribed threshold.
Neighbouring blocks are then merged in a quad-tree manner
if they have at least one motion vector in common. The only
modes the algorithm supported were the square modes (4×4,
8×8, and 16×6). Tu et al extended this work in [22] by taking
the quantization parameter and the Lagrange cost function
into consideration to determine the threshold for comparing
the distance between the motion vectors of the two blocks.
The experimentation was performed on QCIF and CIF
sequences. No timing or computational requirements
analysis was introduced. The authors proposed to start with
8×8 searches, and then merge all the way up in the tree to

obtain larger block sizes. Hence the supported modes were
(8×8, 16×8, 8×16, and 16×16) only. The authors then
proposed in [23] a merge and split scheme, which gave the
algorithm the ability to represent all search modes. They
proposed to perform a “simple” refinement search after every
merge or split operation. This extra search would introduce
relatively large complexity overhead to the motion
estimation module if the complexity of the main motion
estimation search is comparable. The obtained results for the
tested QCIF and CIF sequences were obtained at QP = 30
only and no rate distortion curves were given. In [24], the
authors used the same merging scheme, with the possibility
of excluding some low-probability modes in the mode
decision process. Again, this extra search that is required
after each merging or splitting would introduce relatively
large complexity overhead to the motion estimation module
if the complexity of the main motion estimation search is
comparable.

Ates et al [25] proposed a hierarchical block-matching-
based motion estimation algorithm that uses a common set of
SAD computations for motion estimation of different block
sizes. Based on the hierarchal prediction and the median
motion vector predictor of AVC, the algorithm defines a
limited set of candidate vectors; and the optimal motion
vectors are chosen from this common set. The authors
showed their complexity analysis; however, they did not
support it with experimental timing measurements. This
algorithm showed acceptable PSNR degradation and
increase in required bitrates for the tested QCIF, CIF, and
SIF sequences. The next section describes the proposed VBS
selection scheme, accompanied with some theoretical
computational requirements analysis to show its
effectiveness.

III. THE PROPOSED VBS MODE DECISION ALGORITHM

The proposed variable block size motion estimation and
mode decision algorithm is based on a merging scheme. It is
a bottom-up approach approximation method that exploits
the correlation of the smaller blocks motion vectors in a
uniform or close motion vector field to build up the larger
blocks. The algorithm uses the available typical motion
estimation information such as predictor, refinement
displacement, and cost. The cost here maybe directly
considered as the R-D Cost described in (3) assuming that it
is going to be pre-calculated in the motion estimation engine
and passed as an input to the algorithm, or it might be
considered as the SAD requiring the calculation of the R-D
Cost within the algorithm module. A description of the main
data structure of the algorithm is given in Section A. In
Section B, a theoretical computational requirements analysis
is introduced to emphasise the computational efficiency of
the proposed algorithm. Finally Section C describes the
flow of the proposed algorithm.

13

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

A. The Main Data Structure of the Proposed Algorithm
The main data structure of the algorithm is shown in

Figure 7. It is mainly a decision tree that is used to decide
about the “suitable” neighbouring nodes to approximately
merge them upwards forming a parent node. The algorithm
is based on the observation that, if the cost of a parent block
is higher than the sum of costs of the children blocks, then
the even larger block-size modes can be excluded. Each
node in the tree represents a “legal” block partition. A node
is represented by its best-representing motion vector that
have been calculated by block-based motion estimation (or
interpolated by merging), the predictor used as the anchor to
start searching around, and the R-D cost accompanied with
this motion vector and motion vector predictor.

B. Computational Complexity Analysis
The tree consists of four decision-levels and five nodes-

levels as shown in Figure 7. Roughly, it can be assumed that
all the even nodes-levels of the tree (level 0, level 2, and
level 4) require approximately the same computational
requirements (1x each level) to find the best motion vectors
for all the nodes of a level and to calculate their
accompanied costs, while the two odd nodes-levels of the
tree (level 1 and level 3) require approximately a
computational requirements of (2x each level) to find the
best motion vectors and costs.

The overall ME/MD module computational requirements
can be viewed as the sum of the VBS best motion vector
search computational requirements and the VBS mode
decision computational requirements. This is shown in (9).

Comp_Req_Total = Comp_Req_MV_Searches +

Comp_Req_VBS_MD
(9)

Hence, the overall inter-related computational

requirements of the ME/MD module in the JM can be
estimated using Figure 5 and Equation (9). Due to the
exhaustive nature of the direct JM implementation, it is
required to perform all the types of searches for all possible
modes, which is equivalent to 7x, in order to find the best
match for each and every block type. Also, it is required to
find the best partitioning scheme among all the 259 possible
combinations, a relatively complex operation, whose
computational requirements will not be described in details
due to its dependence on the way it is implemented. Due to
the dominance of the search computational requirements
over the mode decision one, any reference to (JM 7x) in the
remaining part of this paper is a reference to the exhaustive-
search JM implementation of the ME/MD module.

By nature, the proposed merging tree makes the ME/MD
module simpler than the JM implementation due to its
hierarchical mode decision approximation scheme (simpler
mode decision operation). However, as mentioned above, the
dominant part that determines the overall module
computational requirements is the influence it has on the
computational requirements of the motion vector search part

(first parameter of (9)). Therefore, the most effective cost
reduction technique for the overall module would come by
reducing the required number of searches. This led to the
idea of allowing the algorithm to meet a wider base of
market demands by making it adjustable to work at three
different operating points, trading between computational
requirements and R-D performance. The key concept is to
reduce the required searches as much as possible, while still
keeping the R-D degradation within the different allowance
windows offered by different customers. Figure 8 describes
the difference between the three operating points. The
encircled levels refer to levels where the motion vectors of
all their nodes are found by performing block-based
searches. The arrows refer to the interpolated levels and
where they are interpolated from. For operating point 1, the
algorithm requires performing the 4×4, 8×8, and 16×16 types
of searches. This corresponds to a search computational
requirements of 3x (based on the metric mentioned above),
which is less than half the computational requirements of the
JM exhaustive implementation (JM 7x). The motion vectors
and the predictors of the other types of modes (4×8, 8×4,
8×16, and 16×8) are “interpolated” using the actually-
calculated motion data of the child nodes in the levels that
directly precede those levels in the merging tree structure.
The algorithm working at this operating point would fit the
requirements of high-resolution applications, such as SD and
HD broadcasting. Operating point 2 is the second mode of
the algorithm. It requires performing 4×4 and 8×8 types of
searches only, reducing the search computational
requirements to 2x, while the motion vectors and the
predictors of the other types of modes (4×8, 8×4, 8×16,
16×8, and 16×16) are “interpolated” using the tree structure.
Operating point 3 is also introduced to meet the
requirements of applications such as simple handheld
devices where reduced computational requirements (and
power consumption) is the main priority. This mode requires
performing 4×4 searches only (level 0 of the tree), reducing
the search computational requirements to 1x, while the
motion vectors and the predictors of all the other types of
modes (4×8, 8×4, 8×8, 8×16, 16×8, and 16×16) are
“interpolated” in a bottom-up fashion all the way through the
tree structure.

Table 3 shows the schemes that are going to be referred to
in the next section, with a brief description of each. Note that
JM 1x, JM 2x, and JM 3x, are generated by running the JM,
disabling some of inter search/decision modes. They are
mainly included to evaluate the performance of VBS 1x,
VBS 2x, and VBS 3x (operating point 3, 2, 1) respectively
compared to their corresponding almost-same-
computational-requirements JM implementations (in
addition to the main comparison with the optimum R-D
performance of JM 7x). A ‘√’ in the above table refers to an
actual MV search and mode decision. A ‘–’ refers to an
absence of this block-type search and mode decision, while
an ‘M’ refers to a block-type that is interpolated by merging
of child nodes. The number of comparisons required for
VBS 1x, 2x, and 3x mode decision are derived assuming that
each merging rule requires a single comparison. The MD
computational requirements of VBS 2x and 3x also include

14

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the additions and comparisons required for early mode
skipping, while the computational requirements of the
control logic are not stated. The MD computational
requirements for JM 2x and 3x are not given in details
because of being implementation-dependent.

C. Description of the Proposed Algorithm
In this section, a description of the algorithm that has

been implemented is provided. The coverage of the
algorithm to the three operating points mentioned above is
also discussed. Figure 9 shows the flowchart of the algorithm.
As can be seen, at operating point 3, the tree structure is
parsed (checked for merging) starting from its level 0 (L0)
all the way up to its level 4 (L4). At operating point 2, the
sum of costs (using (3)) of each four neighbouring 4×4 nodes
(each L0 quad) is compared with the corresponding 8×8 cost
to decide whether to start with 4×4 quads followed by
merge-checking for one level up, or to start with the 8×8
level (L2) followed by merge-checking for two levels up.
Operating point 1 differs from operating point 2 by having
an additional check for possible early decision to choose
16×16 mode, which makes the last-level merge-checking
stage unnecessary. In Figure 9, it is assumed that the nodes
costs are calculated on the spot; however, they can be passed
as inputs to the VBS module as they have already been
calculated during the search for best motion vectors. A key
element that determines the efficiency of the above merging
scheme is how accurate the merging rules are. On the other
hand, its computational requirements are very influential in
determining the second parameter in (9). Note that based on
Figure 7, different rules maybe used for merge-checking of
different nodes. However, for simplicity, the same merging
rule is initially presumed to be applicable for all pairs of
blocks. Other varieties of the algorithm may be applicable,
such as changing the rule according to the level it is located
in, or giving some nodes more priority than others by
subjecting them to more accurate merging rules. It is clear
that a suitable rule would be an accurate, yet simple one. The
steps of the merge-checking rule are provided in Figure 10.

It is worth mentioning that for generality, the shown
pseudo-code is based on the assumption that each searched
node has been searched using N_MV different motion
vectors predictors (N_MV is assumed to be 4 as an
example), or that N_MV successful candidates are elected by
the ME search engine rather than only the best one per
search. This means that each search node will be initially
marked by 4 best motion vectors and 4 motion vector
predictors, which would help avoiding falling into local
minima. For simplicity, all the testing results mentioned in
the next section have been generated after assigning N_MV
to 1. Also it was found that using Th_x = Th_y = 0 is a
reasonable choice. The next section shows the experimental
analysis and results obtained by encoding various benchmark
video sequences.

IV. EXPERIMENTAL ANALYSIS AND RESULTS

In this section, results of the performed experiments to
evaluate the performance of the proposed algorithm are
introduced. The main goal is to compare the algorithm at its
three operating points to the different JM references
mentioned in the previous section. Section A describes the
method and experimentation environment, while Section B
shows the detailed comparisons with the brutal-force method
that is adopted by the reference software in terms of time
complexity and R-D performance.

A. Method and Experimentation Environment
The evaluation process is done by performing a

comprehensive test where various video sequences are
encoded by seven versions of the encoder (see Table 3)
throughout a specific range of Quantization Parameter (QP).
The goal is to plot the seven generated R-D curves for each
sequence to sense the closeness of the R-D performance of
the encoder working with the proposed VBS ME/MD
algorithm, to the optimum exhaustive solution. Besides, the
different encoding times of various sequences with the tested
versions of the reference software will be given, and
compared to the “theoretical” computational requirements
analysis that has already been introduced in Section B of the
previous section. The sequences were selected to represent a
variety of motion types. This helps in creating a wide range
of input stimuli to test the algorithm behaviour. In order to
cover a wider range of rate and quality requirements during
the testing process, QP was set to vary throughout a broad
range of values.

B. Obtained Results
This section starts by showing execution-time

measurements and results in subsection 1, followed by the
rate-distortion results in subsection 2.

1) Execution Time Measurments and Results

All the results that are discussed in this section have been
obtained by running the seven versions of the AVC encoder
(defined in Table 2) on a unified platform. Table 4 shows the
time spent by each of the seven versions of the software on
encoding ten frames of each of the tested sequences (with
QP = 30). The values between parentheses represent the
savings in computational time with respect to the JM7x
version. The table shows that using VBS 1x, VBS 2x, or
VBS 3x, reduces the encoding time of all the tested
sequences at least by more than half when compared to the
required encoding time for the pure JM 7x version. This
conforms to the theoretical computational requirements
analysis that has been discussed in Section B of the last
section. The total encoding time for VBS 1x, VBS 2x, and
VBS 3x is almost the same as for JM 1x, JM 2x, and JM 3x
respectively (with minor increase due to the extra
comparisons and additions). However, the next section
shows that the improvement of the VBS nx algorithms over

15

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

the corresponding JM nx ones in terms of R-D performance
is clear enough to neglect this minor complexity overhead,
especially when targeting low bitrate applications. Also, the
table shows that most of the encoding time is being spent on
the motion estimation calculation, which conforms to the
encoder complexity profile that was shown in Figure 6. Figure
11 shows a graphical representation of the obtained results.
The results show that the more motion a sequence contains,
the more time it spends in motion estimation, which in turns
translates to an overall increase in encoding time.

2) Rate-Distortion Measurments and Results
Figure 12 to Figure 14 show the R-D behaviour of the tested

versions of the encoder, with an emphasis on the low-bitrate
region. The figures show that the generated graphs are
consistent with the expected behaviour of the algorithm. It is
clear that for all the sequences, the lower the bitrate, the
more effective the algorithm appears to act (at all operating
points). This is because at lower bitrates, motion data have a
comparable effect on bitrate to the residual data; hence any
savings are highly sensible.

For all sequences, VBS 1x may be used as an optimized
version of JM 1x. Though, its performance is relatively poor
when compared to VBS 2x, VBS 3x, or JM 7x, it can be
used as a reasonable compromise when the target application
requires low complexity and low power system with
reasonable R-D behavior. For all the examined sequences,
JM 7x does not outperform VBS 3x by more than 0.2 dB at
any bitrate (around the target bitrate that suits the sequence
resolution).

VBS 1x, VBS 2x, and VBS 3x introduce enhancements
over JM 1x, JM 2x, and JM 3x respectively. The
enhancements become more sensible at low bitrates. For
example, VBS 1x introduces huge enhancement (around 8
dB) over JM 1x when encoding the sequence “Mobile and
Calendar QCIF 30 fps” (Figure 14) targeting as low bitrate as
29.5 Kbps. Also, the merging operation that was performed
resulting in VBS 2x boosted the curve of JM 2x for the
sequence “Miss America QCIF 30 fps” (Figure 13) by (6 dB)
at 26.5 Kbps bitrate.

In summary, the experimental analysis and results
demonstrate the main contribution of the proposed
algorithm. It is mainly the ability to exhibit acceptable R-D
behavior for different sequences with various types of
motion. Nevertheless, the ME/MD computational
requirements are less than half the computational
requirements of ME/MD of JM 7x. This leads to faster
encoding time on software platforms, as well as smaller
(hence less expensive) implementations on hardware
platforms.

V. CONCLUSION

Having the VBS ME tool in the AVC standard improves
its coding efficiency significantly. However, it also
introduces extreme computational requirements to the
encoder. The JM (AVC software reference model) has an
exhaustive approach to implement VBS ME/MD. All seven

types of motion estimation searches are performed, and then
in the mode decision step, an exhaustive search follows to
choose the best partitioning scheme among all possible
combinations. Knowing that VBS ME and MD typically
represent from 70% to 90% of the entire encoder
computational requirements, many research efforts have
been introduced in the literature to reduce their
computational requirements. However, most of the solutions
were local to specific types of simplified motion estimation
searches.

In this paper a computationally-efficient VBS selection
scheme was introduced. The scheme is applicable to any
VBS ME module, leading to significant reduction in its
computational requirements with minor loss in the quality of
the reconstructed picture. Three versions of the proposed
algorithm have been introduced in order to meet different
applications’ demands. Evaluation experiments were
performed on three benchmark video sequences with various
spatial and temporal characteristics ranging from smooth
slow motion, up to random fast motion. Timing analysis of
the performed experiments showed that the proposed
algorithm (with its three versions) reduces the encoding time
of all the tested sequences at least by half when compared to
the required encoding time for the pure brutal-force solution.
Objective quality measurement is represented by R-D
performance. It has shown that, for all the performed tests,
VBS 1x, VBS 2x, and VBS 3x introduce enhancements over
JM 1x, JM 2x, and JM 3x respectively, with minor
computational overhead. In general, the proposed algorithm
is mostly effective with low-power decoder devices, with
reduced computational resources, especially when targeting
low-bitrate video applications.

ACKNOWLEDGMENT

The authors would like to thank the Advanced
Technology Information Processing Systems (ATIPS)
Laboratory, Alberta Informatics Circle of Research
Excellence (iCORE), the Alberta Ingenuity Fund (AIF), the
Natural Sciences and Engineering Research Council of
Canada (NSERC), CMC Microsystems, Micronet R&D,
Canada Foundation for Innovation (CFI), the Department of
Electrical and Computer Engineering at the University of
Calgary, Xilinx Inc., and the German University in Cairo
(GUC) for supporting this research.

REFERENCES

[1] I. Amer, R. Hamed, W. Badawy, G. Jullien, and J. W. Haslett, “An
Enhanced Lenient Merging Scheme for H.264 Variable Block Size
Selection”, proceedings of International Conference on Advances in
Multimedia (MMEDIA), Colmar, France, pp. 136-139, July 2009.

[2] S. Lin, C. Chang, C. Su, Y. Lin, C. Pan, and H. Chen, “Fast Multi-
Frame Motion Estimation and Mode Decision for H.264 Encoders,”
Proceedings of IEEE International Conference on Wireless Networks,
Communications and Mobile Computing, Vol. 2, pp. 1237-1242, June
2005.

16

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

[3] G.J. Sullivan and T. Wiegand, “Rate-Distortion Optimization for
Video Compression,” IEEE Signal Processing Magazine, Vol. 15, pp.
74 - 90, November 1998.

[4] W. Chung, “Implementing the H.264/AVC Video Coding Standard
on FPGAs,” A white paper. [Online]. Available:

[5] www.xilinx.com/publications/solguides/be_01/xc_pdf/p18-21_be1-
dsp4.pdf

[6] Y.-W Huang, B.-Y Hsieh, S.-Y. Chien, S.-Y. Ma, and L.-G Chen,
“Analysis and Complexity Reduction of Multiple Reference Frames
Motion Estimation in H.264/AVC,” IEEE Transactions on Circuits
and Systems for Video Technology, Vol. 16, No. 4, pp. 507-522, April
2006.

[7] D. Wu, S. Wu, K. Lim, F. Pan, Z. Li, X. Lin, “Block INTER Mode
Decision for Fast Encoding of H.264,” Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal
Processing, Vol. 3, pp. 181-184, May 2004.

[8] A. Yu and G. Martin, “Advanced Block Size Selection Algorithm For
Inter Frame Coding in H.264/MPEG–4 AVC,” Proceedings of IEEE
International Conference on Image Processing, Vol. 1, pp. 95-98,
October 2004.

[9] A. Yu, “Efficient Block-Size Selection Algorithm for Inter-Frame
Coding in H.264/MPEG–4 AVC,” Proceedings of IEEE International
Conference on Acoustics, Speech, and Signal Processing, Vol. 3, pp.
169-172, May 2004.

[10] H. Tourapis and A. Tourapis “Fast Motion Estimation within the
H.264 CODEC,” Proceedings of IEEE International Conference on
Multimedia and Expo, Vol. 3, pp. 517-520, July 2003.

[11] P. Yin, H. Tourapis, A. Tourapis, and J. Boyce, “Fast Mode Decision
and Motion Estimation for JVT/H.264,” Proceedings of IEEE
International Conference on Image Processing, Vol. 3, pp. 853-856,
September 2003.

[12] X. Lu, A. Tourapis, P. Yin, and J. Boyce, “Fast Mode Decision and
Motion Estimation for H.264 with a Focus on MPEG–2/H.264
Transcoding,” Proceedings of IEEE International Symposium on
Circuits and Systems, Vol. 2, pp. 1246-1249, May 2005.

[13] J. Lee and B. Jeon, “Fast Mode Decision for H.264,” Proceedings of
IEEE International Conference on Multimedia and Expo, Vol. 2, pp.
1131-1134, June 2004.

[14] A. Ahmad, N. Khan, S. Masud, and M.A. Maud, “Efficient Block
Size Slection in H.264 Video Coding Standard,” IEE Electronics
Letters, Vol. 40, No. 1, pp. 19-21, January 2004.

[15] Y.-H. Kim, J.-W. Yoo, S.-W. Lee, J. Shin, J. Paik, and H.-K. Jung,
“Adaptive Mode Decision for H.264 Encoder,” IEE Electronics
Letters, Vol. 40, No. 19, pp. 1172-1173, September 2004.

[16] Y. Jiang, S. Li, and S. Goto, “A Low Complexity Variable Block Size
Motion Estimation Algorithm for Video Telephony Communication,”
Proceedings of IEEE International Midwest Symposium on Circuits
and Systems, Vol. 2, pp. 465-468, July 2004.

[17] A. Tanizawa, S. Koto, T. Chujoh, and Y. Kikuchi, “A Study on Fast
Rate-Distortion Optimized Coding Mode Decision for H.264,”
Proceedings of IEEE International Conference on Image Processing,
Vol. 2, pp. 793-796, October 2004.

[18] Q. Dai, D. Zhu, and R. Ding, “Fast Mode Decision for Inter
Prediction in H.264,” Proceedings of IEEE International Conference
on Image Processing, Vol. 1, pp. 119-122, October 2004.

[19] C.-H. Kuo, M. Shen, and C.-C. Kuo. “Fast Inter-Prediction Mode
Decision and Motion Search for H.264,” Proceedings of IEEE
International Conference on Multimedia and Expo, Vol. 1, pp. 663-
666, June 2004.

[20] Q. Chen and Y. He, “A Fast Bits Estimation Method for Rate-
Distortion Optimization in H.264/AVC,” Proceedings of Picture
Coding Symposium, December 2004.

[21] I. Rhee, G.R., Martin; S. Muthukrishnan, and R.A. Packwood,
“Quadtree-Structured Variable-Size Block-Matching Motion
Estimation with Minimal Error,” IEEE Transactions on Circuits and
Systems for Video Technology, Vol. 10, No. 1, pp. 42-50, February
2000.

[22] Y.-K. Tu, J.-F. Yang, Y.-N. Shen, and M.-T. Sun, “Fast Variable-Size
Block Motion Estimation Using Merging Procedure with an Adaptive
Threshold,” Proceedings of IEEE International Conference on
Multimedia and Expo, Vol. 2, pp. 789-792, July 2003.

[23] Z. Zhou, M.-T. Sun, and Y.-F. Hsu, “Fast Variable Block-Size
Motion Estimation Algorithms Based on Merge and Split Procedures
for H.264/MPEG–4 AVC,” Proceedings of IEEE International
Symposium on Circuits and Systems, Vol. 3, pp. 725-728, May 2004.

[24] Z. Zhou and M.-T. Sun, “Fast Macroblock Inter Mode Decision and
Motion Estimation for H.264/MPEG–4 AVC,” Proceedings of
International Conference on Image Processing, Vol. 2, pp. 789-792,
October 2004.

[25] H.F. Ates and Y. Altunbasak, “SAD Reuse in Hierarchical Motion
Estimation for the H.264 Encoder,” Proceedings of IEEE
International Conference on Acoustics, Speech, and Signal
Processing, Vol. 2, pp. 905-908, March 2005.

[26] Y.-W. Huang, T.-C. Wang, B.-Y. Hsieh, and L.-G. Chen, “Hardware
Architecture Design for Variable Block Size Motion Estimation in
MPEG–4 AVC/JVT/ITU-T H.264,” Proceedings of IEEE
International Symposium on Circuits and Systems, Vol. 2, pp. 796-
799, May 2003.

17

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 1. Variable block sizes defined in AVC

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Foreman QCIF Foreman CIF Football CIF City 4CIF Shields 720p Tractor 1080p

 Inter MB (4x4)
 Inter MB (4x8)
 Inter MB (8x4)
 Inter MB (8x8)
 Inter MB (8x16)
 Inter MB (16x8)
 Inter MB (16x16)
 Intra MB

Figure 2. Optimal distribution of the various block sizes in the inter-predicted frames

18

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table 1. Summary of the characteristics of the tested sequences

Sequence

Type

Resolution

Frame
Rate

Description of the first ten

frames

Type of motion

Foreman QCIF 176×144 30 fps A man talking to a still camera Slow limited motion
Foreman CIF 352×288 30 fps A man talking to a still camera Slow limited motion
Football CIF 352×288 30 fps A part of a football game Extensive motion

City

SD
(4CIF)

704×576

30 fps

A scene of a city taken with a
panning camera

Regular motion

Shields

HD
(720p)

1280×720

60 fps

A person pointing at a group of
shields while the camera is

panning

Camera shooting of
highly textured

scenes

Tractor
HD

(1080p)

1920×1080

60 fps
A Tractor working at field Camera shooting of

very high resolution

35

36

37

38

39

40

41

42

43

44

0 1000 2000 3000 4000 5000 6000 7000

Bitrate (Kbits/sec)

PS
N

R
 (d

B
)

Case0
Case1
Case2
Case3
Case4
Case5

Better
Performance

Figure 3. R-D behaviour of Foreman CIF (30 fps) with various inter searches/decision-modes enabled

Table 2. Description of the different curves in
Figure 3

Curve Description
Case 0 16×16, 16×8, 8×16, 8×8, 8×4, 4×8, and 4×4 search/decision modes are enabled
Case 1 16×16, 8×8, 8×4, 4×8, and 4×4 search/decision modes are enabled
Case 2 16×16, 8×8, and 4×4 search/decision modes are enabled
Case 3 Only 16×16 search/decision mode is enabled
Case 4 Only 8×8 search/decision mode is enabled
Case 5 Only 4×4 search/decision mode is enabled

19

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

34

36

38

40

42

44

100 300 500 700 900 1100 1300 1500

Bitrate (KBit/sec)

PS
N

R
 (d

B
)

Case0
Case1
Case2
Case3
Case4
Case5

(a)

32

33

34

35

36

37

38

39

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000 11000

Bitrate (KBit/sec)

PS
N

R
 (d

B
)

Case0
Case1
Case2
Case3
Case4
Case5

(b)

35

36

37

38

39

40

41

1000 2000 3000 4000 5000 6000 7000 8000 9000

Bitrate (KBit/sec)

PS
N

R
 (d

B
)

Case0
Case1
Case2
Case3
Case4
Case5

(c)

34

35

36

37

38

39

40

0 20000 40000 60000 80000 100000 120000 140000 160000

Bitrate (KBit/sec)

PS
N

R
 (d

B
)

Case0
Case1
Case2
Case3
Case4
Case5

(d)

Figure 4. R-D behaviour of different sequences with different inter
 searches/decision-modes enabled
 (a) Foreman QCIF (30 fps)
 (b) Mobile CIF (30 fps)
 (c) Football CIF (30 fps)
 (d) Shields HD 720p (60 fps)

Figure 5. Exhaustive search for best partition scheme as adopted in AVC reference software

Perform Full/Fast Search ME
for every possible block-size

Calculate RD-
Cost All modes tested?

Determine the best mode
out of the 259 possible

ones

Yes

No

20

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

mv_search.c
68%

cabac.c
3%

biariencode.c
3%

rdopt.c
3%

macroblock.c
3%

refbuf.c
7%

block.c
8%

abc.c
1% image.c

1% rdopt_coding_state.c
0%

loopFilter.c
0%

memcpy.asm
3%

(a)

Mode Decision
2%

Exp-Golomb
VLC+CAVLC

0%
Deblocking Filter

0%

DCT+Q+IQ+IDCT
0%

Intra Prediction
1%

Interpolation
8%

Fractional ME
37%

Integer ME
52%

(b)

 Figure 6. AVC encoder computational complexity
 (a) profiled by files (from [4])
 (b) profiled by functional modules (from [6])

Figure 7. The main data structure of the algorithm: The merging tree

21

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

(a)

(b)

Rule
A1

Rule
A2

Rule
A3

Rule
A4

Rule
A5

Rule
A6

Rule
A7

Rule
A8

Rule
A9

Rule
A10

Rule
A11

Rule
A12

Rule
A13

Rule
A14

Rule
A15

Rule
A16

Rule
B1

Rule
B2

Rule
B3

Rule
B4

Rule
C1

Rule
C2

Rule
C3

Rule
C4

Rule
D1

(c)

(d)

Figure 8. Required searches and interpolations for the algorithm’s three
 operating points
 (a) The merging tree (b) Operating point 1 (VBS 3x)
 (c) Operating point 2 (VBS 2x) (d) Operating point 3 (VBS 1x)

Table 3. Required searches and computational complexities for the tested references

Search/Decision Modes
Ref. 4×4 8×4 4×8 8×8 16×8 8×16 16×16

Computational Requirements

JM 7x √ √ √ √ √ √ √ 7x MV search + searching 259 combs for MD
JM 3x √ – – √ – – √ 3x MV search + searching 17 combs for MD
JM 2x √ – – √ – – – 2x MV search + searching 16 combs for MD
JM 1x √ – – – – – – 1x MV search + No mode decision
VBS 3x √ M M √ M M √ 3x MV search + 26 comps + 18 adds (for MD)
VBS 2x √ M M √ M M M 2x MV search + 25 comps + 12 adds (for MD)
VBS 1x √ M M M M M M 1x MV search + 25 comps (for MD)

22

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 9. Flowchart of the proposed algorithm

23

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Figure 10. Steps of the merge-checking rule

1. If one of the nodes is “unavailable”, then the parent node is also “unavailable”, else:

2. Calculate the number of identical (or semi-identical) MVs in the pool of candidate MVs of each of the
two nodes (4×4 = 16 possible pairs of MVs combinations). A simple rule to identify semi-identical MVs
would be:

D_MV_x = abs(MV_x1 - MV_x2);
D_MV_y = abs(MV_y1 - MV_y2);

n_semi_iden_MV = 0;

If ((D_MV_x <= Th_x) && (D_MV_y <= Th_y)){
semi_identical = true;
n_semi_iden_MV++;

}
 Else

 semi_identical = false;

This operation should be repeated to count the number of semi-identical MVs between the two nodes under
test (n_semi_iden_MV).

3. Decide whether to merge the two nodes under test or not based on the following rule:

If (0<QP<12) merge = ((n_semi_iden_MV >12)?true:false);
Else if (13<QP<25) merge = ((n_semi_iden_MV>9)?true:false);
Else if (26<QP<38) merge = ((n_semi_iden_MV >6)?true:false);

Else merge = ((n_semi_iden_MV _MV>3)?true:false);

4. If the two nodes are chosen to be merged, then the parent node is marked as “available”. The average
MVs of the best 4 pairs of semi-identical MVs will be assigned to the parent node, This will be used to
decide if this parent node is to be merged with its neighbour next-level node or not.

5. If the two blocks are not to be merged, then each of them will be marked with its best MV out of its 4

candidate ones, and the parent node will be marked as “unavailable”.

24

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Table 4. Encoding time of the tested sequences via the seven versions of the reference software

 Carphone
QCIF (30
fps)

Miss
America
QCIF (30
fps)

Mobile
QCIF (30
fps)

Total
Enc. time
(sec)

7.11

6.83

7.2

JM

7x Time
spent on
ME (sec)

6.794

6.5

6.9

Total
Enc. time
(sec)

3.302
(53.56%)

3.01
(59.93%)

3.11
(56.81%)

VBS

3x Time
spent on
ME (sec)

2.861
(59.76%)

2.7
(58.46%)

3.0
(56.52%)

Total
Enc. time
(sec)

3.049
(57.12%)

2.99
(56.22%)

3.1
(56.94%)

JM

3x Time
spent on
ME (sec)

2.877
(57.65%)

2.71
(58.31%)

2.9
(57.97%)

Total
Enc. time
(sec)

2.172
(69.45%)

2.153
(68.48%)

2.2
(69.44%)

VBS

2x Time
spent on
ME (sec)

1.952
(72.55%)

1.9
(70.77%)

2.1
(69.57%)

Total
Enc. time
(sec)

2.172
(69.45%)

2.14
(68.67%)

2.18
(69.72%)

JM

2x Time
spent on
ME (sec)

1.892
(72.15%)

1.85
(71.54%)

2.0
(71.01%)

Total
Enc. time
(sec)

1.061
(85.08%)

0.95
(86.09%)

1.2
(83.33%)

VBS

1x Time
spent on
ME (sec)

0.813
(88.33%)

0.75
(88.46%)

0.9
(86.96%)

Total
Enc. time
(sec)

1.046
(85.29%)

0.9
(86.83%)

1.1
(84.72%)

JM

1x Time
spent on
ME (sec)

0.797
(88.27%)

0.74
(88.62%)

0.8
(84.06%)

25

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

Total Encoding Time for Various Sequences

0

1

2

3

4

5

6

7

Carphone QCIF Miss America QCIF Mobile QCIF
Encoded Sequences

To
ta

l E
nc

od
in

g
Ti

m
e

(s
ec

) JM 7x
VBS 3x
JM 3x
VBS 2x
JM 2x
VBS 1x
JM 1x

Time spent in ME for Various Sequences

0

1

2

3

4

5

6

7

Carphone QCIF Miss America QCIF Mobile QCIF
Encoded Sequences

M
E

En
co

di
ng

 T
im

e
(s

ec
) JM 7x

VBS 3x
JM 3x
VBS 2x
JM 2x
VBS 1x
JM 1x

(a) (b)

Figure 11. Time spent by the seven versions of the software on encoding the tested sequence
 (a) Total encoding time (b) ME encoding time

33

35

37

39

41

43

45

47

49

25000 26000 27000 28000 29000 30000 31000

Bitrate (bps)

PS
NR

 (d
B)

JM 7X
VBS 3X
JM 3X
VBS 2X
JM 2X
VBS 1X
JM 1X

Figure 12. R-D behaviour for Carphone QCIF (30 fps) at low bitrate

26

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

39

41

43

45

47

49

51

53

55

25000 26000 27000 28000 29000 30000 31000

Bitrate (bps)

PS
NR

 (d
B)

JM 7X
VBS 3X
JM 3X
VBS 2X
JM 2X
VBS 1X
JM 1X

Figure 13. R-D behaviour for Miss America QCIF (30 fps) at low bitrate

23

25

27

29

31

33

35

37

25000 26000 27000 28000 29000 30000 31000

Bitrate (bps)

PS
NR

 (d
B)

JM7X
VBS3X
JM3X
VBS2X
JM2X
VBS1X
JM1X

Figure 14. R-D behaviour for Mobile and Calendar QCIF (30 fps) at low bitrate

27

International Journal on Advances in Telecommunications, vol 3 no 1 & 2, year 2010, http://www.iariajournals.org/telecommunications/

2010, © Copyright by authors, Published under agreement with IARIA - www.iaria.org

